Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO2 Nanocrystal Electrodes under Fermi Level Control

View Author Information
Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain
Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Av. Américo Vespucio, 49, E-41092 Sevilla, Spain
*Tel: +34 95434 9315. Fax: +34 95434 9814. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2012, 116, 21, 11444–11455
Publication Date (Web):February 13, 2012
https://doi.org/10.1021/jp212436b
Copyright © 2012 American Chemical Society
Article Views
1922
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (886 KB)
Supporting Info (1)»

Abstract

Macroscopic properties of semiconductor nanoparticle networks in functional devices strongly depend on the electronic structure of the material. Analytical methods allowing for the characterization of the electronic structure in situ, i.e., in the presence of an application-relevant medium, are therefore highly desirable. Here, we present the first spectral data obtained under Fermi level control of electrons accumulated in anatase TiO2 electrodes in the energy range from the MIR to the UV (0.1–3.3 eV). Band gap states were electrochemically populated in mesoporous TiO2 films in contact with an aqueous electrolyte. The combination of electrochemical and spectroscopic measurements allows us for the first time to determine both the energetic location of the electronic ground states as well as the energies of the associated optical transitions in the energetic range between the fundamental absorption threshold and the onset of lattice absorption. On the basis of our observations, we attribute spectral contributions in the vis/NIR to d–d transitions of Ti3+ species and a broad MIR absorption, monotonically increasing toward lower wavenumbers, to a quasi-delocalization of electrons. Importantly, signal intensities in the vis/NIR and MIR are linearly correlated. Absorbance and extractable charge show the same exponential dependence on electrode potential. Our results demonstrate that signals in the vis/NIR and MIR are associated with an exponential distribution of band gap states.

Supporting Information

ARTICLE SECTIONS
Jump To

Schematic representations of the spectroelectrochemical cells, data on thin film characterization, and supporting experimental data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 79 publications.

  1. Emma A. Cave, Jarred Z. Olson, Cody W. Schlenker. Ion-Pairing Dynamics Revealed by Kinetically Resolved In Situ FTIR Spectroelectrochemistry during Lithium-Ion Storage. ACS Applied Materials & Interfaces 2021, 13 (41) , 48546-48554. https://doi.org/10.1021/acsami.1c11964
  2. Juan Miguel Jiménez, Daniel Perdolt, Thomas Berger. Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO2 Nanocrystal Aggregates. The Journal of Physical Chemistry C 2021, 125 (25) , 13809-13818. https://doi.org/10.1021/acs.jpcc.1c01580
  3. Michael J. Mortelliti, Annie N. Wang, Jillian L. Dempsey. Interfacial Electron Transfer through Ultrathin ALD TiOx Layers: A Comparative Study of TiO2/TiOx and SnO2/TiOx Core/Shell Nanocrystals. The Journal of Physical Chemistry C 2021, 125 (23) , 12937-12959. https://doi.org/10.1021/acs.jpcc.1c02428
  4. Seongkoo Kang, Arvinder Singh, Kyle G. Reeves, Jean-Claude Badot, Serge Durand-Vidal, Christophe Legein, Monique Body, Olivier Dubrunfaut, Olaf J. Borkiewicz, Benoît Tremblay, Christel Laberty-Robert, Damien Dambournet. Hydronium Ions Stabilized in a Titanate-Layered Structure with High Ionic Conductivity: Application to Aqueous Proton Batteries. Chemistry of Materials 2020, 32 (21) , 9458-9469. https://doi.org/10.1021/acs.chemmater.0c03658
  5. Iwona Grądzka-Kurzaj, Mateusz Gierszewski, Gotard Burdziński, Marcin Ziółek. Interplay between Ruthenium Sensitizer and Ruthenium Catalyst in Photoelectrochemical Cells with Different Water-Based Electrolytes. The Journal of Physical Chemistry C 2020, 124 (39) , 21268-21282. https://doi.org/10.1021/acs.jpcc.0c05262
  6. Azhar Ali Haidry, Lijuan Xie, Zhe Wang, Ali Zavabeti, Zhong Li, Tomas Plecenik, Maros Gregor, Tomas Roch, Andrej Plecenik. Remarkable Improvement in Hydrogen Sensing Characteristics with Pt/TiO2 Interface Control. ACS Sensors 2019, 4 (11) , 2997-3006. https://doi.org/10.1021/acssensors.9b01537
  7. Karin Rettenmaier, Gregor Alexander Zickler, Günther Josef Redhammer, Juan Antonio Anta, Thomas Berger. Particle Consolidation and Electron Transport in Anatase TiO2 Nanocrystal Films. ACS Applied Materials & Interfaces 2019, 11 (43) , 39859-39874. https://doi.org/10.1021/acsami.9b12693
  8. Tatsuki Shinoda, Naoya Murakami. Photoacoustic Fourier Transform Near- and Mid-Infrared Spectroscopy for Measurement of Energy Levels of Electron Trapping Sites in Titanium(IV) Oxide Photocatalyst Powders. The Journal of Physical Chemistry C 2019, 123 (19) , 12169-12175. https://doi.org/10.1021/acs.jpcc.9b02876
  9. Janelle Castillo-Lora, Ryoji Mitsuhashi, James M. Mayer. Revealing the Relative Electronic Landscape of Colloidal ZnO and TiO2 Nanoparticles via Equilibration Studies. The Journal of Physical Chemistry C 2019, 123 (16) , 10262-10271. https://doi.org/10.1021/acs.jpcc.9b00829
  10. Daniel Spittel, Jan Poppe, Christian Meerbach, Christoph Ziegler, Stephen G. Hickey, and Alexander Eychmüller . Absolute Energy Level Positions in CdSe Nanostructures from Potential-Modulated Absorption Spectroscopy (EMAS). ACS Nano 2017, 11 (12) , 12174-12184. https://doi.org/10.1021/acsnano.7b05300
  11. Timothy J. Barr and Gerald J. Meyer . Evidence for First-Order Charge Recombination in Dye-Sensitized Solar Cells. ACS Energy Letters 2017, 2 (10) , 2335-2340. https://doi.org/10.1021/acsenergylett.7b00569
  12. Yee-Seul Kim, Sébastien Kriegel, Kenneth D. Harris, Cyrille Costentin, Benoît Limoges, and Véronique Balland . Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?. The Journal of Physical Chemistry C 2017, 121 (19) , 10325-10335. https://doi.org/10.1021/acs.jpcc.7b02395
  13. Timothy J. Barr, Renato N. Sampaio, Brian N. DiMarco, Erica M. James, and Gerald J. Meyer . Phantom Electrons in Mesoporous Nanocrystalline SnO2 Thin Films with Cation-Dependent Reduction Onsets. Chemistry of Materials 2017, 29 (9) , 3919-3927. https://doi.org/10.1021/acs.chemmater.6b05470
  14. Katerina Minhová Macounová, Monika Klusáčková, Roman Nebel, Markéta Zukalová, Mariana Klementová, Ivano E. Castelli, Mathias D. Spo, Jan Rossmeisl, Ladislav Kavan, and Petr Krtil . Synergetic Surface Sensitivity of Photoelectrochemical Water Oxidation on TiO2 (Anatase) Electrodes. The Journal of Physical Chemistry C 2017, 121 (11) , 6024-6032. https://doi.org/10.1021/acs.jpcc.6b09289
  15. Jesús Idígoras, Juan A. Anta, and Thomas Berger . Charge-Transfer Reductive in Situ Doping of Mesoporous TiO2 Photoelectrodes: Impact of Electrolyte Composition and Film Morphology. The Journal of Physical Chemistry C 2016, 120 (49) , 27882-27894. https://doi.org/10.1021/acs.jpcc.6b09926
  16. Timothy J. Barr, Amanda J. Morris, Atefeh Taheri, and Gerald J. Meyer . Charge Rectification at Molecular Nanocrystalline TiO2 Interfaces: Overlap Optimization To Promote Vectorial Electron Transfer. The Journal of Physical Chemistry C 2016, 120 (48) , 27173-27181. https://doi.org/10.1021/acs.jpcc.6b09761
  17. Kai-Lin Ou, Ramanan Ehamparam, Gordon MacDonald, Tobias Stubhan, Xin Wu, R. Clayton Shallcross, Robin Richards, Christoph J. Brabec, S. Scott Saavedra, and Neal R. Armstrong . Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance. ACS Applied Materials & Interfaces 2016, 8 (30) , 19787-19798. https://doi.org/10.1021/acsami.6b02792
  18. Davide Moia, Ute B. Cappel, Tomas Leijtens, Xiaoe Li, Andrew M. Telford, Henry J. Snaith, Brian C. O’Regan, Jenny Nelson, and Piers R. F. Barnes . The Role of Hole Transport between Dyes in Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2015, 119 (33) , 18975-18985. https://doi.org/10.1021/acs.jpcc.5b05222
  19. Jesús Idígoras, Gotard Burdziński, Jerzy Karolczak, Jacek Kubicki, Gerko Oskam, Juan A. Anta, and Marcin Ziółek . The Impact of the Electrical Nature of the Metal Oxide on the Performance in Dye-Sensitized Solar Cells: New Look at Old Paradigms. The Journal of Physical Chemistry C 2015, 119 (8) , 3931-3944. https://doi.org/10.1021/jp512330f
  20. Riley E. Rex, Fritz J. Knorr, and Jeanne L. McHale . Surface Traps of TiO2 Nanosheets and Nanoparticles as Illuminated by Spectroelectrochemical Photoluminescence. The Journal of Physical Chemistry C 2014, 118 (30) , 16831-16841. https://doi.org/10.1021/jp500273q
  21. Ryan M. O’Donnell, Renato N. Sampaio, Timothy J. Barr, and Gerald J. Meyer . Electric Fields and Charge Screening in Dye Sensitized Mesoporous Nanocrystalline TiO2 Thin Films. The Journal of Physical Chemistry C 2014, 118 (30) , 16976-16986. https://doi.org/10.1021/jp500493t
  22. David M. Savory and A. James McQuillan . IR Spectroscopic Behavior of Polaronic Trapped Electrons in TiO2 under Aqueous Photocatalytic Conditions. The Journal of Physical Chemistry C 2014, 118 (25) , 13680-13692. https://doi.org/10.1021/jp503478c
  23. Liisa J. Antila, Pasi Myllyperkiö, Satu Mustalahti, Heli Lehtivuori, and Jouko Korppi-Tommola . Injection and Ultrafast Regeneration in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (15) , 7772-7780. https://doi.org/10.1021/jp4124277
  24. Robin R. Knauf, M. Kyle Brennaman, Leila Alibabaei, Michael R. Norris, and Jillian L. Dempsey . Revealing the Relationship between Semiconductor Electronic Structure and Electron Transfer Dynamics at Metal Oxide–Chromophore Interfaces. The Journal of Physical Chemistry C 2013, 117 (48) , 25259-25268. https://doi.org/10.1021/jp407587r
  25. David M. Savory and A. James McQuillan . Influence of Formate Adsorption and Protons on Shallow Trap Infrared Absorption (STIRA) of Anatase TiO2 During Photocatalysis. The Journal of Physical Chemistry C 2013, 117 (45) , 23645-23656. https://doi.org/10.1021/jp404321f
  26. Mehdi Ansari-Rad, Juan A. Anta, and Juan Bisquert . Interpretation of Diffusion and Recombination in Nanostructured and Energy-Disordered Materials by Stochastic Quasiequilibrium Simulation. The Journal of Physical Chemistry C 2013, 117 (32) , 16275-16289. https://doi.org/10.1021/jp403232b
  27. Fritz J. Knorr and Jeanne L. McHale . Spectroelectrochemical Photoluminescence of Trap States of Nanocrystalline TiO2 in Aqueous Media. The Journal of Physical Chemistry C 2013, 117 (26) , 13654-13662. https://doi.org/10.1021/jp402264p
  28. María José Marchena, Gustavo de Miguel, Boiko Cohen, Juan Angel Organero, Shyam Pandey, Shuzi Hayase, and Abderrazzak Douhal . Real-Time Photodynamics of Squaraine-Based Dye-Sensitized Solar Cells with Iodide and Cobalt Electrolytes. The Journal of Physical Chemistry C 2013, 117 (23) , 11906-11919. https://doi.org/10.1021/jp401399j
  29. Jesús Idígoras, Thomas Berger, and Juan A. Anta . Modification of Mesoporous TiO2 Films by Electrochemical Doping: Impact on Photoelectrocatalytic and Photovoltaic Performance. The Journal of Physical Chemistry C 2013, 117 (4) , 1561-1570. https://doi.org/10.1021/jp306954y
  30. Halina K. Dunn, Laurence M. Peter, Stephen J. Bingham, Eric Maluta, and Alison B. Walker . In Situ Detection of Free and Trapped Electrons in Dye-Sensitized Solar Cells by Photo-Induced Microwave Reflectance Measurements. The Journal of Physical Chemistry C 2012, 116 (41) , 22063-22072. https://doi.org/10.1021/jp3072074
  31. Michael J. Mortelliti, Chiung-Wei Huang, Joanna M. Atkin, Jillian L. Dempsey. Mixed Tin-Titanium Oxides by Atomic Layer Deposition on Planar Substrates: Physical and Electronic Structure. Applied Surface Science 2022, 573 , 151564. https://doi.org/10.1016/j.apsusc.2021.151564
  32. Karin Rettenmaier, Thomas Berger. Impact of Nanoparticle Consolidation on Charge Separation Efficiency in Anatase TiO2 Films. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.772116
  33. Thomas Berger, Annette Trunschke. Optical Properties: UV/Vis Diffuse Reflectance Spectroscopy and Photoluminescence. 2021,,, 435-482. https://doi.org/10.1002/9781119436782.ch12
  34. Emerson Coy, Katarzyna Siuzdak, Iwona Grądzka-Kurzaj, Syreina Sayegh, Matthieu Weber, Marcin Ziółek, Mikhael Bechelany, Igor Iatsunskyi. Exploring the effect of BN and B-N bridges on the photocatalytic performance of semiconductor heterojunctions: Enhancing carrier transfer mechanism. Applied Materials Today 2021, 24 , 101095. https://doi.org/10.1016/j.apmt.2021.101095
  35. Yee‐Seul Kim, Sébastien Kriegel, Alla Bessmertnykh‐Lemeune, Kenneth D. Harris, Benoît Limoges, Véronique Balland. Interplay Between Charge Accumulation and Oxygen Reduction Catalysis in Nanostructured TiO 2 Electrodes Functionalized with a Molecular Catalyst. ChemElectroChem 2021, 8 (14) , 2640-2648. https://doi.org/10.1002/celc.202100424
  36. Cecilia I. Vázquez, Victoria Benavente Llorente, Franco M. Zanotto, Ana M. Baruzzi, Rodrigo A. Iglesias. Spectroelectrochemistry and photoelectrochemistry of electrodeposited ZnO nanorods. Electrochemical Science Advances 2021, 58 https://doi.org/10.1002/elsa.202100035
  37. Akbar Mahdavi‐Shakib, K. B. Sravan Kumar, Todd N. Whittaker, Tianze Xie, Lars C. Grabow, Robert M. Rioux, Bert D. Chandler. Kinetics of H 2 Adsorption at the Metal–Support Interface of Au/TiO 2 Catalysts Probed by Broad Background IR Absorbance. Angewandte Chemie 2021, 133 (14) , 7814-7822. https://doi.org/10.1002/ange.202013359
  38. Akbar Mahdavi‐Shakib, K. B. Sravan Kumar, Todd N. Whittaker, Tianze Xie, Lars C. Grabow, Robert M. Rioux, Bert D. Chandler. Kinetics of H 2 Adsorption at the Metal–Support Interface of Au/TiO 2 Catalysts Probed by Broad Background IR Absorbance. Angewandte Chemie International Edition 2021, 60 (14) , 7735-7743. https://doi.org/10.1002/anie.202013359
  39. Maxime E. Dufond, Jean-Noël Chazalviel, Lionel Santinacci. Electrochemical Stability of n-Si Photoanodes Protected by TiO 2 Thin Layers Grown by Atomic Layer Deposition. Journal of The Electrochemical Society 2021, 168 (3) , 031509. https://doi.org/10.1149/1945-7111/abeaf3
  40. Helong Xu, Xueqin Wang, Man Dai, Wenyi Wang, Decheng Lu, Mei Zhang, Yanguang Chen, Hua Song. Resin microsphere templates for TiO2 hollow structure with uniform mesopores: Preparation and photocatalytic application. Materials Chemistry and Physics 2021, 260 , 124158. https://doi.org/10.1016/j.matchemphys.2020.124158
  41. Robert Brüninghoff, Ainoa Paradelo Rodríguez, Ronald P.H. Jong, Jacobus M. Sturm, Uwe Breuer, Caroline Lievens, Adriaan W. Jeremiasse, Guido Mul, Bastian Mei. Electrochemical preparation of defect-engineered titania: Bulk doping versus surface contamination. Applied Surface Science 2021, 539 , 148136. https://doi.org/10.1016/j.apsusc.2020.148136
  42. Katarzyna Pydzińska-Białek, Adam Glinka, Viktoriia Drushliak, Grzegorz Nowaczyk, Patryk Florczak, Marcin Ziółek. Impact of improvements in mesoporous titania layers on ultrafast electron transfer dynamics in perovskite and dye-sensitized solar cells. Physical Chemistry Chemical Physics 2020, 22 (38) , 21947-21960. https://doi.org/10.1039/D0CP03780J
  43. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  44. Xuesi Yao, Hailiang Jin, Cheng Liu, Steven S.C. Chuang. TiO2-based photocatalytic conversion processes: insights from in situ infrared spectroscopy. 2020,,, 57-75. https://doi.org/10.1016/B978-0-12-819000-5.00005-9
  45. Mateusz Trochowski, Marcin Kobielusz, Krystian Mróz, Marcin Surówka, Jani Hämäläinen, Tomi Iivonen, Markku Leskelä, Wojciech Macyk. How insignificant modifications of photocatalysts can significantly change their photocatalytic activity. Journal of Materials Chemistry A 2019, 7 (43) , 25142-25154. https://doi.org/10.1039/C9TA09400H
  46. Yee-Seul Kim, Kenneth D. Harris, Benoît Limoges, Véronique Balland. On the unsuspected role of multivalent metal ions on the charge storage of a metal oxide electrode in mild aqueous electrolytes. Chemical Science 2019, 10 (38) , 8752-8763. https://doi.org/10.1039/C9SC02397F
  47. Kun Wang, Ting Peng, Zhongming Wang, Hong Wang, Xun Chen, Wenxin Dai, Xianzhi Fu. Correlation between the H2 response and its oxidation over TiO2 and N doped TiO2 under UV irradiation induced by Fermi level. Applied Catalysis B: Environmental 2019, 250 , 89-98. https://doi.org/10.1016/j.apcatb.2019.03.026
  48. Baoshun Liu, Xiujian Zhao, Jiaguo Yu, Ivan P. Parkin, Akira Fujishima, Kazuya Nakata. Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 39 , 1-57. https://doi.org/10.1016/j.jphotochemrev.2019.02.001
  49. Michelle Weber, Sophia Westendorf, Björn Märker, Kai Braun, Marcus Scheele. Opportunities and challenges for electrochemistry in studying the electronic structure of nanocrystals. Physical Chemistry Chemical Physics 2019, 21 (18) , 8992-9001. https://doi.org/10.1039/C9CP00301K
  50. Piyush Kar, Sheng Zeng, Yun Zhang, Ehsan Vahidzadeh, Ajay Manuel, Ryan Kisslinger, Kazi M. Alam, Ujwal K. Thakur, Najia Mahdi, Pawan Kumar, Karthik Shankar. High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Applied Catalysis B: Environmental 2019, 243 , 522-536. https://doi.org/10.1016/j.apcatb.2018.08.002
  51. Baoshun Liu, Jingjing Yang, Jiangyan Wang, Xiujian Zhao, Kazuya Nakata. High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science 2019, 465 , 192-200. https://doi.org/10.1016/j.apsusc.2018.09.098
  52. Ádám Balog, Csaba Janáky. The Effect of Trap States on the Optoelectronic Properties of Nanoporous Nickel Oxide. Journal of The Electrochemical Society 2019, 166 (5) , H3265-H3270. https://doi.org/10.1149/2.0361905jes
  53. Marcin Kobielusz, Kacper Pilarczyk, Elżbieta Świętek, Konrad Szaciłowski, Wojciech Macyk. Spectroelectrochemical analysis of TiO 2 electronic states – Implications for the photocatalytic activity of anatase and rutile. Catalysis Today 2018, 309 , 35-42. https://doi.org/10.1016/j.cattod.2017.11.013
  54. Raghu M. Gunnagol, Mohammad Hussain K. Rabinal. TiO 2 -Graphene Nanocomposites for Effective Photocatalytic Degradation of Rhodamine-B Dye. ChemistrySelect 2018, 3 (9) , 2578-2585. https://doi.org/10.1002/slct.201703081
  55. Naoya Murakami, Tatsuki Shinoda. Mid-infrared absorption of trapped electrons in titanium( iv ) oxide particles using a photoacoustic FTIR technique. Physical Chemistry Chemical Physics 2018, 20 (38) , 24519-24522. https://doi.org/10.1039/C8CP04885A
  56. Caterina Barzan, Lorenzo Mino, Elena Morra, Elena Groppo, Mario Chiesa, Giuseppe Spoto. Photoinduced Ethylene Polymerization on Titania Nanoparticles. ChemCatChem 2017, 9 (23) , 4324-4327. https://doi.org/10.1002/cctc.201700850
  57. Jiawei Liu, Long Zhang, Xuesi Yao, Steven S. C. Chuang. Photo-generated conduction-band and shallow-trap electrons from UV irradiation on ethanol-adsorbed TiO2 and N-TiO2: an in situ infrared study. Research on Chemical Intermediates 2017, 43 (9) , 5041-5054. https://doi.org/10.1007/s11164-017-3038-9
  58. Chengwu Yang, Christof Wöll. IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond. Advances in Physics: X 2017, 2 (2) , 373-408. https://doi.org/10.1080/23746149.2017.1296372
  59. Andreas S. J. L. Bachmeier. Theory of Experimental Techniques. 2017,,, 77-125. https://doi.org/10.1007/978-3-319-47069-6_2
  60. Yuemin Wang, Christof Wöll. IR spectroscopic investigations of chemical and photochemical reactions on metal oxides: bridging the materials gap. Chemical Society Reviews 2017, 46 (7) , 1875-1932. https://doi.org/10.1039/C6CS00914J
  61. Baoshun Liu, Rui Zhang. Effects of spatial topologies and electron Fermi-level gradient on the photocatalytic efficiency of nano-particulate semiconductors. Physical Chemistry Chemical Physics 2017, 19 (15) , 10116-10124. https://doi.org/10.1039/C7CP00574A
  62. Mateusz Gierszewski, Iwona Grądzka, Adam Glinka, Marcin Ziółek. Insights into the limitations of solar cells sensitized with ruthenium dyes revealed in time-resolved spectroscopy studies. Physical Chemistry Chemical Physics 2017, 19 (31) , 20463-20473. https://doi.org/10.1039/C7CP03566G
  63. Augusto Márquez, Manuel J. Rodríguez-Pérez, Juan A. Anta, Geonel Rodríguez-Gattorno, Gilles R. Bourret, Gerko Oskam, Thomas Berger. Defects in Porous Networks of WO 3 Particle Aggregates. ChemElectroChem 2016, 3 (4) , 658-667. https://doi.org/10.1002/celc.201500435
  64. Emanuele Maggio, Natalia Martsinovich, Alessandro Troisi. Continuum and atomistic description of excess electrons in TiO 2. Journal of Physics: Condensed Matter 2016, 28 (7) , 074004. https://doi.org/10.1088/0953-8984/28/7/074004
  65. Hikmet Sezen, Maria Buchholz, Alexei Nefedov, Carsten Natzeck, Stefan Heissler, Cristiana Di Valentin, Christof Wöll. Probing electrons in TiO2 polaronic trap states by IR-absorption: Evidence for the existence of hydrogenic states. Scientific Reports 2015, 4 (1) https://doi.org/10.1038/srep03808
  66. Thomas Berger, Oliver Diwald. Defects in Metal Oxide Nanoparticle Powders. 2015,,, 273-301. https://doi.org/10.1007/978-3-319-14367-5_9
  67. Katarzyna Siuzdak, Mariusz Szkoda, Mirosław Sawczak, Anna Lisowska-Oleksiak, Jakub Karczewski, Jacek Ryl. Enhanced photoelectrochemical and photocatalytic performance of iodine-doped titania nanotube arrays. RSC Advances 2015, 5 (62) , 50379-50391. https://doi.org/10.1039/C5RA08407E
  68. , , , Riley E. Rex, Fritz J. Knorr, Jeanne L. McHale. Spectroelectrochemical photoluminescence of titanium dioxide nanosheets and nanoparticles in aqueous and nonaqueous environments. 2014,,, 91650T. https://doi.org/10.1117/12.2063585
  69. Alessandro Minguzzi, Carlos M. Sánchez-Sánchez, Alessandro Gallo, Vicente Montiel, Sandra Rondinini. Evidence of Facilitated Electron Transfer on Hydrogenated Self-Doped TiO 2 Nanocrystals. ChemElectroChem 2014, 1 (8) , 1415-1421. https://doi.org/10.1002/celc.201300226
  70. Woochul Lee, Ji yeon Seng, Jong-In Hong. Metal-free organic dyes with benzothiadiazole as an internal acceptor for dye-sensitized solar cells. Tetrahedron 2013, 69 (44) , 9175-9182. https://doi.org/10.1016/j.tet.2013.08.075
  71. Thomas Berger, Juan A. Anta, Víctor Morales-Flórez. Surface Properties of Anatase TiO 2 Nanowire Films Grown from a Fluoride-Containing Solution. ChemPhysChem 2013, 14 (8) , 1676-1685. https://doi.org/10.1002/cphc.201300024
  72. Piers R. F. Barnes, Kati Miettunen, Xiaoe Li, Assaf Y. Anderson, Takeru Bessho, Michael Gratzel, Brian C. O'Regan. Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells. Advanced Materials 2013, 25 (13) , 1881-1922. https://doi.org/10.1002/adma.201201372
  73. Juan Bisquert, Rudolph A. Marcus. Device Modeling of Dye-Sensitized Solar Cells. 2013,,, 325-395. https://doi.org/10.1007/128_2013_471
  74. John R. Swierk, Thomas E. Mallouk. Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem. Soc. Rev. 2013, 42 (6) , 2357-2387. https://doi.org/10.1039/C2CS35246J
  75. Elżbieta Świętek, Kacper Pilarczyk, Justyna Derdzińska, Konrad Szaciłowski, Wojciech Macyk. Redox characterization of semiconductors based on electrochemical measurements combined with UV-Vis diffuse reflectance spectroscopy. Physical Chemistry Chemical Physics 2013, 15 (34) , 14256. https://doi.org/10.1039/c3cp52129j
  76. Thomas Berger, Juan A. Anta, Víctor Morales-Flórez. Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile. Physical Chemistry Chemical Physics 2013, 15 (33) , 13790. https://doi.org/10.1039/c3cp52324a
  77. Wenjing Song, Hanlin Luo, Kenneth Hanson, Javier J. Concepcion, M. Kyle Brennaman, Thomas J. Meyer. Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy & Environmental Science 2013, 6 (4) , 1240. https://doi.org/10.1039/c3ee24184j
  78. Kai-Lin Ou, Delvin Tadytin, K. Xerxes Steirer, Diogenes Placencia, Mike Nguyen, Paul Lee, Neal R. Armstrong. Titanium dioxide electron-selective interlayers created by chemical vapor deposition for inverted configuration organic solar cells. Journal of Materials Chemistry A 2013, 1 (23) , 6794. https://doi.org/10.1039/c3ta10894e
  79. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073