Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides

View Author Information
Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 604393, United States
Center for Nanoscale Materials, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 604393, United States
§ Chemistry Department, Benedictine University, 5700 College Road, Lisle, Illinois 605324, United States
Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
*E-mail: I. A. Shkrob, [email protected]; N. M. Dimitrijevic, [email protected]
Cite this: J. Phys. Chem. C 2012, 116, 17, 9461–9471
Publication Date (Web):March 6, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


Photoactive metal oxides, such as hydrated TiO2, are known to reduce carbon dioxide to methane, but the mechanism for this photoreaction is insufficiently understood. In particular, it is not known whether the reduction of crucial reaction intermediates, including the formate anion, involves one- or two-electron reactions. In this study, we demonstrate that formic acid and its derivatives can be reduced to the formyl radical via a concerted reaction in which the electron transfer is coupled to oxygen transfer to a Ti3+ center on the oxide surface. Several other examples of such heteroatom-transfer reactions are demonstrated, suggesting a general pattern. The implications of these reactions for photocatalytic methanogenesis, perchlorate diagenesis, and planetary chemistry on Mars are discussed.

Supporting Information

Jump To

A file containing Section 1S on photoreactions of dimethylformamide on TiO2, the list of abbreviations and reactions, Tables 1S and 2S, and Figures 1S–13S with captions, including the experimental and simulated EPR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 33 publications.

  1. Xinzhu Qian, Weiyi Yang, Shuang Gao, Jun Xiao, Swastik Basu, Anthony Yoshimura, Yunfeng Shi, Vincent Meunier, Qi Li. Highly Selective, Defect-Induced Photocatalytic CO2 Reduction to Acetaldehyde by the Nb-Doped TiO2 Nanotube Array under Simulated Solar Illumination. ACS Applied Materials & Interfaces 2020, 12 (50) , 55982-55993. https://doi.org/10.1021/acsami.0c17174
  2. Xin Li, Jiaguo Yu, Mietek Jaroniec, Xiaobo Chen. Cocatalysts for Selective Photoreduction of CO2 into Solar Fuels. Chemical Reviews 2019, 119 (6) , 3962-4179. https://doi.org/10.1021/acs.chemrev.8b00400
  3. Fernando Fresno, Ignacio J. Villar-García, Laura Collado, Elena Alfonso-González, Patricia Reñones, Mariam Barawi, Víctor A. de la Peña O’Shea. Mechanistic View of the Main Current Issues in Photocatalytic CO2 Reduction. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7192-7204. https://doi.org/10.1021/acs.jpclett.8b02336
  4. Samiksha Poudyal, Siris Laursen. Insights into Elevated-Temperature Photocatalytic Reduction of CO2 by H2O. The Journal of Physical Chemistry C 2018, 122 (15) , 8045-8057. https://doi.org/10.1021/acs.jpcc.7b12662
  5. Seung-Min Park, Abdul Razzaq, Young Ho Park, Saurav Sorcar, Yiseul Park, Craig A. Grimes, and Su-Il In . Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1 (5) , 868-875. https://doi.org/10.1021/acsomega.6b00164
  6. Yongfei Ji and Yi Luo . Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2(101) Surface. ACS Catalysis 2016, 6 (3) , 2018-2025. https://doi.org/10.1021/acscatal.5b02694
  7. Marisa L. Macnaughtan, Han Sen Soo, and Heinz Frei . Binuclear ZrOCo Metal-to-Metal Charge-Transfer Unit in Mesoporous Silica for Light-Driven CO2 Reduction to CO and Formate. The Journal of Physical Chemistry C 2014, 118 (15) , 7874-7885. https://doi.org/10.1021/jp5014994
  8. Ilya A. Shkrob, Timothy W. Marin, Haiying He, and Peter Zapol . Photoredox Reactions and the Catalytic Cycle for Carbon Dioxide Fixation and Methanogenesis on Metal Oxides. The Journal of Physical Chemistry C 2012, 116 (17) , 9450-9460. https://doi.org/10.1021/jp300122v
  9. Kayode Adesina Adegoke, Nobanathi Wendy Maxakato. Efficient strategies for boosting the performance of 2D graphitic carbon nitride nanomaterials during photoreduction of carbon dioxide to energy-rich chemicals. Materials Today Chemistry 2022, 23 , 100605. https://doi.org/10.1016/j.mtchem.2021.100605
  10. Ke Wang, Jiangbo Lu, Ying Lu, Cher Hon Lau, Ying Zheng, Xianfeng Fan. Unravelling the C C coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: Combination of plasmonic excitation and oxygen vacancy. Applied Catalysis B: Environmental 2021, 292 , 120147. https://doi.org/10.1016/j.apcatb.2021.120147
  11. Yinyi Ma, Zemin Zhang, Xiao Jiang, Rongke Sun, Mingzheng Xie, Weihua Han. Direct Z-scheme Sn-In 2 O 3 /In 2 S 3 heterojunction nanostructures for enhanced photocatalytic CO 2 reduction activity. Journal of Materials Chemistry C 2021, 9 (11) , 3987-3997. https://doi.org/10.1039/D1TC00014D
  12. Wee‐Jun Ong, Lutfi Kurnianditia Putri, Abdul Rahman Mohamed. Rational Design of Carbon‐Based 2D Nanostructures for Enhanced Photocatalytic CO 2 Reduction: A Dimensionality Perspective. Chemistry – A European Journal 2020, 26 (44) , 9710-9748. https://doi.org/10.1002/chem.202000708
  13. Maria M. Ramirez-Corredores, Greeshma Gadikota, Erin E. Huang, Anne M. Gaffney. Radiation-Induced Chemistry of Carbon Dioxide: A Pathway to Close the Carbon Loop for a Circular Economy. Frontiers in Energy Research 2020, 8 https://doi.org/10.3389/fenrg.2020.00108
  14. Nhu‐Nang Vu, Serge Kaliaguine, Trong‐On Do. Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‐Driven Photocatalytic Reduction of CO 2 into Fuels. Advanced Functional Materials 2019, 29 (31) , 1901825. https://doi.org/10.1002/adfm.201901825
  15. Martin Dilla, Alina Jakubowski, Simon Ristig, Jennifer Strunk, Robert Schlögl. The fate of O 2 in photocatalytic CO 2 reduction on TiO 2 under conditions of highest purity. Physical Chemistry Chemical Physics 2019, 21 (29) , 15949-15957. https://doi.org/10.1039/C8CP07765G
  16. Martin Dilla, Nikolaos G. Moustakas, Ahmet E. Becerikli, Tim Peppel, Armin Springer, Robert Schlögl, Jennifer Strunk, Simon Ristig. Judging the feasibility of TiO 2 as photocatalyst for chemical energy conversion by quantitative reactivity determinants. Physical Chemistry Chemical Physics 2019, 21 (24) , 13144-13150. https://doi.org/10.1039/C9CP00981G
  17. Abdul Razzaq, Su-Il In. TiO2 Based Nanostructures for Photocatalytic CO2 Conversion to Valuable Chemicals. Micromachines 2019, 10 (5) , 326. https://doi.org/10.3390/mi10050326
  18. M.A.L.R.M. Cortes, J.W.J. Hamilton, P.K. Sharma, A. Brown, M. Nolan, K.A. Gray, J.A. Byrne. Formal quantum efficiencies for the photocatalytic reduction of CO2 in a gas phase batch reactor. Catalysis Today 2019, 326 , 75-81. https://doi.org/10.1016/j.cattod.2018.10.047
  19. Samiksha Poudyal, Siris Laursen. Photocatalytic CO 2 reduction by H 2 O: insights from modeling electronically relaxed mechanisms. Catalysis Science & Technology 2019, 9 (4) , 1048-1059. https://doi.org/10.1039/C8CY02046A
  20. Martin Dilla, Ahmet E. Becerikli, Alina Jakubowski, Robert Schlögl, Simon Ristig. Development of a tubular continuous flow reactor for the investigation of improved gas–solid interaction in photocatalytic CO 2 reduction on TiO 2. Photochemical & Photobiological Sciences 2019, 18 (2) , 314-318. https://doi.org/10.1039/C8PP00518D
  21. Iman Hashemizadeh, Vladimir B. Golovko, Jungkyu Choi, Daniel C.W. Tsang, Alex C.K. Yip. Photocatalytic reduction of CO2 to hydrocarbons using bio-templated porous TiO2 architectures under UV and visible light. Chemical Engineering Journal 2018, 347 , 64-73. https://doi.org/10.1016/j.cej.2018.04.094
  22. Antonín Knížek, Ksenyia Dryahina, Patrik Španěl, Petr Kubelík, Ladislav Kavan, Markéta Zukalová, Martin Ferus, Svatopluk Civiš. Comparative SIFT-MS, GC–MS and FTIR analysis of methane fuel produced in biogas stations and in artificial photosynthesis over acidic anatase TiO2 and montmorillonite. Journal of Molecular Spectroscopy 2018, 348 , 152-160. https://doi.org/10.1016/j.jms.2017.10.002
  23. Jennifer Strunk. Requirements for efficient metal oxide photocatalysts for CO2 reduction. 2018,,, 275-301. https://doi.org/10.1016/B978-0-12-811167-3.00010-9
  24. Younghwan Im, Sun-Min Park, Misook Kang. Effect of Ca/Ti Ratio on the Core-Shell Structured CaTiO 3 @basalt Fiber for Effective Photoreduction of Carbon Dioxide. Bulletin of the Korean Chemical Society 2017, 38 (3) , 397-400. https://doi.org/10.1002/bkcs.11100
  25. Elham Karamian, Shahram Sharifnia. On the general mechanism of photocatalytic reduction of CO2. Journal of CO2 Utilization 2016, 16 , 194-203. https://doi.org/10.1016/j.jcou.2016.07.004
  26. Svatopluk Civiš, Martin Ferus, A. Knížek, P. Kubelík, L. Kavan, M. Zukalová. Photocatalytic transformation of CO2 to CH4 and CO on acidic surface of TiO2 anatase. Optical Materials 2016, 56 , 80-83. https://doi.org/10.1016/j.optmat.2015.11.015
  27. Chung Man Ip, Alessandro Troisi. A computational study of the competing reaction mechanisms of the photo-catalytic reduction of CO 2 on anatase(101). Physical Chemistry Chemical Physics 2016, 18 (36) , 25010-25021. https://doi.org/10.1039/C6CP02642G
  28. Stephanie Kwon, Peilin Liao, Peter C. Stair, Randall Q. Snurr. Alkaline-earth metal-oxide overlayers on TiO 2 : application toward CO 2 photoreduction. Catalysis Science & Technology 2016, 6 (21) , 7885-7895. https://doi.org/10.1039/C6CY01661H
  29. Lan Yuan, Yi-Jun Xu. Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science 2015, 342 , 154-167. https://doi.org/10.1016/j.apsusc.2015.03.050
  30. Agni Raj Koirala, Son Docao, Seong Beom Lee, Kyung Byung Yoon. Fate of methanol under one-pot artificial photosynthesis condition with metal-loaded TiO2 as photocatalysts. Catalysis Today 2015, 243 , 235-250. https://doi.org/10.1016/j.cattod.2014.07.056
  31. James Highfield. Advances and Recent Trends in Heterogeneous Photo(Electro)-Catalysis for Solar Fuels and Chemicals. Molecules 2015, 20 (4) , 6739-6793. https://doi.org/10.3390/molecules20046739
  32. Severin N. Habisreutinger, Lukas Schmidt-Mende, Jacek K. Stolarczyk. Photokatalytische Reduktion von CO 2 an TiO 2 und anderen Halbleitern. Angewandte Chemie 2013, 125 (29) , 7516-7557. https://doi.org/10.1002/ange.201207199
  33. Severin N. Habisreutinger, Lukas Schmidt-Mende, Jacek K. Stolarczyk. Photocatalytic Reduction of CO 2 on TiO 2 and Other Semiconductors. Angewandte Chemie International Edition 2013, 52 (29) , 7372-7408. https://doi.org/10.1002/anie.201207199