Electron Transport and Recombination in Photoanode of Electrospun TiO2 Nanotubes for Dye-Sensitized Solar Cells

View Author Information
Program of Nanoscience and Nanoengineering, Program of Materials Engineering and Science, and §Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, United States
*Tel (605) 394-2447, Fax (605) 394-1232, e-mail [email protected] (Z.Z.); Tel (605) 394-1229, Fax (605) 394-1232, e-mail [email protected] (H.F.).
Cite this: J. Phys. Chem. C 2013, 117, 4, 1641–1646
Publication Date (Web):January 8, 2013
https://doi.org/10.1021/jp311725g
Copyright © 2013 American Chemical Society
Article Views
1958
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

The technique of coaxial electrospinning has been adopted to prepare the TiO2 nanotubes with average inner diameter of ∼275 nm and wall thickness of ∼115 nm. The electrospun TiO2 nanotubes possess the anatase type of crystalline structure, well-defined tubular morphology, and large aspect ratio. The dye-sensitized solar cell (DSSC) based on the TiO2 nanotubes alone has an efficiency of 3.33% with open-circuit voltage (Voc) of 800 mV, short-circuit current (Jsc) of 6.01 mA cm–2, and fill factor (FF) of 68.5%. Intriguingly, the addition of 20 wt % TiO2 nanoparticles in the TiO2 nanotubes improves the DSSC efficiency significantly. The charge transport and recombination in the fabricated DSSCs are characterized by the dark current, photovoltage as a function of light intensity, and transient photovoltage and photocurrent measurements. The results indicate that electrospun TiO2 nanotubes have large diffusion coefficient and slow recombination compared to the mesoporous film of TiO2 nanoparticles. The enhanced electron transport properties of the TiO2 nanotubes combined with the facile and scalable preparation technique of electrospinning suggest that the electrospun TiO2 nanotubes could be promising as photoanode material for low-cost and high-efficiency DSSCs.

Cited By


This article is cited by 44 publications.

  1. Pierre-Antoine Cormier, Jonathan Dervaux, Nadine Szuwarski, Yann Pellegrin, Fabrice Odobel, Eric Gautron, Mohammed Boujtita, Rony Snyders. Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle. The Journal of Physical Chemistry C 2018, 122 (36) , 20661-20668. https://doi.org/10.1021/acs.jpcc.8b07192
  2. Xiaoqian Xu, Kesong Miao, Yun Chen, and Li-Juan Fan . Preparation of Fluorescent Conjugated Polymer Fibrous Membranes for Rapid Recognition of Aromatic Solvents. ACS Applied Materials & Interfaces 2015, 7 (14) , 7759-7766. https://doi.org/10.1021/acsami.5b00991
  3. Xiaoxu Wang, Min Xi, Hao Fong, and Zhengtao Zhu . Flexible, Transferable, and Thermal-Durable Dye-Sensitized Solar Cell Photoanode Consisting of TiO2 Nanoparticles and Electrospun TiO2/SiO2 Nanofibers. ACS Applied Materials & Interfaces 2014, 6 (18) , 15925-15932. https://doi.org/10.1021/am503542g
  4. Xiaoxu Wang, Lei Guo, Ping Fang Xia, Fan Zheng, Man Shing Wong, and Zhengtao Zhu . Effects of Surface Modification on Dye-Sensitized Solar Cell Based on an Organic Dye with Naphtho[2,1-b:3,4-b′]dithiophene as the Conjugated Linker. ACS Applied Materials & Interfaces 2014, 6 (3) , 1926-1932. https://doi.org/10.1021/am404984g
  5. Viplove Bhullar, Sagar Sardana, Aman Mahajan. Size modeling of TiO2 nanofibers for efficient TiO2 sensitized mesoscopic solar cells. Solar Energy 2021, 230 , 177-185. https://doi.org/10.1016/j.solener.2021.10.023
  6. Paweł Gnida, Paweł Jarka, Pavel Chulkin, Aleksandra Drygała, Marcin Libera, Tomasz Tański, Ewa Schab-Balcerzak. Impact of TiO2 Nanostructures on Dye-Sensitized Solar Cells Performance. Materials 2021, 14 (7) , 1633. https://doi.org/10.3390/ma14071633
  7. Yu-Hsun Nien, Geng-Ming Hu, Manjunath Rangasamy, Zhen-Rong Yong, Jung-Chuan Chou, Chih-Hsien Lai, Po-Yu Kuo, Jun-Xiang Chang, Yu-Che Lin. Investigation on Photoanode Modified With TiO 2 –ZnO–Ag Nanofibers in Dye-Sensitized Solar Cell Under Different Intensities of Illuminations. IEEE Transactions on Electron Devices 2020, 67 (11) , 4983-4989. https://doi.org/10.1109/TED.2020.3024159
  8. I. Joseph, H. Louis, T. O. Unimuke, I. S. Etim, M. M. Orosun, J. Odey. An Overview of the Operational Principles, Light Harvesting and Trapping Technologies, and Recent Advances of the Dye Sensitized Solar Cells (Review). Applied Solar Energy 2020, 56 (5) , 334-363. https://doi.org/10.3103/S0003701X20050072
  9. Abbas Sadeghzadeh-Attar. Photocatalytic degradation evaluation of N-Fe codoped aligned TiO2 nanorods based on the effect of annealing temperature. Journal of Advanced Ceramics 2020, 9 (1) , 107-122. https://doi.org/10.1007/s40145-019-0353-1
  10. R. R. Deshmukh, A. S. Kalekar, S. R. Khaladkar, O. C. Maurya. Versatile 1-D Nanostructures for Green Energy Conversion and Storage Devices. 2020,,, 329-354. https://doi.org/10.1007/978-3-030-33774-2_14
  11. Zohreh Dehghani Mahmoudabadi, Esmaeil Eslami, Mehrnoush Narimisa. Synthesis of Ag/TiO2 nanocomposite via plasma liquid interactions: Improved performance as photoanode in dye-sensitized solar cell. Journal of Colloid and Interface Science 2018, 529 , 538-546. https://doi.org/10.1016/j.jcis.2018.06.048
  12. Fan Zheng, Zhengtao Zhu. Preparation of the [email protected] nanofibers by one-step electrospinning for the composite photoanode of dye-sensitized solar cells. Materials Chemistry and Physics 2018, 208 , 35-40. https://doi.org/10.1016/j.matchemphys.2018.01.021
  13. Tingting Wan, Seeram Ramakrishna, Yong Liu. Recent progress in electrospinning TiO 2 nanostructured photo-anode of dye-sensitized solar cells. Journal of Applied Polymer Science 2018, 135 (1) , 45649. https://doi.org/10.1002/app.45649
  14. Sandeep Kumar, Monika Nehra, Deepak Kedia, Neeraj Dilbaghi, K Tankeshwar, Ki-Hyun Kim. Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science 2018, 64 , 219-253. https://doi.org/10.1016/j.pecs.2017.10.005
  15. Mian-En Yeoh, Kah-Yoong Chan. Recent advances in photo-anode for dye-sensitized solar cells: a review. International Journal of Energy Research 2017, 41 (15) , 2446-2467. https://doi.org/10.1002/er.3764
  16. Xiaoqing Yu, Dongmei Lin, Peng Li, Zhiqiang Su. Recent advances in the synthesis and energy applications of TiO2-graphene nanohybrids. Solar Energy Materials and Solar Cells 2017, 172 , 252-269. https://doi.org/10.1016/j.solmat.2017.07.045
  17. Jyoti V. Patil, Sawanta S. Mali, Archana S. Kamble, Chang K. Hong, Jin H. Kim, Pramod S. Patil. Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science 2017, 423 , 641-674. https://doi.org/10.1016/j.apsusc.2017.06.116
  18. C. Brundha, R. Govindaraj, N. Santhosh, M. Senthil Pandian, P. Ramasamy, S. Karuppuchamy. Preparation of one dimensional titanium dioxide nanowires using electrospinning process for dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2017, 28 (15) , 11509-11514. https://doi.org/10.1007/s10854-017-6947-x
  19. Zohreh Dehghani Mahmoudabadi, Esmaeil Eslami. Synthesis of TiO2 nanotubes by atmospheric microplasma electrochemistry: Fabrication, characterization and TiO2 oxide film properties. Electrochimica Acta 2017, 245 , 715-723. https://doi.org/10.1016/j.electacta.2017.05.189
  20. Uyi Sulaeman, Ahmad Zuhairi Abdullah. The way forward for the modification of dye-sensitized solar cell towards better power conversion efficiency. Renewable and Sustainable Energy Reviews 2017, 74 , 438-452. https://doi.org/10.1016/j.rser.2017.02.063
  21. Ujwal Thakur, Ryan Kisslinger, Karthik Shankar. One-Dimensional Electron Transport Layers for Perovskite Solar Cells. Nanomaterials 2017, 7 (5) , 95. https://doi.org/10.3390/nano7050095
  22. Dongting Wang, Xuehong Zhu, Yuzhen Fang, Jianhong Sun, Cong Zhang, Xianxi Zhang. Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Structures & Nano-Objects 2017, 10 , 1-8. https://doi.org/10.1016/j.nanoso.2017.01.001
  23. Sapanbir S. Thind, Aicheng Chen. Direct Growth of One-, Two-, and Three-Dimensional Nanostructured Materials at Electrode Surfaces. 2017,,, 97-143. https://doi.org/10.1002/9783527340934.ch3
  24. Harrison Sierra-Uribe, Elcy María Córdoba-Tuta, Próspero Acevedo-Peña. The Effect of the Heating Rate on Anatase Crystal Orientation and Its Impact on the Photoelectrocatalytic Performance of TiO 2 Nanotube Arrays. Journal of The Electrochemical Society 2017, 164 (6) , H279-H285. https://doi.org/10.1149/2.0241706jes
  25. Kalpesh Sorathiya, Biswajit Mishra, Abhishek Kalarikkal, Kasala Prabhakar Reddy, Chinnakonda S. Gopinath, Deepa Khushalani. Enhancement in Rate of Photocatalysis Upon Catalyst Recycling. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep35075
  26. D. Sengupta, P. Das, B. Mondal, K. Mukherjee. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application – A review. Renewable and Sustainable Energy Reviews 2016, 60 , 356-376. https://doi.org/10.1016/j.rser.2016.01.104
  27. Qamar Wali, Zinab H. Bakr, Nurul Ain Manshor, Azhar Fakharuddin, Rajan Jose. SnO2–TiO2 hybrid nanofibers for efficient dye-sensitized solar cells. Solar Energy 2016, 132 , 395-404. https://doi.org/10.1016/j.solener.2016.03.037
  28. Bayram Kilic, Sunay Turkdogan, Aykut Astam, Oguz Can Ozer, Mansur Asgin, Hulya Cebeci, Deniz Urk, Selin Pravadili Mucur. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep27052
  29. Ran Li, Yin Zhao, Ruien Hou, Xin Ren, Shuai Yuan, Yanyan Lou, Zhuyi Wang, Dongdong Li, Liyi Shi. Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. Journal of Photochemistry and Photobiology A: Chemistry 2016, 319-320 , 62-69. https://doi.org/10.1016/j.jphotochem.2016.01.002
  30. Huan Xie, Baoshun Liu, Xiujian Zhao. Facile process to greatly improve the photocatalytic activity of the TiO 2 thin film on window glass for the photodegradation of acetone and benzene. Chemical Engineering Journal 2016, 284 , 1156-1164. https://doi.org/10.1016/j.cej.2015.09.049
  31. Damien Joly, Ji-Won Jung, Il-Doo Kim, Renaud Demadrille. Electrospun materials for solar energy conversion: innovations and trends. Journal of Materials Chemistry C 2016, 4 (43) , 10173-10197. https://doi.org/10.1039/C6TC00702C
  32. X. Z. Guo, W. Z. Shen. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency. Journal of Applied Physics 2015, 117 (22) , 225103. https://doi.org/10.1063/1.4922413
  33. Mehtap Büyükyazi, Sanjay Mathur. 3D nanoarchitectures of α-LiFeO2 and α-LiFeO2/C nanofibers for high power lithium-ion batteries. Nano Energy 2015, 13 , 28-35. https://doi.org/10.1016/j.nanoen.2015.02.005
  34. Ruien Hou, Shuai Yuan, Xin Ren, Yin Zhao, Zhuyi Wang, Meihong Zhang, Dongdong Li, Liyi Shi. Effects of acetyl acetone-typed co-adsorbents on the interface charge recombination in dye-sensitized solar cell photoanodes. Electrochimica Acta 2015, 154 , 190-196. https://doi.org/10.1016/j.electacta.2014.12.083
  35. Dhiman Bhattacharyya, York R Smith, Mano Misra, Swomitra K Mohanty. Electrochemical detection of methyl nicotinate biomarker using functionalized anodized titania nanotube arrays. Materials Research Express 2015, 2 (2) , 025002. https://doi.org/10.1088/2053-1591/2/2/025002
  36. Ho-sub Kim, Jung Sang Suh. Increasing the surface area of TiO 2 nanotube membranes by filling the channels with onion type carbon materials and TiCl 4 for dye-sensitized solar cells. RSC Advances 2015, 5 (90) , 74107-74114. https://doi.org/10.1039/C5RA11606F
  37. Nguyen Trung Hieu, Seung Jae Baik, Yongseok Jun, Minoh Lee, Ok Hee Chung, Jun Seo Park. Electrospun coaxial titanium dioxide/carbon nanofibers for use in anodes of dye-sensitized solar cells. Electrochimica Acta 2014, 142 , 144-151. https://doi.org/10.1016/j.electacta.2014.07.032
  38. Biswajit Mishra, Shruti Agarkar, Deepa Khushalani. Novel precursors for anatase nanorods and their application in DSSCs. Materials Chemistry and Physics 2014, 147 (3) , 1110-1116. https://doi.org/10.1016/j.matchemphys.2014.06.065
  39. Xinning Luan, Ying Wang. Thermal Annealing and Graphene Modification of Exfoliated Hydrogen Titanate Nanosheets for Enhanced Lithium-ion Intercalation Properties. Journal of Materials Science & Technology 2014, 30 (9) , 839-846. https://doi.org/10.1016/j.jmst.2014.07.003
  40. Nguyen Trung Hieu, Seung Jae Baik, Ok Hee Chung, Jun Seo Park. Fabrication and characterization of electrospun carbon nanotubes/titanium dioxide nanofibers used in anodes of dye-sensitized solar cells. Synthetic Metals 2014, 193 , 125-131. https://doi.org/10.1016/j.synthmet.2014.04.010
  41. Fei Huang, Ai-Hua Yan, Zheng-Yi Fu, Fan Zhang, Yue-Hua Wang, Shi-Bin Yin, Ying-Huai Qiang. Preparation of hollow dipyramid TiO 2 with truncated structure using an oxidation/etch method and its gas-sensing properties. Crystal Research and Technology 2014, 49 (5) , 331-337. https://doi.org/10.1002/crat.201400017
  42. Guorui Yang, Wei Yan, Jianan Wang, Honghui Yang. Fabrication and formation mechanism of Mn 2 O 3 hollow nanofibers by single-spinneret electrospinning. CrystEngComm 2014, 16 (30) , 6907-6913. https://doi.org/10.1039/C4CE00521J
  43. Dahu baiyila, Xiaohui Wang, Xin Li, Bao sharileaodu, Xiaotian Li, Liang Xu, Zongrui Liu, Limei Duan, Jinghai Liu. Electrospun TiO 2 nanofibers integrating space-separated magnetic nanoparticles and heterostructures for recoverable and efficient photocatalyst. J. Mater. Chem. A 2014, 2 (31) , 12304-12310. https://doi.org/10.1039/C4TA02224F
  44. Guangfei He, Xiaoxu Wang, Min Xi, Fan Zheng, Zhengtao Zhu, Hao Fong. Fabrication and evaluation of dye-sensitized solar cells with photoanodes based on electrospun TiO2 nanotubes. Materials Letters 2013, 106 , 115-118. https://doi.org/10.1016/j.matlet.2013.05.014