Modification of Mesoporous TiO2 Films by Electrochemical Doping: Impact on Photoelectrocatalytic and Photovoltaic Performance

View Author Information
Departamento de Sistemas Físicos, Químicos y Naturales, Área de Química Física, Universidad Pablo de Olavide, Ctra. Utrera, km 1, E-41013 Sevilla, Spain
*Tel: +34 95434 9313. Fax: +34 95434 9814. E-mail: [email protected], [email protected]
Cite this: J. Phys. Chem. C 2013, 117, 4, 1561–1570
Publication Date (Web):December 28, 2012
https://doi.org/10.1021/jp306954y
Copyright © 2012 American Chemical Society
Article Views
1155
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

The effect of reductive electrochemical doping of nanocrystalline TiO2 electrodes on their photoelectrocatalytic properties and their performance in dye-sensitized solar cells is studied. It is observed that accumulation of negative charge (compensated by proton insertion from the supporting electrolyte) leads to a photocurrent increase for water oxidation. Furthermore, an enhanced photoconversion efficiency in dye-sensitized solar cells is observed for the doped electrodes with respect to the unmodified ones. The effect has been analyzed using small-perturbation electrochemical techniques (impedance spectroscopy, intensity-modulated photovoltage, and photocurrent spectroscopy). The results indicate that the better photoelectrocatalytic and photovoltaic efficiency is due to a more rapid electron transport combined with reduced recombination, contributing to improved electron collection. Furthermore, an enhancement in electron injection is also inferred from the analysis of the present results.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional electrochemical (CV), spectroscopic (IR, UV/vis) and photovoltaic information of the studied films. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 43 publications.

  1. Juan Miguel Jiménez, Daniel Perdolt, Thomas Berger. Reactivity of Hydrogen-Related Electron Centers in Powders, Layers, and Electrodes Consisting of Anatase TiO2 Nanocrystal Aggregates. The Journal of Physical Chemistry C 2021, 125 (25) , 13809-13818. https://doi.org/10.1021/acs.jpcc.1c01580
  2. Yang Ma, Na Wang, Jiang Chen, Changsong Chen, Haisheng San, Jige Chen, Zhengdong Cheng. Betavoltaic Enhancement Using Defect-Engineered TiO2 Nanotube Arrays through Electrochemical Reduction in Organic Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (26) , 22174-22181. https://doi.org/10.1021/acsami.8b05151
  3. Yee-Seul Kim, Sébastien Kriegel, Kenneth D. Harris, Cyrille Costentin, Benoît Limoges, and Véronique Balland . Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?. The Journal of Physical Chemistry C 2017, 121 (19) , 10325-10335. https://doi.org/10.1021/acs.jpcc.7b02395
  4. Jesús Idígoras, Juan A. Anta, and Thomas Berger . Charge-Transfer Reductive in Situ Doping of Mesoporous TiO2 Photoelectrodes: Impact of Electrolyte Composition and Film Morphology. The Journal of Physical Chemistry C 2016, 120 (49) , 27882-27894. https://doi.org/10.1021/acs.jpcc.6b09926
  5. Juan M. Jiménez, Gilles R. Bourret, Thomas Berger, and Keith P. McKenna . Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2. Journal of the American Chemical Society 2016, 138 (49) , 15956-15964. https://doi.org/10.1021/jacs.6b08636
  6. Peng Zhang, Takashi Tachikawa, Mamoru Fujitsuka, and Tetsuro Majima . Atomic Layer Deposition-Confined Nonstoichiometric TiO2 Nanocrystals with Tunneling Effects for Solar Driven Hydrogen Evolution. The Journal of Physical Chemistry Letters 2016, 7 (7) , 1173-1179. https://doi.org/10.1021/acs.jpclett.6b00227
  7. Svatopluk Civiš, Martin Ferus, Markéta Zukalová, Arnošt Zukal, Ladislav Kavan, Kenneth D. Jordan, and Dan C. Sorescu . Oxygen Atom Exchange between Gaseous CO2 and TiO2 Nanoclusters. The Journal of Physical Chemistry C 2015, 119 (7) , 3605-3612. https://doi.org/10.1021/jp512059b
  8. Marketa Zukalova, Milan Bousa, Zdenek Bastl, Ivan Jirka, and Ladislav Kavan . Electrochemical Doping of Compact TiO2 Thin Layers. The Journal of Physical Chemistry C 2014, 118 (45) , 25970-25977. https://doi.org/10.1021/jp504457v
  9. David M. Savory and A. James McQuillan . IR Spectroscopic Behavior of Polaronic Trapped Electrons in TiO2 under Aqueous Photocatalytic Conditions. The Journal of Physical Chemistry C 2014, 118 (25) , 13680-13692. https://doi.org/10.1021/jp503478c
  10. Maxime E. Dufond, Jean-Noël Chazalviel, Lionel Santinacci. Electrochemical Stability of n-Si Photoanodes Protected by TiO 2 Thin Layers Grown by Atomic Layer Deposition. Journal of The Electrochemical Society 2021, 168 (3) , 031509. https://doi.org/10.1149/1945-7111/abeaf3
  11. Meng-Meng Zhang, Jia-Yuan Chen, Hui Li, Chun-Rui Wang. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Metals 2021, 40 (2) , 249-271. https://doi.org/10.1007/s12598-020-01499-x
  12. Qimeng Yang, Heng Zhu, Yanghui Hou, Duanduan Liu, Huang Tang, Depei Liu, Weining Zhang, Shicheng Yan, Zhigang Zou. Surface polaron states on single-crystal rutile TiO 2 nanorod arrays enhancing charge separation and transfer. Dalton Transactions 2020, 49 (42) , 15054-15060. https://doi.org/10.1039/D0DT03068F
  13. Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy & Environment 2020, 24 https://doi.org/10.1016/j.gee.2020.10.004
  14. Zeliha Ertekin, Nuran Özçiçek Pekmez, Kadir Pekmez. One-step electrochemical deposition of thin film titanium suboxide in basic titanyl sulfate solution at room temperature. Journal of Solid State Electrochemistry 2020, 24 (4) , 975-986. https://doi.org/10.1007/s10008-020-04555-9
  15. Nikolai V. Ignat'ev, Maik Finze. Cyanoborates. European Journal of Inorganic Chemistry 2019, 2019 (31) , 3539-3560. https://doi.org/10.1002/ejic.201900403
  16. Baoshun Liu, Jingjing Yang, Jiangyan Wang, Xiujian Zhao, Kazuya Nakata. High sub-band gap response of TiO2 nanorod arrays for visible photoelectrochemical water oxidation. Applied Surface Science 2019, 465 , 192-200. https://doi.org/10.1016/j.apsusc.2018.09.098
  17. Wei Teng, Youmei Wang, HuiHui Huang, Xinyong Li, Yubin Tang. Enhanced photoelectrochemical performance of MoS 2 nanobelts-loaded TiO 2 nanotube arrays by photo-assisted electrodeposition. Applied Surface Science 2017, 425 , 507-517. https://doi.org/10.1016/j.apsusc.2017.06.297
  18. Eddie Nahum Armendariz-Mireles, Enrique Rocha-Rangel, Frida Caballero-Rico, Jose Alberto Ramirez-de-Leon, Manuel Vazquez. Effect of TiO2 Nanoparticle Layer and Dynamic Mechanisms on the Efficiency of Dye-Sensitized Solar Cells. IEEE Journal of Photovoltaics 2017, 7 (5) , 1329-1337. https://doi.org/10.1109/JPHOTOV.2017.2720260
  19. Sebastian Proch, Shuhei Yoshino, Itaru Gunjishima, Satoru Kosaka, Naoko Takahashi, Naohiko Kato, Kensaku Kodama, Yu Morimoto. Acetylene-Treated Titania Nanotube Arrays (TNAs) as Support for Oxygen Reduction Reaction (ORR) Platinum Thin Film Catalysts. Electrocatalysis 2017, 8 (4) , 351-365. https://doi.org/10.1007/s12678-017-0377-7
  20. María Isabel Díez-García, Damián Monllor-Satoca, Victor Vinoth, Sambandam Anandan, Teresa Lana-Villarreal. Electrochemical Doping as a Way to Enhance Water Photooxidation on Nanostructured Nickel Titanate and Anatase Electrodes. ChemElectroChem 2017, 4 (6) , 1429-1435. https://doi.org/10.1002/celc.201700039
  21. Hana Krysova, Piero Mazzolini, Carlo S. Casari, Valeria Russo, Andrea Li Bassi, Ladislav Kavan. Electrochemical Properties of Transparent Conducting Films of Tantalum-Doped Titanium Dioxide. Electrochimica Acta 2017, 232 , 44-53. https://doi.org/10.1016/j.electacta.2017.02.124
  22. A. Molinari, A. Maldotti, R. Amadelli. Effect of the electrolyte cations on photoinduced charge transfer at TiO 2. Catalysis Today 2017, 281 , 71-77. https://doi.org/10.1016/j.cattod.2016.09.008
  23. Dejan Cibrev, Massimo Tallarida, Chittaranjan Das, Teresa Lana-Villarreal, Dieter Schmeisser, Roberto Gómez. New insights into water photooxidation on reductively pretreated hematite photoanodes. Physical Chemistry Chemical Physics 2017, 19 (32) , 21807-21817. https://doi.org/10.1039/C7CP03958A
  24. Tao He, Libo Wang, Francisco Fabregat-Santiago, Guoqun Liu, Ying Li, Chong Wang, Rengui Guan. Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO 2. Journal of Materials Chemistry A 2017, 5 (14) , 6455-6464. https://doi.org/10.1039/C7TA01132F
  25. Sebastian Proch, Shuhei Yoshino, Naohiko Kato, Naoko Takahashi, Yu Morimoto. Titania Nanotube Arrays (TNAs) as Support for Oxygen Reduction Reaction (ORR) Platinum Thin Film Catalysts. Electrocatalysis 2016, 7 (6) , 451-465. https://doi.org/10.1007/s12678-016-0326-x
  26. Ming Li, Youjing Li, Feitai Chen, Xiao Lin, Qiuju Feng. Electrically enhanced photocatalysis for gas-phase benzaldehyde degradation by ordered mesoporous titania/conductive carbon felts. Electrochimica Acta 2016, 216 , 517-527. https://doi.org/10.1016/j.electacta.2016.08.054
  27. Sebastian Proch, Kensaku Kodama, Shuhei Yoshino, Naoko Takahashi, Naohiko Kato, Yu Morimoto. CO-Terminated Platinum Electrodeposition on Nb-Doped Bulk Rutile TiO2. Electrocatalysis 2016, 7 (5) , 362-375. https://doi.org/10.1007/s12678-016-0316-z
  28. Augusto Márquez, Manuel J. Rodríguez-Pérez, Juan A. Anta, Geonel Rodríguez-Gattorno, Gilles R. Bourret, Gerko Oskam, Thomas Berger. Defects in Porous Networks of WO 3 Particle Aggregates. ChemElectroChem 2016, 3 (4) , 658-667. https://doi.org/10.1002/celc.201500435
  29. Carlos Caro, Francisco Gámez, Maria Jesús Sayagues, Rocio Polvillo, Jose Luis Royo. AgACTiO 2 nanoparticles with microbiocide properties under visible light. Materials Research Express 2015, 2 (5) , 055002. https://doi.org/10.1088/2053-1591/2/5/055002
  30. Thomas Berger, Oliver Diwald. Defects in Metal Oxide Nanoparticle Powders. 2015,,, 273-301. https://doi.org/10.1007/978-3-319-14367-5_9
  31. J.S. Zhong, Q.Y. Wang, Y.F. Yu. Solvothermal preparation of Ag nanoparticles sensitized TiO2 nanotube arrays with enhanced photoelectrochemical performance. Journal of Alloys and Compounds 2015, 620 , 168-171. https://doi.org/10.1016/j.jallcom.2014.08.205
  32. Andreas K. Seferlis, Mary Kollia, Stylianos G. Neophytides. The In Situ Electrochemical Stable Promotion of Photoelectrocatalytic Activity of TiO 2 by Pulsed Reductive Doping: Application in Photoelectrochemical Water Splitting. Journal of The Electrochemical Society 2015, 162 (6) , H397-H402. https://doi.org/10.1149/2.0781506jes
  33. Qingyao Wang, Jianlei Qiao, Xiaohui Xu, Shanmin Gao. Controlled synthesis of Cu nanoparticles on TiO2 nanotube array photoelectrodes and their photoelectrochemical properties. Materials Letters 2014, 131 , 135-137. https://doi.org/10.1016/j.matlet.2014.05.086
  34. Alessandro Minguzzi, Carlos M. Sánchez-Sánchez, Alessandro Gallo, Vicente Montiel, Sandra Rondinini. Evidence of Facilitated Electron Transfer on Hydrogenated Self-Doped TiO 2 Nanocrystals. ChemElectroChem 2014, 1 (8) , 1415-1421. https://doi.org/10.1002/celc.201300226
  35. Negar Sehati, Nasser Dalali, Shahla Soltanpour, Mir Saeed Seyed Dorraji. Extraction and preconcentration of tylosin from milk samples through functionalized TiO 2 nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique. Journal of Separation Science 2014, 37 (15) , 2025-2031. https://doi.org/10.1002/jssc.201400393
  36. Alessandra Molinari, Andrea Maldotti, Rossano Amadelli. Probing the Role of Surface Energetics of Electrons and their Accumulation in Photoreduction Processes on TiO 2. Chemistry – A European Journal 2014, 20 (25) , 7759-7765. https://doi.org/10.1002/chem.201402039
  37. Mehdi Ansari-Rad, Juan A. Anta, Ezatollah Arzi. Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells. The Journal of Chemical Physics 2014, 140 (13) , 134702. https://doi.org/10.1063/1.4869748
  38. Hui Li, Zhenhua Chen, Chun Kwan Tsang, Zhe Li, Xiao Ran, Chris Lee, Biao Nie, Lingxia Zheng, Takfu Hung, Jian Lu, Bicai Pan, Yang Yang Li. Electrochemical doping of anatase TiO 2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J. Mater. Chem. A 2014, 2 (1) , 229-236. https://doi.org/10.1039/C3TA13963H
  39. Lok-kun Tsui, Giovanni Zangari. Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion. Journal of The Electrochemical Society 2014, 161 (7) , D3066-D3077. https://doi.org/10.1149/2.010407jes
  40. Thomas Berger, Juan A. Anta, Víctor Morales-Flórez. Surface Properties of Anatase TiO 2 Nanowire Films Grown from a Fluoride-Containing Solution. ChemPhysChem 2013, 14 (8) , 1676-1685. https://doi.org/10.1002/cphc.201300024
  41. Thomas Berger, Juan A. Anta, Víctor Morales-Flórez. Spectroscopic properties of electrochemically populated electronic states in nanostructured TiO2 films: anatase versus rutile. Physical Chemistry Chemical Physics 2013, 15 (33) , 13790. https://doi.org/10.1039/c3cp52324a
  42. Wenjing Song, Hanlin Luo, Kenneth Hanson, Javier J. Concepcion, M. Kyle Brennaman, Thomas J. Meyer. Visualization of cation diffusion at the TiO2 interface in dye sensitized photoelectrosynthesis cells (DSPEC). Energy & Environmental Science 2013, 6 (4) , 1240. https://doi.org/10.1039/c3ee24184j
  43. Wei Teng, Xinyong Li, Qidong Zhao, Guohua Chen. Fabrication of Ag/Ag3PO4/TiO2 heterostructure photoelectrodes for efficient decomposition of 2-chlorophenol under visible light irradiation. Journal of Materials Chemistry A 2013, 1 (32) , 9060. https://doi.org/10.1039/c3ta11254c