Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum

View Author Information
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
State Key Laboratory of New Ceramics & Fine Processing, Department of Material Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
§ Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, 52900, Israel
*E-mail: [email protected]; Tel: +972-8-9346282; Fax: +972-8-9344109 (D.O.). E-mail: [email protected]; Tel: 86-10-627772672; Fax: 86-10-62772672 (H.L.).
Cite this: J. Phys. Chem. C 2013, 117, 43, 22203–22210
Publication Date (Web):December 20, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (1 MB)
Supporting Info (1)»


Type-II heterostructure CdTe/CdSe core/shell nanocrystals (quantum dots, QDs) are explored as sensitizers in a QD-sensitized photoelectrochemical solar cell. These QDs comprise a hole-localizing core and an electron-localizing shell. Among their advantages is the significant red shift of the absorption edge of the heterostructured QD relative to its two constituents due to spatially indirect absorption leading to improved absorption characteristics, intraparticle exciton dissociation upon photoexcitation, and a relatively small content of the less abundant tellurium element. Upon incorporation in a sensitized solar cell utilizing a porous TiO2 and a polysulfide electrolyte, these QDs exhibited efficient charge separation and high internal quantum efficiency despite hole localization in the CdTe core. Monochromatic incident photon-to-current conversion efficiency (IPCE) measurement shows a spectrally broad photoresponse spanning the whole visible spectrum and reaching up to ∼900 nm.

Supporting Information

Jump To

Absorption cross section measurement, EIS analysis about the effect of ZnS film thickness on photovoltaic performance, corrections of the absorbance spectra, elemental mapping of the sensitized electrode, and their photographs. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 54 publications.

  1. Ning Du, Yingqi Cui, Li Zhang, Mingli Yang. First-Principles Study of the Electron–Hole Recombination Rate at the Interface of the CdSe Quantum Dot and TiO2 Substrate. The Journal of Physical Chemistry C 2021, 125 (29) , 15785-15795. https://doi.org/10.1021/acs.jpcc.1c00970
  2. Sudarson S. Sinha, Lena Yadgarov, Sokhrab B. Aliev, Yishay Feldman, Iddo Pinkas, Pallellappa Chithaiah, Saptarshi Ghosh, Alexander Idelevich, Alla Zak, Reshef Tenne. MoS2 and WS2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. The Journal of Physical Chemistry C 2021, 125 (11) , 6324-6340. https://doi.org/10.1021/acs.jpcc.0c10784
  3. Sangheon Lee, Joseph C. Flanagan, Jaewook Kim, Alan Jiwan Yun, Byungho Lee, Moonsub Shim, Byungwoo Park. Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. ACS Applied Materials & Interfaces 2019, 11 (21) , 19104-19114. https://doi.org/10.1021/acsami.9b02873
  4. Songping Luo, Miri Kazes, Hong Lin, and Dan Oron . Strain-Induced Type II Band Alignment Control in CdSe Nanoplatelet/ZnS-Sensitized Solar Cells. The Journal of Physical Chemistry C 2017, 121 (21) , 11136-11143. https://doi.org/10.1021/acs.jpcc.7b02460
  5. Amit Dalui, Arup Chakraborty, Umamahesh Thupakula, Ali Hossain Khan, Sucheta Sengupta, Biswarup Satpati, D. D. Sarma, Indra Dasgupta, and Somobrata Acharya . Chemical Tailoring of Band Offsets at the Interface of ZnSe–CdS Heterostructures for Delocalized Photoexcited Charge Carriers. The Journal of Physical Chemistry C 2016, 120 (19) , 10118-10128. https://doi.org/10.1021/acs.jpcc.6b00986
  6. Ayelet Teitelboim, Noga Meir, Miri Kazes, and Dan Oron . Colloidal Double Quantum Dots. Accounts of Chemical Research 2016, 49 (5) , 902-910. https://doi.org/10.1021/acs.accounts.5b00554
  7. Ke Zhao, Zhenxiao Pan, and Xinhua Zhong . Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (3) , 406-417. https://doi.org/10.1021/acs.jpclett.5b02153
  8. Edward J. Tyrrell and Stanko Tomić . Effect of Correlation and Dielectric Confinement on 1S1/2(e)nS3/2(h) Excitons in CdTe/CdSe and CdSe/CdTe Type-II Quantum Dots. The Journal of Physical Chemistry C 2015, 119 (22) , 12720-12730. https://doi.org/10.1021/acs.jpcc.5b02789
  9. Jon M. Azpiroz, Ivan Infante, and Filippo De Angelis . First-Principles Modeling of Core/Shell Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry C 2015, 119 (22) , 12739-12748. https://doi.org/10.1021/acs.jpcc.5b02987
  10. Shuang Jiao, Qing Shen, Iván Mora-Seró, Jin Wang, Zhenxiao Pan, Ke Zhao, Yuki Kuga, Xinhua Zhong, and Juan Bisquert . Band Engineering in Core/Shell ZnTe/CdSe for Photovoltage and Efficiency Enhancement in Exciplex Quantum Dot Sensitized Solar Cells. ACS Nano 2015, 9 (1) , 908-915. https://doi.org/10.1021/nn506638n
  11. Tatsuya Kameyama, Yusuke Douke, Hiroko Shibakawa, Masahide Kawaraya, Hiroshi Segawa, Susumu Kuwabata, and Tsukasa Torimoto . Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (51) , 29517-29524. https://doi.org/10.1021/jp508769f
  12. Bingyan Zhang, Huailiang Yuan, Xiaofan Zhang, Dekang Huang, Shaohui Li, Mingkui Wang, and Yan Shen . Investigation of Regeneration Kinetics in Quantum-Dots-Sensitized Solar Cells with Scanning Electrochemical Microscopy. ACS Applied Materials & Interfaces 2014, 6 (23) , 20913-20918. https://doi.org/10.1021/am505569w
  13. Miri Kazes, Sophia Buhbut, Stella Itzhakov, Ohr Lahad, Arie Zaban, and Dan Oron . Photophysics of Voltage Increase by Photoinduced Dipole Layers in Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (15) , 2717-2722. https://doi.org/10.1021/jz501336r
  14. Lena Yadgarov, Charina L. Choi, Anastasiya Sedova, Ayala Cohen, Rita Rosentsveig, Omri Bar-Elli, Dan Oron, Hongjie Dai, and Reshef Tenne . Dependence of the Absorption and Optical Surface Plasmon Scattering of MoS2 Nanoparticles on Aspect Ratio, Size, and Media. ACS Nano 2014, 8 (4) , 3575-3583. https://doi.org/10.1021/nn5000354
  15. Jin Wang, Iván Mora-Seró, Zhenxiao Pan, Ke Zhao, Hua Zhang, Yaoyu Feng, Guang Yang, Xinhua Zhong, and Juan Bisquert . Core/Shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society 2013, 135 (42) , 15913-15922. https://doi.org/10.1021/ja4079804
  16. Sophia Buhbut, Stella Itzhakov, Idan Hod, Dan Oron, and Arie Zaban . Photo-Induced Dipoles: A New Method to Convert Photons into Photovoltage in Quantum Dot Sensitized Solar Cells. Nano Letters 2013, 13 (9) , 4456-4461. https://doi.org/10.1021/nl402360f
  17. Wei Zheng, Xu Zhang. The improved performance of solar cells co-sensitized with CdS/Ag2S quantum dots and N719 dye. Journal of Alloys and Compounds 2021, 886 , 161331. https://doi.org/10.1016/j.jallcom.2021.161331
  18. Ning Du, Yingqi Cui, Li Zhang, Mingli Yang. Effect of Mn doping on the electron injection in CdSe/TiO 2 quantum dot sensitized solar cells. Physical Chemistry Chemical Physics 2021, 23 (1) , 647-656. https://doi.org/10.1039/D0CP03866K
  19. Musa Çadirci, Yasemin Gündoğdu, Erdem Elibol, Hamdi Şükür Kılıç. Nonlinear optical properties of core shell type II quantum dot structures. Optics & Laser Technology 2020, 128 , 106246. https://doi.org/10.1016/j.optlastec.2020.106246
  20. Guiju Liu, Xiaohan Wang, Guangting Han, Haiguang Zhao. Core/Shell Quantum-Dot-Based Luminescent Solar Concentrators. 2020,,, 287-314. https://doi.org/10.1007/978-3-030-46596-4_9
  21. Florian Enders, Arne Budweg, Peng Zeng, Jannika Lauth, Trevor A. Smith, Daniele Brida, Klaus Boldt. Switchable dissociation of excitons bound at strained CdTe/CdS interfaces. Nanoscale 2018, 10 (47) , 22362-22373. https://doi.org/10.1039/C8NR07973K
  22. Tatsuya KAMEYAMA. Advances in Colloidal I-III-VI2-Based Semiconductor Quantum Dots toward Tailorable Photofunctional Materials. Electrochemistry 2018, 86 (6) , 291-297. https://doi.org/10.5796/electrochemistry.18-6-E2670
  23. Elnaz Jalali-Moghadam, Zahra Shariatinia. Quantum dot sensitized solar cells fabricated by means of a novel inorganic spinel nanoparticle. Applied Surface Science 2018, 441 , 1-11. https://doi.org/10.1016/j.apsusc.2018.02.022
  24. Rita Rosentsveig, Lena Yadgarov, Yishay Isai Feldman, Sana Shilstein, Ronit Popovitz-Biro, Bojana Visic, Anastasiya Sedova, Sidney R. Cohen, Yuanyuan Li, Anatoly I. Frenkel, Reshef Tenne. Doping of Fullerene-Like MoS 2 Nanoparticles with Minute Amounts of Niobium. Particle & Particle Systems Characterization 2018, 35 (3) , 1700165. https://doi.org/10.1002/ppsc.201700165
  25. Oleksandr Stroyuk. Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. 2018,,, 161-240. https://doi.org/10.1007/978-3-319-68879-4_4
  26. Qiang Wu, Juan Hou, Haifeng Zhao, Zhiyong Liu, Xuanyu Yue, Shanglong Peng, Haibin Cao. Charge recombination control for high efficiency CdS/CdSe quantum dot co-sensitized solar cells with multi-ZnS layers. Dalton Transactions 2018, 47 (7) , 2214-2221. https://doi.org/10.1039/C7DT04356B
  27. Michael J. Enright, Brandi M. Cossairt. Synthesis of tailor-made colloidal semiconductor heterostructures. Chemical Communications 2018, 54 (52) , 7109-7122. https://doi.org/10.1039/C8CC03498B
  28. Lena Yadgarov, Bojana Višić, Tsafrir Abir, Ron Tenne, Alexander Yu. Polyakov, Roi Levi, Tatyana V. Dolgova, Varvara V. Zubyuk, Andrey A. Fedyanin, Eugene A. Goodilin, Tal Ellenbogen, Reshef Tenne, Dan Oron. Strong light–matter interaction in tungsten disulfide nanotubes. Physical Chemistry Chemical Physics 2018, 20 (32) , 20812-20820. https://doi.org/10.1039/C8CP02245C
  29. A. V. Kozytskiy, O. L. Stroyuk, A. E. Raevskaya, S. Ya. Kuchmy. Photoelectrochemical Solar Cells with Semiconductor Nanoparticles and Liquid Electrolytes: a Review. Theoretical and Experimental Chemistry 2017, 53 (3) , 145-179. https://doi.org/10.1007/s11237-017-9512-z
  30. Nisha Singh, Zaahir Salam, N. Sivasankar, A. Subramania. ZnSe quantum dots sensitized electrospun ZnO nanofibers as an efficient photoanode for improved performance of QDSSC. Materials Science in Semiconductor Processing 2017, 64 , 16-23. https://doi.org/10.1016/j.mssp.2017.03.005
  31. Mohammed Panthakkal Abdul Muthalif, Young-Seok Lee, Chozhidakath Damodharan Sunesh, Hee-Je Kim, Youngson Choe. Enhanced photovoltaic performance of quantum dot-sensitized solar cells with a progressive reduction of recombination using Cu-doped CdS quantum dots. Applied Surface Science 2017, 396 , 582-589. https://doi.org/10.1016/j.apsusc.2016.10.200
  32. K Suseel Rahul, K Salini, Vincent Mathew. Electronic properties of an exciton in CdTe/CdSe/CdTe/CdSe type-II nano-heterostructure. Journal of Physics: Condensed Matter 2016, 28 (47) , 475304. https://doi.org/10.1088/0953-8984/28/47/475304
  33. Francesco Todescato, Ilaria Fortunati, Alessandro Minotto, Raffaella Signorini, Jacek Jasieniak, Renato Bozio. Engineering of Semiconductor Nanocrystals for Light Emitting Applications. Materials 2016, 9 (8) , 672. https://doi.org/10.3390/ma9080672
  34. Songping Luo, Heping Shen, Yuanyuan Zhang, Jianbao Li, Dan Oron, Hong Lin. Inhibition of charge transfer and recombination processes in CdS/N719 co-sensitized solar cell with high conversion efficiency. Electrochimica Acta 2016, 191 , 16-22. https://doi.org/10.1016/j.electacta.2016.01.055
  35. Songping Luo, Heping Shen, Wei Hu, Zhibo Yao, Jianbao Li, Dan Oron, Ning Wang, Hong Lin. Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Advances 2016, 6 (25) , 21156-21164. https://doi.org/10.1039/C5RA27514H
  36. Songping Luo, Heping Shen, Xiaoli He, Ye Zhang, Jianbao Li, Dan Oron, Hong Lin. Facile in situ synthesis of dendrite-like ZnO/ZnTe core/shell nanorod heterostructures for sensitized solar cells. Journal of Materials Chemistry C 2016, 4 (21) , 4740-4747. https://doi.org/10.1039/C6TC00524A
  37. G.M. Lohar, S.T. Jadhav, H.D. Dhaygude, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, V.J. Fulari. Studies of properties of Fe3+ doped ZnSe nanoparticles and hollow spheres for photoelectrochemical cell application. Journal of Alloys and Compounds 2015, 653 , 22-31. https://doi.org/10.1016/j.jallcom.2015.08.208
  38. V. Křápek, P. Klenovský, T. Šikola. Excitonic fine structure splitting in type-II quantum dots. Physical Review B 2015, 92 (19) https://doi.org/10.1103/PhysRevB.92.195430
  39. Xinyu Cui, Hongmei Gu, Yue Guan, Gongping Ren, Zuo Ma, Yuanyuan Yin, Jinli Liu, Xingang Cui, Liyan Yao, Yongkui Yin, Dong Wang, Ge Jin, Shengzhong Rong, Lei Tong, Jiafu Hou, Miaojing Li. Fabrication of AgInS2 nanoparticles sensitized TiO2 nanotube arrays and their photoelectrochemical properties. Solar Energy Materials and Solar Cells 2015, 137 , 101-106. https://doi.org/10.1016/j.solmat.2015.01.036
  40. Xuehua Shen, Jianguang Jia, Yuan Lin, Xiaowen Zhou. Enhanced performance of CdTe quantum dot sensitized solar cell via anion exchanges. Journal of Power Sources 2015, 277 , 215-221. https://doi.org/10.1016/j.jpowsour.2014.12.022
  41. A. Jamshidi, C. Yuan, V. Chmyrov, J. Widengren, L. Sun, H. Ågren. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells. Journal of Nanomaterials 2015, 2015 , 1-9. https://doi.org/10.1155/2015/921903
  42. Mee Rahn Kim, Zhenhe Xu, Guozhu Chen, Dongling Ma. Semiconductor and Metallic Core-Shell Nanostructures: Synthesis and Applications in Solar Cells and Catalysis. Chemistry - A European Journal 2014, 20 (36) , 11256-11275. https://doi.org/10.1002/chem.201402277
  43. Xin Li, Heping Shen, Wenli Wang, Jianbao Li, Hong Lin. Effect of cationic groups in organic sulfide electrolyte on the performance of CdS quantum dot sensitized solar cells. Chinese Science Bulletin 2014, 59 (25) , 3209-3215. https://doi.org/10.1007/s11434-014-0416-1
  44. Padmashri Patil, C. Laltlanzuala, Shouvik Datta. Sensitized solar cell from type-II CdTe/CdSe core/shell nanocrystals synthesized without seed purification at low temperature. Journal of Alloys and Compounds 2014, 607 , 230-237. https://doi.org/10.1016/j.jallcom.2014.04.072
  45. Zhaolai Chen, Hao Zhang, Qingsen Zeng, Yan Wang, Dandan Xu, Lei Wang, Haiyu Wang, Bai Yang. In Situ Construction of Nanoscale CdTe-CdS Bulk Heterojunctions for Inorganic Nanocrystal Solar Cells. Advanced Energy Materials 2014, 4 (10) , 1400235. https://doi.org/10.1002/aenm.201400235
  46. Xian Xie, Xiaoyu Wu, Tangkang Liu, Huaimei Li, Yilin Wang, Jianping Lu. Aqueous synthesis of luminescent cadmium telluride quantum dots using ascorbic acid as the reducing agent. Micro & Nano Letters 2014, 9 (7) , 478-481. https://doi.org/10.1049/mnl.2014.0084
  47. N. McElroy, R.C. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P. O'Brien, D.J. Binks. Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer. Thin Solid Films 2014, 560 , 65-70. https://doi.org/10.1016/j.tsf.2013.10.085
  48. Yoshiaki Oda, Heping Shen, Lin Zhao, Jianbao Li, Mitsumasa Iwamoto, Hong Lin. Energetic alignment in nontoxic SnS quantum dot-sensitized solar cell employing spiro-OMeTAD as the solid-state electrolyte. Science and Technology of Advanced Materials 2014, 15 (3) , 035006. https://doi.org/10.1088/1468-6996/15/3/035006
  49. Fatih Koc, Mehmet Sahin. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals. Journal of Applied Physics 2014, 115 (19) , 193701. https://doi.org/10.1063/1.4876323
  50. Haiguang Zhao, Hongyan Liang, Belete Atomsa Gonfa, Mohamed Chaker, Tsuneyuki Ozaki, Peter Tijssen, François Vidal, Dongling Ma. Investigating photoinduced charge transfer in double- and single-emission [email protected] [email protected] quantum dots. Nanoscale 2014, 6 (1) , 215-225. https://doi.org/10.1039/C3NR03691J
  51. Jie Chang, Hongbo Xia, Suli Wu, Shufen Zhang. Prolonging the lifetime of excited electrons of QDs by capping them with π-conjugated thiol ligands. J. Mater. Chem. C 2014, 2 (16) , 2939-2943. https://doi.org/10.1039/C3TC32523G
  52. Jianheng Luo, Huiyun Wei, Fan Li, Qingli Huang, Dongmei Li, Yanhong Luo, Qingbo Meng. Microwave assisted aqueous synthesis of core–shell CdSexTe1−x–CdS quantum dots for high performance sensitized solar cells. Chemical Communications 2014, 50 (26) , 3464. https://doi.org/10.1039/c3cc49335k
  53. Heping Shen, Jianbao Li, Lin Zhao, Shanshan Zhang, Wenli Wang, Dan Oron, Hong Lin. Synergistic recombination suppression by an inorganic layer and organic dye molecules in highly photostable quantum dot sensitized solar cells. Physical Chemistry Chemical Physics 2014, 16 (13) , 6250. https://doi.org/10.1039/c3cp54954b
  54. Jae Hui Rhee, Chih-Chun Chung, Eric Wei-Guang Diau. A perspective of mesoscopic solar cells based on metal chalcogenide quantum dots and organometal-halide perovskites. NPG Asia Materials 2013, 5 (10) , e68-e68. https://doi.org/10.1038/am.2013.53