Zn-Doped CdS Nanoarchitectures Prepared by Hydrothermal Synthesis: Mechanism for Enhanced Photocatalytic Activity and Stability under Visible Light

View Author Information
Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079, China
School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073, China
§ School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
College of Chemistry, Central China Normal University, Wuhan 430079, China
*E-mail: [email protected]; fax: 86-27-67861185.
Cite this: J. Phys. Chem. C 2012, 116, 16, 9078–9084
Publication Date (Web):April 3, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (4 MB)


Zn-doped CdS nanoarchitectures with different Zn content are synthesized by a simple hydrothermal method with water as the only solvent. The prepared samples are characterized by X-ray powder diffraction, scanning electron microscopy, UV–vis diffuse reflectance spectra, Brunauer–Emmett–Teller measurement, and X-ray photoelectron spectroscopy, while the photocatalytic activities are tested by photocatalytic degradation of rhodamine-B under visible-light irradiation. The results show that CdS with small amount of Zn doping can lead to an enhanced photocatalytic activity. Zn-doped CdS sample derived at 160 °C for 12 h with the molar ratio of Zn/Cd = 1:10 exhibits the best photocatalytic activity, which is much higher than that of pure CdS. Moreover, there is almost no loss of photocatalytic activity after four cycles of repeated experiments. So, Zn2+ doping indeed improves the photocatalytic activity and stability of CdS. Theoretical calculation indicates that Zn doping into a CdS crystal lattice can result in the shift of the valence band of CdS to a positive direction. It may lead to its higher oxidative ability than pure CdS, which is important for organic pollutant degradation under visible-light irradiation. Furthermore, the low formation energy for Zn-doped CdS systems demonstrates that the stability of CdS with Zn2+ doping can be improved. Experimentally and theoretically, this study will be useful for the improvement of photocatalytic activity and stability of CdS through the method of metal ion doping.

Cited By

This article is cited by 97 publications.

  1. Elisa Jimenez-Izal, Iker Ortiz de Luzuriaga, Eloy Ramos-Cordoba, Jon M. Matxain. Role of Dispersion Interactions in Endohedral [email protected](ZnS)12 Structures. ACS Omega 2021, 6 (25) , 16612-16622. https://doi.org/10.1021/acsomega.1c02016
  2. Fengyu Quan, Junlu Zhang, Daohao Li, Yukun Zhu, Yu Wang, Yuyu Bu, Yimin Qin, Yanzhi Xia, Sridhar Komarneni, Dongjiang Yang. Biomass as a Template Leads to [email protected] Aerogels for Efficient Photocatalytic Hydrogen Evolution and Stable Photoelectrochemical Cells. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 14911-14918. https://doi.org/10.1021/acssuschemeng.8b03415
  3. Luo Yu, Guojian Li, Xiaoshu Zhang, Xin Ba, Guodong Shi, Yong Li, Po Keung Wong, Jimmy C. Yu, and Ying Yu . Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO2 Reduction in Artificial Photosynthesis. ACS Catalysis 2016, 6 (10) , 6444-6454. https://doi.org/10.1021/acscatal.6b01455
  4. Gao-Chao Fan, Li Han, Jian-Rong Zhang, and Jun-Jie Zhu . Enhanced Photoelectrochemical Strategy for Ultrasensitive DNA Detection Based on Two Different Sizes of CdTe Quantum Dots Cosensitized TiO2/CdS:Mn Hybrid Structure. Analytical Chemistry 2014, 86 (21) , 10877-10884. https://doi.org/10.1021/ac503043w
  5. Ramkrishna Sahoo, Anindita Roy, Chaiti Ray, Chanchal Mondal, Yuichi Negishi, S. M. Yusuf, Anjali Pal, and Tarasankar Pal . Decoration of Fe3O4 Base Material with Pd Loaded CdS Nanoparticle for Superior Photocatalytic Efficiency. The Journal of Physical Chemistry C 2014, 118 (21) , 11485-11494. https://doi.org/10.1021/jp503393x
  6. Alireza Khataee, Amirreza Khataee, Mehrangiz Fathinia, Younes Hanifehpour, and Sang Woo Joo . Kinetics and Mechanism of Enhanced Photocatalytic Activity under Visible Light Using Synthesized PrxCd1–xSe Nanoparticles. Industrial & Engineering Chemistry Research 2013, 52 (37) , 13357-13369. https://doi.org/10.1021/ie402352g
  7. Sheng Huang Yu Lin Jian-Hua Yang Ying Yu . CdS-Based Semiconductor Photocatalysts for Hydrogen Production from Water Splitting under Solar Light. 2013,,, 219-241. https://doi.org/10.1021/bk-2013-1140.ch009
  8. Shilei Xie, Xihong Lu, Teng Zhai, Jiayong Gan, Wei Li, Ming Xu, Minghao Yu, Yuan-Ming Zhang, and Yexiang Tong . Controllable Synthesis of ZnxCd1–[email protected] Core–Shell Nanorods with Enhanced Photocatalytic Activity. Langmuir 2012, 28 (28) , 10558-10564. https://doi.org/10.1021/la3013624
  9. R. Aruna‐Devi, Latha Marasamy, S. A. Mayén‐Hernández, F. De Moure‐Flores, J. Santos‐Cruz. Studying the impact of Mg doping on the physical properties of CdS nanocrystals for the fabrication of hybrid solar cells–based organic P3HT : PCBM polymers and inorganic Mg‐doped CdS nanocrystals. International Journal of Energy Research 2021, 4 https://doi.org/10.1002/er.7509
  10. P. Raju, Joseph Prince Jesuraj, S. Muthukumaran. Crystallographic, Energy Gap, Photoluminescence and Photo-Catalytic Investigation of Cu Doped Cd0.9Zn0.1S Nanostructures by Co-precipitation Method. Journal of Inorganic and Organometallic Polymers and Materials 2021, 757 https://doi.org/10.1007/s10904-021-02058-2
  11. Xichen Yu, Qingqing Xing, Xiaoping Zhang, Hanlin Jiang, Fengren Cao. Photoelectrochemical water splitting using TiO2 nanorod arrays coated with Zn-doped CdS. Journal of Materials Science 2021, 56 (18) , 11059-11070. https://doi.org/10.1007/s10853-021-06008-8
  12. Chandan Kumar Maity, Deb Kumar Santra, Kartikey Verma, Sumanta Sahoo, Sheldon Cotts, Deji Akinwande, Vikas Berry, Ganesh Chandra Nayak. Induced conducting energy-levels in a boron nitride nano-framework for asymmetric supercapacitors in high charge-mobility ionic electrolytes. Composites Part B: Engineering 2021, 212 , 108728. https://doi.org/10.1016/j.compositesb.2021.108728
  13. Xiangyu Liu, Mahmoud Sayed, Chuanbiao Bie, Bei Cheng, Biwei Hu, Jiaguo Yu, Liuyang Zhang. Hollow CdS-based photocatalysts. Journal of Materiomics 2021, 7 (3) , 419-439. https://doi.org/10.1016/j.jmat.2020.10.010
  14. Jiakun Wu, Bowen Sun, Hui Wang, Yanyan Li, Ying Zuo, Wenjing Wang, Haifeng Lin, Shaoxiang Li, Lei Wang. Efficient spatial charge separation in unique 2D tandem heterojunction Cd x Zn 1−x In 2 S 4 –CdS–MoS 2 rendering highly-promoted visible-light-induced H 2 generation. Journal of Materials Chemistry A 2021, 9 (1) , 482-491. https://doi.org/10.1039/D0TA10564C
  15. Shangpan Huang, Zhiqiang Wei, Long Ma, Chao Li, Qiang Lu, Jinhuan Ma. Hydrothermal synthesis, photo-electrochemical and photocatalytic activity of SnS2/CdS nanocomposites. Journal of Materials Science: Materials in Electronics 2021, 32 (1) , 676-686. https://doi.org/10.1007/s10854-020-04848-9
  16. Tsegaye Girma Asere, Gijs Du Laing. Zn-doped CdSe nanoparticles: Impact of synthesis conditions on photocatalytic activity. Environmental Technology & Innovation 2020, 20 , 101126. https://doi.org/10.1016/j.eti.2020.101126
  17. Xiaopeng Zhou, Ning Zhang, Linxin Yin, Yafei Zhao, Bing Zhang. Few-layered WS2 nanosheets onto 1D [email protected] as efficient visible-light photocatalyst for hydrogen evolution. Ceramics International 2020, 46 (16) , 26100-26108. https://doi.org/10.1016/j.ceramint.2020.07.105
  18. Arup Kumar De, Sourav Majumdar, Shaili Pal, Sunil Kumar, Indrajit Sinha. Zn doping induced band gap widening of Ag2O nanoparticles. Journal of Alloys and Compounds 2020, 832 , 154127. https://doi.org/10.1016/j.jallcom.2020.154127
  19. Dezhi Qin, Guangrui Yang, Yabo Wang, Jiajia Zhang, Li Zhang. Microwave‐assisted synthesis of pectin‐stabilised CdS/ZnS core/shell nanocrystals and enhanced photocatalytic performance. Micro & Nano Letters 2020, 15 (9) , 595-599. https://doi.org/10.1049/mnl.2020.0062
  20. Nicolás Órdenes-Aenishanslins, Giovanna Anziani-Ostuni, Juan Pablo Monrás, Alejandra Tello, Denisse Bravo, Daniela Toro-Ascuy, Ricardo Soto-Rifo, Paras N. Prasad, José Manuel Pérez-Donoso. Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications. Microorganisms 2020, 8 (5) , 631. https://doi.org/10.3390/microorganisms8050631
  21. Bowen Sun, Hui Wang, Jiakun Wu, Yanling Geng, Jixiang Xu, Yaowei Wang, Yanyan Li, Haifeng Lin, Lei Wang. Designed synthesis of unique [email protected]@Cd 0.5 Zn 0.5 S-MoS 2 hollow nanospheres for efficient visible-light-driven H 2 evolution. CrystEngComm 2020, 22 (16) , 2743-2755. https://doi.org/10.1039/D0CE00064G
  22. Venkata Veera Prasad Munaga, Thyagarajan Krishnan, Rajesh Kumar Borra. Structural, surface morphological, optical and thermoelectric properties of sol–gel spin coated Zn doped CdS thin films. SN Applied Sciences 2020, 2 (4) https://doi.org/10.1007/s42452-020-2358-3
  23. Radhakrishna S. Sutar, Rani P. Barkul, Sagar D. Delekar, Meghshyam K. Patil. Sunlight assisted photocatalytic degradation of organic pollutants using g-C3N4-TiO2 nanocomposites. Arabian Journal of Chemistry 2020, 13 (4) , 4966-4977. https://doi.org/10.1016/j.arabjc.2020.01.019
  24. Mohd. Shkir, Mohd Anis, S. Shafik, M. Aslam Manthrammel, M.A. Sayeed, Mohamed S. Hamdy, S. AlFaify. An effect of Zn content doping on opto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Physica E: Low-dimensional Systems and Nanostructures 2020, 118 , 113955. https://doi.org/10.1016/j.physe.2020.113955
  25. Hikmat S. Hilal, Ahed Zyoud, Mohammad H.S. Hilal, Heba Bsharat, Heba Nassar, Ali Cheknane. Charge transfer catalysis at solid/liquid interface in photoelectrochemical processes: Enhancement of polycrystalline film electrode stability and performance. Solar Energy 2020, 197 , 443-454. https://doi.org/10.1016/j.solener.2020.01.026
  26. Poonam Yadav, Pravin K. Dwivedi, Surendar Tonda, Rabah Boukherroub, Manjusha V. Shelke. Metal and Non-metal Doped Metal Oxides and Sulfides. 2020,,, 89-132. https://doi.org/10.1007/978-3-030-15608-4_4
  27. Dong Yan, Xin Wu, Jiayun Pei, Chaochao Wu, Xiumei Wang, Haiyan Zhao. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties. Ceramics International 2020, 46 (1) , 696-702. https://doi.org/10.1016/j.ceramint.2019.09.022
  28. Xiao-Fang Song, Wei Wang, Jing-Yu Yang, Ting-Ting Li, Guo Liu, Yan Han, Yue-Sheng Li, Yi Liu. Novel in-situ radiation construction of thioglycollic acid capped CdS quantum dots functionalized g-C3N4 nanohybrids with superior photocatalytic activity under visible light. Radiation Physics and Chemistry 2019, 165 , 108449. https://doi.org/10.1016/j.radphyschem.2019.108449
  29. Ranjith Rajendran, Krishnakumar Varadharajan, Venkatesan Jayaraman. Fabrication of tantalum doped CdS nanoparticles for enhanced photocatalytic degradation of organic dye under visible light exposure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 580 , 123688. https://doi.org/10.1016/j.colsurfa.2019.123688
  30. Haifeng Lin, Bowen Sun, Hui Wang, Qinqin Ruan, Yanling Geng, Yanyan Li, Jiakun Wu, Wenjing Wang, Jie Liu, Xun Wang. Unique 1D Cd 1− x Zn x [email protected]‐MoS 2 /NiO x Nanohybrids: Highly Efficient Visible‐Light‐Driven Photocatalytic Hydrogen Evolution via Integrated Structural Regulation. Small 2019, 15 (29) , 1804115. https://doi.org/10.1002/smll.201804115
  31. B. Poornaprakash, U. Chalapathi, P. T. Poojitha, S. V. Prabhakar Vattikuti, Si-Hyun Park. CdS:Eu quantum dots for spintronics and photocatalytic applications. Journal of Materials Science: Materials in Electronics 2019, 30 (9) , 8220-8225. https://doi.org/10.1007/s10854-019-01137-y
  32. Jian-Wen Shi, Diankun Sun, Yajun Zou, Dandan Ma, Chi He, Xin Ji, Chunming Niu. Trap-level-tunable Se doped CdS quantum dots with excellent hydrogen evolution performance without co-catalyst. Chemical Engineering Journal 2019, 364 , 11-19. https://doi.org/10.1016/j.cej.2019.01.147
  33. Xingping Wu, Zhaodong Nan. Degradation of rhodamine B by a novel Fe3O4/SiO2 double-mesoporous-shelled hollow spheres through photo-Fenton process. Materials Chemistry and Physics 2019, 227 , 302-312. https://doi.org/10.1016/j.matchemphys.2019.02.023
  34. Rujun Liu, Fan Yang, Yonlong Xie, Ying Yu. Visible-light responsive boron and nitrogen codoped anatase TiO2 with exposed {0 0 1} facet: Calculation and experiment. Applied Surface Science 2019, 466 , 568-577. https://doi.org/10.1016/j.apsusc.2018.10.058
  35. Zain Ul Abideen, Fei Teng. Effect of alkaline treatment on photochemical activity and stability of Zn0.3Cd0.7S. Applied Surface Science 2019, 465 , 459-469. https://doi.org/10.1016/j.apsusc.2018.09.195
  36. A.P. Gaikwad, C.A. Betty, Jagannath, Asheesh Kumar, R. Sasikala. Microflowers of Pd doped ZnS for visible light photocatalytic and photoelectrochemical applications. Materials Science in Semiconductor Processing 2018, 86 , 139-145. https://doi.org/10.1016/j.mssp.2018.05.020
  37. Pengpeng Feng, Yusong Pan, Hui Ye. Core–shell structured NaYF 4 :Yb,[email protected] composite for enhanced photocatalytic properties. RSC Advances 2018, 8 (61) , 35306-35313. https://doi.org/10.1039/C8RA06800C
  38. Ye Liu, Shuoping Ding, Yiqiu Shi, Xiufan Liu, Zuozuo Wu, Qingqing Jiang, Tengfei Zhou, Nikang Liu, Juncheng Hu. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental 2018, 234 , 109-116. https://doi.org/10.1016/j.apcatb.2018.04.037
  39. Rajendran Ranjith, Varadharajan Krishnakumar, Singaram Boobas, Jayaraman Venkatesan, Jeyaram Jayaprakash. An Efficient Photocatalytic and Antibacterial Performance of Ni/Ce-Codoped CdS Nanostructure under Visible Light Irradiation. ChemistrySelect 2018, 3 (32) , 9259-9267. https://doi.org/10.1002/slct.201801485
  40. Yuan-Yuan Chai, De-Peng Qu, De-Kun Ma, Wei Chen, Shaoming Huang. Carbon quantum dots/Zn2+ ions doped-CdS nanowires with enhanced photocatalytic activity for reduction of 4-nitroaniline to p-phenylenediamine. Applied Surface Science 2018, 450 , 1-8. https://doi.org/10.1016/j.apsusc.2018.04.121
  41. Xiaowen Wang, Bin Mu, Xingcai An, Aiqin Wang. Insights into the relationship between the color and photocatalytic property of attapulgite/CdS nanocomposites. Applied Surface Science 2018, 439 , 202-212. https://doi.org/10.1016/j.apsusc.2018.01.054
  42. P. M. Anjana, M. R. Bindhu, M. Umadevi, R. B. Rakhi. Antimicrobial, electrochemical and photo catalytic activities of Zn doped Fe3O4 nanoparticles. Journal of Materials Science: Materials in Electronics 2018, 29 (7) , 6040-6050. https://doi.org/10.1007/s10854-018-8578-2
  43. Muneerah Alomar, Yueli Liu, Wen Chen. Surface Decorated Zn0.15Cd0.85S Nanoflowers with P25 for Enhanced Visible Light Driven Photocatalytic Degradation of Rh-B and Stability. Applied Sciences 2018, 8 (3) , 327. https://doi.org/10.3390/app8030327
  44. V. Preethi, S. Kanmani. Performance of nano photocatalysts for the recovery of hydrogen and sulphur from sulphide containing wastewater. International Journal of Hydrogen Energy 2018, 43 (8) , 3920-3934. https://doi.org/10.1016/j.ijhydene.2017.11.006
  45. Devjyoti Lilhare, Tarkeshwar Sinha, Ayush Khare. Influence of Cu doping on optical properties of (Cd–Zn)S nanocrystalline thin films: a review. Journal of Materials Science: Materials in Electronics 2018, 29 (1) , 688-713. https://doi.org/10.1007/s10854-017-7963-6
  46. Pan Li, Xuehua Zhang, Chunchao Hou, Lin Lin, Yong Chen, Tao He. Visible-light-driven CO 2 photoreduction over Zn x Cd 1−x S solid solution coupling with tetra(4-carboxyphenyl)porphyrin iron( iii ) chloride. Physical Chemistry Chemical Physics 2018, 20 (25) , 16985-16991. https://doi.org/10.1039/C8CP02774A
  47. Hui Li, Lihua Liu, Ziqun Wang, Xiuzhen Zheng, Sugang Meng, Shifu Chen, Xianliang Fu. Optimizing the precursor of sulfur source for hydrothermal synthesis of high performance CdS for photocatalytic hydrogen production. RSC Advances 2018, 8 (21) , 11489-11497. https://doi.org/10.1039/C8RA00250A
  48. Dipti Sharath, A.P. Gaikwad, Sipra Choudhury, Nidhi Gupta, R. Sasikala, C.A. Betty. Effect of Indium doping on the photoelectrochemical and photocatalytic properties of zinc sulphide. Materials Science and Engineering: B 2017, 226 , 57-63. https://doi.org/10.1016/j.mseb.2017.09.007
  49. M Junaid Iqbal Khan, M Nauman Usmani, Zarfishan Kanwal. Novel optical properties of CdS:Zn rocksalt system (a theoretical study). Materials Research Express 2017, 4 (11) , 115901. https://doi.org/10.1088/2053-1591/aa93c4
  50. Elham Alisangari, Ahmad Hassanpour. Hydrothermal synthesis of CdS meso-structures: effects of Zn dopant on optical and photovoltaic properties. Optical and Quantum Electronics 2017, 49 (10) https://doi.org/10.1007/s11082-017-1177-2
  51. Sonchai Intachai, Chumponoot Suppaso, Sujitra Klinsrisuk, Nithima Khaorapapong, Makoto Ogawa. The possible doping of Al3+ and F− modification onto CdS in montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2017, 522 , 133-139. https://doi.org/10.1016/j.colsurfa.2017.02.044
  52. Qiang Cai, Zhuofeng Hu, Qian Zhang, Boyuan Li, Zhurui Shen. Fullerene (C60)/CdS nanocomposite with enhanced photocatalytic activity and stability. Applied Surface Science 2017, 403 , 151-158. https://doi.org/10.1016/j.apsusc.2017.01.135
  53. Juan-Juan Li, Song-Cai Cai, Zhen Xu, Xi Chen, Jin Chen, Hong-Peng Jia, Jing Chen. Solvothermal syntheses of Bi and Zn co-doped TiO 2 with enhanced electron-hole separation and efficient photodegradation of gaseous toluene under visible-light. Journal of Hazardous Materials 2017, 325 , 261-270. https://doi.org/10.1016/j.jhazmat.2016.12.004
  54. Younes Hanifehpour, Behzad Soltani, Ali Reza Amani-Ghadim, Hasan Hodayi, Bong-Ki Min, Sang Woo Joo. Novel Visible Light Photocatalyst Based on Holmium-Doped Cadmium Sulfide: Synthesis, Characterization and Kinetics Study. Journal of Inorganic and Organometallic Polymers and Materials 2017, 27 (1) , 1-12. https://doi.org/10.1007/s10904-016-0432-5
  55. Wei Chen, Ting Huang, Tian-Yu Liu, Guo-Rong Duan, Xu-Jie Yang, Xiao-Heng Liu. Ultrasound-assisted growth of Zn0.2Cd0.8S nanoparticles on mesoporous P-doped graphitic carbon nitride nanosheets for superior photocatalytic activities. Journal of Alloys and Compounds 2017, 690 , 503-511. https://doi.org/10.1016/j.jallcom.2016.08.155
  56. Zi-Rong Tang, Bin Han, Chuang Han, Yi-Jun Xu. One dimensional CdS based materials for artificial photoredox reactions. Journal of Materials Chemistry A 2017, 5 (6) , 2387-2410. https://doi.org/10.1039/C6TA06373J
  57. Jiajia Tao, Zezhou Gong, Guang Yao, Yunlang Cheng, Miao Zhang, Jianguo Lv, Shiwei Shi, Gang He, Xishun Jiang, Xiaoshuang Chen, Zhaoqi Sun. Enhanced optical and photocatalytic properties of Ag quantum dots-sensitized nanostructured TiO2/ZnO heterojunctions. Journal of Alloys and Compounds 2016, 688 , 605-612. https://doi.org/10.1016/j.jallcom.2016.07.074
  58. Maher Darwish, Ali Mohammadi, Navid Assi. Integration of nickel doping with loading on graphene for enhanced adsorptive and catalytic properties of CdS nanoparticles towards visible light degradation of some antibiotics. Journal of Hazardous Materials 2016, 320 , 304-314. https://doi.org/10.1016/j.jhazmat.2016.08.043
  59. Xiande Yang, Zhengshu Wang, Xiangzhou Lv, Yongqian Wang, Hanxiang Jia. Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis. Journal of Photochemistry and Photobiology A: Chemistry 2016, 329 , 175-181. https://doi.org/10.1016/j.jphotochem.2016.07.005
  60. Babak Adeli, Fariborz Taghipour. Facile synthesis of highly efficient nano-structured gallium zinc oxynitride solid solution photocatalyst for visible-light overall water splitting. Applied Catalysis A: General 2016, 521 , 250-258. https://doi.org/10.1016/j.apcata.2016.01.001
  61. Kezhen Qi, Rengaraj Selvaraj, Tharaya Al Fahdi, Salma Al-Kindy, Younghun Kim, Cheuk-Wai Tai, Mika Sillanpää. Hierarchical α-MnS microspheres: Solvothermal synthesis and growth mechanism. Materials Letters 2016, 166 , 116-120. https://doi.org/10.1016/j.matlet.2015.12.044
  62. Rengaraj Selvaraj, Kezhen Qi, Sathish Babu Soundra Pandian, Mohammed A. Meetani, Bushra Al Wahaibi, Haider Al Lawati, Salma M. Z. Al Kindy, Younghun Kim, Mika Sillanpää. Morphology-Controlled Synthesis of ZnxCd1-xS Solid Solutions: An Efficient Solar Light Active Photocatalyst for the Degradation of 2,4,6-Trichlorophenol. Journal of Environmental Protection 2016, 07 (11) , 1605-1617. https://doi.org/10.4236/jep.2016.711132
  63. Jinfeng Zhang, Weilai Yu, Jianjun Liu, Baoshun Liu. Illustration of high-active Ag2CrO4 photocatalyst from the first-principle calculation of electronic structures and carrier effective mass. Applied Surface Science 2015, 358 , 457-462. https://doi.org/10.1016/j.apsusc.2015.08.084
  64. Yujie Li, Fan Yang, Ying Yu. Enhanced photocatalytic activity of α-Bi2O3 with high electron-hole mobility by codoping approach: A first-principles study. Applied Surface Science 2015, 358 , 449-456. https://doi.org/10.1016/j.apsusc.2015.08.098
  65. Lei Shi, Tao Liang, Lin Liang, Fangxiao Wang, Mengshuai Liu, Jianmin Sun. High temperature promoted synthesis of graphitic carbon nitride with porous structure and enhanced photocatalytic activity. Journal of Porous Materials 2015, 22 (5) , 1393-1399. https://doi.org/10.1007/s10934-015-0018-6
  66. Jirabhorn Kabilaphat, Nithima Khaorapapong, Kanji Saito, Makoto Ogawa. Preparation of metal sulfide mixtures in montmorillonite by solid–solid reactions. Applied Clay Science 2015, 115 , 248-253. https://doi.org/10.1016/j.clay.2015.07.028
  67. Yang Liu, Hailiang Dong, Husheng Jia, Bingshe Xu, Chunyan Yu, Zhuxia Zhang. CdS nanowires decorated with Cu2O nanospheres: Synthesis, formation process and enhanced photoactivity and stability. Journal of Alloys and Compounds 2015, 644 , 159-164. https://doi.org/10.1016/j.jallcom.2015.04.159
  68. Amir Behzadnia, Majid Montazer, Mahnaz Mahmoudi Rad. In-situ sonosynthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties. Journal of Photochemistry and Photobiology B: Biology 2015, 149 , 103-115. https://doi.org/10.1016/j.jphotobiol.2015.05.006
  69. Shuai Zou, Zaihui Fu, Chao Xiang, Wenfeng Wu, Senpei Tang, Yachun Liu, Dulin Yin. Mild, one-step hydrothermal synthesis of carbon-coated CdS nanoparticles with improved photocatalytic activity and stability. Chinese Journal of Catalysis 2015, 36 (7) , 1077-1085. https://doi.org/10.1016/S1872-2067(15)60827-0
  70. Wen Ting Li, Wan Zhen Huang, Huan Zhou, Hao Yong Yin, Yi Fan Zheng, Xu Chun Song. Synthesis of Zn2+ doped BiOCl hierarchical nanostructures and their exceptional visible light photocatalytic properties. Journal of Alloys and Compounds 2015, 638 , 148-154. https://doi.org/10.1016/j.jallcom.2015.03.103
  71. Jinmei Luo, Haihua Bai, Peihui Yang, Jiye Cai. One-pot aqueous synthesis of germanium-doped cadmium sulfide quantum dots as fluorescent probes for cell imaging. Materials Science in Semiconductor Processing 2015, 34 , 1-7. https://doi.org/10.1016/j.mssp.2015.01.024
  72. Rohit Singh, Bonamali Pal. Preparation, Surface and Crystal Structure, Band Energetics, Optoelectronic, and Photocatalytic Properties of Au x Cd 1− x S Nanorods. ChemPlusChem 2015, 80 (5) , 851-858. https://doi.org/10.1002/cplu.201402388
  73. F. Huang, A.-H. Yan, Z.-H. Liao, H. Zhao, Z.-Y. Fu, F. Zhang, S.-B. Yin, Y.-C. Wu, Y.-H. Wang, Y.-H. Qiang. Self-assembled synthesis of hollow Nb 3 O 7 F nanomaterials based on Kirkendall effect and its photocatalytic properties. Materials Technology 2015, 30 (3) , 144-150. https://doi.org/10.1179/1753555714Y.0000000225
  74. Alireza Khataee, Samira Arefi-Oskoui, Mehrangiz Fathinia, Ameneh Esmaeili, Younes Hanifehpour, Sang Woo Joo, Nazanin Hamnabard. Synthesis, characterization and photocatalytic properties of Er-doped PbSe nanoparticles as a visible light-activated photocatalyst. Journal of Molecular Catalysis A: Chemical 2015, 398 , 255-267. https://doi.org/10.1016/j.molcata.2014.11.009
  75. Weinan Xing, Liang Ni, Xinlin Liu, Yingying Luo, Ziyang Lu, Yongsheng Yan, Pengwei Huo. Effect of metal ion (Zn 2+ , Bi 3+ , Cr 3+ , and Ni 2+ )-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalination and Water Treatment 2015, 53 (3) , 794-805. https://doi.org/10.1080/19443994.2013.844082
  76. Peipei Wang, Zhibin Geng, Jianxiong Gao, Ruifei Xuan, Ping Liu, Yun Wang, Keke Huang, Yizao Wan, Yan Xu. Zn x Cd 1−x S/bacterial cellulose bionanocomposite foams with hierarchical architecture and enhanced visible-light photocatalytic hydrogen production activity. Journal of Materials Chemistry A 2015, 3 (4) , 1709-1716. https://doi.org/10.1039/C4TA05722H
  77. Puttaswamy Madhusudan, Jun Zhang, Bei Cheng, Jiaguo Yu. Fabrication of CdMoO 4 @CdS core–shell hollow superstructures as high performance visible-light driven photocatalysts. Physical Chemistry Chemical Physics 2015, 17 (23) , 15339-15347. https://doi.org/10.1039/C5CP01598G
  78. Mengqiao Zang, Lei Shi, Lin Liang, Defeng Li, Jianmin Sun. Heterostructured g-C 3 N 4 /Ag–TiO 2 composites with efficient photocatalytic performance under visible-light irradiation. RSC Advances 2015, 5 (69) , 56136-56144. https://doi.org/10.1039/C5RA07541F
  79. Sachin G. Ghugal, Suresh S. Umare, Rajamma Sasikala. Photocatalytic mineralization of anionic dyes using bismuth doped CdS–Ta 2 O 5 composite. RSC Advances 2015, 5 (78) , 63393-63400. https://doi.org/10.1039/C5RA09974A
  80. Hong Li, Ivano E. Castelli, Kristian S. Thygesen, Karsten W. Jacobsen. Strain sensitivity of band gaps of Sn-containing semiconductors. Physical Review B 2015, 91 (4) https://doi.org/10.1103/PhysRevB.91.045204
  81. A. Basak, D. Das, D. Sen, K.K. Chattopadhyay. Theoretical insights into the electronic and magnetic behaviors of the metal substituted 1H-MoS2 systems: Their potential towards CO adsorption and sensing. Computational Materials Science 2014, 95 , 399-407. https://doi.org/10.1016/j.commatsci.2014.07.055
  82. Yang Liu, Mei Chi, Hailiang Dong, Husheng Jia, Bingshe Xu, Zhuxia Zhang. Ag/CdS heterostructural composites: Fabrication, characterizations and photocatalysis. Applied Surface Science 2014, 313 , 558-562. https://doi.org/10.1016/j.apsusc.2014.06.022
  83. Li Li, Xiuli Zhang, Wenzhi Zhang, Lili Wang, Xi Chen, Yu Gao. Microwave-assisted synthesis of nanocomposite Ag/ZnO–TiO2 and photocatalytic degradation Rhodamine B with different modes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 457 , 134-141. https://doi.org/10.1016/j.colsurfa.2014.05.060
  84. Liangbin Xiong, Huaqing Yu, Xin Ba, Wenpei Zhang, Ying Yu. Cu 2 O-Based Nanocomposites for Environmental Protection. 2014,,, 41-70. https://doi.org/10.1002/9781118845530.ch3
  85. I. Devadoss, S. Muthukumaran, M. Ashokkumar. Structural and optical properties of Cd1−xZnxS (0 ≤ x ≤ 0.3) nanoparticles. Journal of Materials Science: Materials in Electronics 2014, 25 (8) , 3308-3317. https://doi.org/10.1007/s10854-014-2019-7
  86. Jianhua Yang, Rujun Liu, Sheng Huang, Yu Shao, Yuan Huang, Ying Yu. Enhanced photocatalytic activity and stability of interstitial Ga-doped CdS: Combination of experiment and calculation. Catalysis Today 2014, 224 , 104-113. https://doi.org/10.1016/j.cattod.2013.12.016
  87. Fang Jiang, Tingting Yan, Huan Chen, Aiwu Sun, Chenmin Xu, Xin Wang. A g-C3N4–CdS composite catalyst with high visible-light-driven catalytic activity and photostability for methylene blue degradation. Applied Surface Science 2014, 295 , 164-172. https://doi.org/10.1016/j.apsusc.2014.01.022
  88. Lei Shi, Lin Liang, Jun Ma, Yanan Meng, Shifa Zhong, Fangxiao Wang, Jianmin Sun. Highly efficient visible light-driven Ag/AgBr/ZnO composite photocatalyst for degrading Rhodamine B. Ceramics International 2014, 40 (2) , 3495-3502. https://doi.org/10.1016/j.ceramint.2013.09.080
  89. Manjodh Kaur, C. M. Nagaraja. Template-free syntheses of CdS microspheres composed of ultrasmall nanocrystals and their photocatalytic study. RSC Adv. 2014, 4 (35) , 18257-18263. https://doi.org/10.1039/C4RA01608D
  90. Qian Liu, Kun Wang, Juan Huan, Gangbing Zhu, Jing Qian, Hanping Mao, Jianrong Cai. Graphene quantum dots enhanced electrochemiluminescence of cadmium sulfide nanocrystals for ultrasensitive determination of pentachlorophenol. The Analyst 2014, 139 (11) , 2912. https://doi.org/10.1039/c4an00307a
  91. Jinzhao Huang, Song Liu, Lei Kuang, Yongdan Zhao, Tao Jiang, Shiyou Liu, Xijin Xu. Enhanced photocatalytic activity of quantum-dot-sensitized one-dimensionally-ordered ZnO nanorod photocatalyst. Journal of Environmental Sciences 2013, 25 (12) , 2487-2491. https://doi.org/10.1016/S1001-0742(12)60330-1
  92. Lei Shi, Lin Liang, Jun Ma, Jianmin Sun. Improved photocatalytic performance over AgBr/ZnO under visible light. Superlattices and Microstructures 2013, 62 , 128-139. https://doi.org/10.1016/j.spmi.2013.07.013
  93. Guangshan Zhang, Wen Zhang, Daisuke Minakata, Yongsheng Chen, John Crittenden, Peng Wang. The pH effects on H2 evolution kinetics for visible light water splitting over the Ru/(CuAg)0.15In0.3Zn1.4S2 photocatalyst. International Journal of Hydrogen Energy 2013, 38 (27) , 11727-11736. https://doi.org/10.1016/j.ijhydene.2013.06.140
  94. Guangshan Zhang, Wen Zhang, Peng Wang, Daisuke Minakata, Yongsheng Chen, John Crittenden. Stability of an H2-producing photocatalyst (Ru/(CuAg)0.15In0.3Zn1.4S2) in aqueous solution under visible light irradiation. International Journal of Hydrogen Energy 2013, 38 (3) , 1286-1296. https://doi.org/10.1016/j.ijhydene.2012.11.033
  95. Sheng Huang, Yu Lin, Jianhua Yang, Xiangru Li, Jun Zhang, Jiaguo Yu, Honglong Shi, Wenzhong Wang, Ying Yu. Enhanced photocatalytic activity and stability of semiconductor by Ag doping and simultaneous deposition: the case of CdS. RSC Advances 2013, 3 (43) , 20782. https://doi.org/10.1039/c3ra42445f
  96. Changseok Han, Joel Andersen, Suresh C. Pillai, Rachel Fagan, Polycarpos Falaras, J. Anthony Byrne, Patrick S. M. Dunlop, Hyeok Choi, Wenjun Jiang, Kevin O’Shea, Dionysios D. Dionysiou. Chapter Green Nanotechnology: Development of Nanomaterials for Environmental and Energy Applications. 2013,,, 201-229. https://doi.org/10.1021/bk-2013-1124.ch012
  97. Edita Garskaite, Guan-Ting Pan, Thomas C.-K. Yang, Sheng-Tung Huang, Aivaras Kareiva. The study of preparation and photoelectrical properties of chemical bath deposited Zn, Sb and Ni-doped CuInS2 films for hydrogen production. Solar Energy 2012, 86 (9) , 2584-2591. https://doi.org/10.1016/j.solener.2012.05.031