OH Radical Formation at Distinct Faces of Rutile TiO2 Crystal in the Procedure of Photoelectrochemical Water Oxidation

View Author Information
Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka, 940-2188 Japan
*E-mail: [email protected]. Tel./Fax: +81-258-47-9315.
Cite this: J. Phys. Chem. C 2013, 117, 45, 23832–23839
Publication Date (Web):October 10, 2013
https://doi.org/10.1021/jp408244h
Copyright © 2013 American Chemical Society
Article Views
1418
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (683 KB)
Supporting Info (1)»

Abstract

It has been believed that the photogenerated OH radicals are major active species which cause photocatalytic oxidation of water. To investigate the actual contribution of OH radicals to the photocatalytic O2 generation, the amount of the OH radicals was measured for the three kinds of rutile TiO2 electrodes having (100), (110), and (001) crystalline surfaces. The current efficiencies for O2 generation measured with an oxygen sensor were almost 100% for all electrodes. However, the current efficiencies for OH radical formation estimated by means of a coumarin fluorescence probe method were less than 1%. Thus, it was experimentally elucidated that the contribution of OH radicals to the O2 production is negligibly small. The amount of OH radical production decreased in the order of (100) > (110) > (001), along with the increase in the efficiency of the O2 production. A plausible mechanism of OH radical formation as a byproduct in the O2 generation process was proposed.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental data for AFM observation (Figure S1) of three electrodes, the calibration chart for calculating the umbelliferone concentration in 0.1 mM coumarin solution with fluorescence spectra (Figure S2), and the current–voltage curves of theTiO2 rutile (100) and (110) electrodes under UV irradiation and dark condition (Figure S3). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 55 publications.

  1. Yinuo Li, Yuemiao Lai, Xiao Chen, Xueming Yang, Qing Guo. C–O versus C–C Bond Cleavage in Ethylene Glycol Photochemistry on Rutile TiO2(110): Selectivity Depends on Excess Electrons. The Journal of Physical Chemistry C 2021, 125 (46) , 25580-25588. https://doi.org/10.1021/acs.jpcc.1c08075
  2. Jeong Su Kang, So-Dam Sohn, Hyung-Joon Shin. Dissociative Adsorption of H2O2 on the TiO2(110) Surface for Advanced Oxidation Process. The Journal of Physical Chemistry C 2020, 124 (22) , 11930-11934. https://doi.org/10.1021/acs.jpcc.0c02143
  3. Lan Luo, Zhou-jun Wang, Xu Xiang, Dongpeng Yan, Jinhua Ye. Selective Activation of Benzyl Alcohol Coupled with Photoelectrochemical Water Oxidation via a Radical Relay Strategy. ACS Catalysis 2020, 10 (9) , 4906-4913. https://doi.org/10.1021/acscatal.0c00660
  4. Fangliang Li, Xiao Chen, Qing Guo, Dongxu Dai, Xueming Yang. Detecting the Photoactivity of the Rutile TiO2(100)-(1 × 1) Surface by Methanol. The Journal of Physical Chemistry C 2020, 124 (16) , 8766-8774. https://doi.org/10.1021/acs.jpcc.0c00375
  5. Shafaq Sahar, Akif Zeb, Cong Ling, Amna Raja, Gang Wang, Naseeb Ullah, Xiao-Ming Lin, An-Wu Xu. A Hybrid VOx Incorporated Hexacyanoferrate Nanostructured Hydrogel as a Multienzyme Mimetic via Cascade Reactions. ACS Nano 2020, 14 (3) , 3017-3031. https://doi.org/10.1021/acsnano.9b07886
  6. Yoshio Nosaka, Atsuko Y. Nosaka. Comment on “Coumarin as a Quantitative Probe for Hydroxyl Radical Formation in Heterogeneous Photocatalysis”. The Journal of Physical Chemistry C 2019, 123 (33) , 20682-20684. https://doi.org/10.1021/acs.jpcc.9b04190
  7. Muhammad Saleh, Thomas S. Hofer. A DFTB/MM MD Approach for Solid-State Interfaces: Structural and Dynamical Properties of H2O and NH3 on R-TiO2 (001). The Journal of Physical Chemistry C 2019, 123 (12) , 7230-7245. https://doi.org/10.1021/acs.jpcc.9b00574
  8. Patrick Gono, Julia Wiktor, Francesco Ambrosio, Alfredo Pasquarello. Surface Polarons Reducing Overpotentials in the Oxygen Evolution Reaction. ACS Catalysis 2018, 8 (7) , 5847-5851. https://doi.org/10.1021/acscatal.8b01120
  9. Mihail R. Krumov, Burton H. Simpson, Michael J. Counihan, Joaquín Rodríguez-López. In Situ Quantification of Surface Intermediates and Correlation to Discharge Products on Hematite Photoanodes Using a Combined Scanning Electrochemical Microscopy Approach. Analytical Chemistry 2018, 90 (5) , 3050-3057. https://doi.org/10.1021/acs.analchem.7b04896
  10. Yukihiro Nakabayashi, Masami Nishikawa, Nobuo Saito, Chiaki Terashima, and Akira Fujishima . Significance of Hydroxyl Radical in Photoinduced Oxygen Evolution in Water on Monoclinic Bismuth Vanadate. The Journal of Physical Chemistry C 2017, 121 (46) , 25624-25631. https://doi.org/10.1021/acs.jpcc.7b03641
  11. Yoshio Nosaka and Atsuko Y. Nosaka . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews 2017, 117 (17) , 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
  12. Yin Jing and Brian P. Chaplin . Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes. Environmental Science & Technology 2017, 51 (4) , 2355-2365. https://doi.org/10.1021/acs.est.6b05513
  13. Hongna Zhang, Peng Zhou, Zuofeng Chen, Wenjing Song, Hongwei Ji, Wanhong Ma, Chuncheng Chen, and Jincai Zhao . Hydrogen-Bond Bridged Water Oxidation on {001} Surfaces of Anatase TiO2. The Journal of Physical Chemistry C 2017, 121 (4) , 2251-2257. https://doi.org/10.1021/acs.jpcc.6b11900
  14. Yoshio Nosaka and Atsuko Nosaka . Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Letters 2016, 1 (2) , 356-359. https://doi.org/10.1021/acsenergylett.6b00174
  15. Wenshao Yang, Dong Wei, Xianchi Jin, Chenbiao Xu, Zhenhua Geng, Qing Guo, Zhibo Ma, Dongxu Dai, Hongjun Fan, and Xueming Yang . Effect of the Hydrogen Bond in Photoinduced Water Dissociation: A Double-Edged Sword. The Journal of Physical Chemistry Letters 2016, 7 (4) , 603-608. https://doi.org/10.1021/acs.jpclett.6b00015
  16. Pauline Bornoz, Mathieu S. Prévot, Xiaoyun Yu, Néstor Guijarro, and Kevin Sivula . Direct Light-Driven Water Oxidation by a Ladder-Type Conjugated Polymer Photoanode. Journal of the American Chemical Society 2015, 137 (49) , 15338-15341. https://doi.org/10.1021/jacs.5b05724
  17. Marta Buchalska, Marcin Kobielusz, Anna Matuszek, Michał Pacia, Szymon Wojtyła, and Wojciech Macyk . On Oxygen Activation at Rutile- and Anatase-TiO2. ACS Catalysis 2015, 5 (12) , 7424-7431. https://doi.org/10.1021/acscatal.5b01562
  18. Xinchun Mao, Zhiqiang Wang, Xiufeng Lang, Qunqing Hao, Bo Wen, Dongxu Dai, Chuanyao Zhou, Li-Min Liu, and Xueming Yang . Effect of Surface Structure on the Photoreactivity of TiO2. The Journal of Physical Chemistry C 2015, 119 (11) , 6121-6127. https://doi.org/10.1021/acs.jpcc.5b00503
  19. Akihito Imanishi and Ken-ichi Fukui . Atomic-Scale Surface Local Structure of TiO2 and Its Influence on the Water Photooxidation Process. The Journal of Physical Chemistry Letters 2014, 5 (12) , 2108-2117. https://doi.org/10.1021/jz5004704
  20. Jie Zhang and Yoshio Nosaka . Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types. The Journal of Physical Chemistry C 2014, 118 (20) , 10824-10832. https://doi.org/10.1021/jp501214m
  21. Eirini D. Koutsouroubi, Ioannis Vamvasakis, Maria G. Minotaki, Ioannis T. Papadas, Charalampos Drivas, Stelios A. Choulis, Georgios Kopidakis, Stella Kennou, Gerasimos S. Armatas. Ni-doped MoS2 modified graphitic carbon nitride layered hetero-nanostructures as highly efficient photocatalysts for environmental remediation. Applied Catalysis B: Environmental 2021, 297 , 120419. https://doi.org/10.1016/j.apcatb.2021.120419
  22. Yadong Zhang, Lei Wu, Ying Wang, Yi Zhang, Hao Wang, Xiaoning Wang, Xiao Dong Chen, Zhangxiong Wu. Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight. Journal of Colloid and Interface Science 2021, 587 , 467-478. https://doi.org/10.1016/j.jcis.2020.12.008
  23. Rahul Kumar, Alireza Akbarinejad, Tahereh Jasemizad, Raoul Fucina, Jadranka Travas-Sejdic, Lokesh P. Padhye. The removal of metformin and other selected PPCPs from water by poly(3,4-ethylenedioxythiophene) photocatalyst. Science of The Total Environment 2021, 751 , 142302. https://doi.org/10.1016/j.scitotenv.2020.142302
  24. Nathan Skillen, Clare Rice, Xinzhu Pang, Peter K.J. Robertson, Wesley McCormick, Denis McCrudden. Photocatalytic radical species: An overview of how they are generated, detected, and measured. 2021,,, 85-118. https://doi.org/10.1016/B978-0-12-823007-7.00008-0
  25. Chanitsara Ngamsakpasert, Achariya Suriyawong, Sitthisuntorn Supothina, Paradee Chuaybamroong. Post-harvest treatment of carbendazim in Chinese chives using TiO2 nanofiber photocatalysis with different anatase/rutile ratios. Journal of Nanoparticle Research 2020, 22 (7) https://doi.org/10.1007/s11051-020-04891-x
  26. Lina Zhao, Zhenlong Zhao, Yuxin Li, Xiaoyu Chu, Zhijun Li, Yang Qu, Linlu Bai, Liqiang Jing. The synthesis of interface-modulated ultrathin Ni( ii ) MOF/g-C 3 N 4 heterojunctions as efficient photocatalysts for CO 2 reduction. Nanoscale 2020, 12 (18) , 10010-10018. https://doi.org/10.1039/D0NR02551H
  27. Hichem Zeghioud, Mahamadou Kamagate, Lassina Sandotin Coulibaly, Sami Rtimi, Aymen Amine Assadi. Photocatalytic degradation of binary and ternary mixtures of antibiotics: reactive species investigation in pilot scale. Chemical Engineering Research and Design 2019, 144 , 300-309. https://doi.org/10.1016/j.cherd.2019.02.015
  28. Yinghua Liang, Rong Shang, Jinrong Lu, Weijia An, Jinshan Hu, Li Liu, Wenquan Cui. 2D MOFs enriched g-C3N4 nanosheets for highly efficient charge separation and photocatalytic hydrogen evolution from water. International Journal of Hydrogen Energy 2019, 44 (5) , 2797-2810. https://doi.org/10.1016/j.ijhydene.2018.12.036
  29. Xuliang Zhang, Xinxin Zhang, Jiadong Li, Jianhui Sun, Ji Bian, Jinshuang Wang, Yang Qu, Rui Yan, Chuanli Qin, Liqiang Jing. Exceptional visible-light activities of g-C3N4 nanosheets dependent on the unexpected synergistic effects of prolonging charge lifetime and catalyzing H2 evolution with H2O. Applied Catalysis B: Environmental 2018, 237 , 50-58. https://doi.org/10.1016/j.apcatb.2018.05.034
  30. Christoph Haisch, Carsten Günnemann, Stephanie Melchers, Manuel Fleisch, Jenny Schneider, Alexei V. Emeline, Detlef W. Bahnemann. Irreversible surface changes upon n-type doping – A photoelectrochemical study on rutile single crystals. Electrochimica Acta 2018, 280 , 278-289. https://doi.org/10.1016/j.electacta.2018.05.105
  31. Georgia Velegraki, Jianwei Miao, Charalampos Drivas, Bin Liu, Stella Kennou, Gerasimos S. Armatas. Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI). Applied Catalysis B: Environmental 2018, 221 , 635-644. https://doi.org/10.1016/j.apcatb.2017.09.064
  32. M. Crawford Andrews, Ping Peng, Amit Rajput, Anthony F. Cozzolino. Modulation of the carboxamidine redox potential through photoinduced spiropyran or fulgimide isomerisation. Photochemical & Photobiological Sciences 2018, 17 (4) , 432-441. https://doi.org/10.1039/C7PP00347A
  33. Yuan Chen, Xu Zhang, Lu Mao, Zixin Yang. Dependence of kinetics and pathway of acetaminophen photocatalytic degradation on irradiation photon energy and TiO2 crystalline. Chemical Engineering Journal 2017, 330 , 1091-1099. https://doi.org/10.1016/j.cej.2017.07.148
  34. Wanruo Lou, Abdoulaye Kane, Dominique Wolbert, Sami Rtimi, Aymen Amine Assadi. Study of a photocatalytic process for removal of antibiotics from wastewater in a falling film photoreactor: Scavenger study and process intensification feasibility. Chemical Engineering and Processing: Process Intensification 2017, 122 , 213-221. https://doi.org/10.1016/j.cep.2017.10.010
  35. Gaofei Xiao, HongYan Zeng, Sheng Xu, ChaoRong Chen, Quan Zhao, XiaoJun Liu. Preparation of Ti species coating hydrotalcite by chemical vapor deposition for photodegradation of azo dye. Journal of Environmental Sciences 2017, 60 , 14-23. https://doi.org/10.1016/j.jes.2017.03.031
  36. L. Gomathi Devi, P.M. Nithya, Cisy Abraham, R. Kavitha. Influence of surface metallic silver deposit and surface fluorination on the photocatalytic activity of rutile TiO2 for the degradation of crystal violet a cationic dye under UV light irradiation. Materials Today Communications 2017, 10 , 1-13. https://doi.org/10.1016/j.mtcomm.2016.11.001
  37. Samantha L. Shumlas, Soujanya Singireddy, Akila C. Thenuwara, Nuwan H. Attanayake, Richard J. Reeder, Daniel R. Strongin. Oxidation of arsenite to arsenate on birnessite in the presence of light. Geochemical Transactions 2016, 17 (1) https://doi.org/10.1186/s12932-016-0037-5
  38. Jian Wang, Yabing Sun, Jingwei Feng, Lu Xin, Jianzhong Ma. Degradation of triclocarban in water by dielectric barrier discharge plasma combined with TiO2/activated carbon fibers: Effect of operating parameters and byproducts identification. Chemical Engineering Journal 2016, 300 , 36-46. https://doi.org/10.1016/j.cej.2016.04.041
  39. J.A. Díaz-Real, E. Ortiz-Ortega, M.P. Gurrola, J. Ledesma-Garcia, L.G. Arriaga. Light-harvesting Ni/TiO2 nanotubes as photo-electrocatalyst for alcohol oxidation in alkaline media. Electrochimica Acta 2016, 206 , 388-399. https://doi.org/10.1016/j.electacta.2016.04.163
  40. Qun-qing Hao, Zhi-qiang Wang, Xin-chun Mao, Chuan-yao Zhou, Dong-xu Dai, Xue-ming Yang. Facet Dependence of Photochemistry of Methanol on Single Crystalline Rutile Titania. Chinese Journal of Chemical Physics 2016, 29 (1) , 105-111. https://doi.org/10.1063/1674-0068/29/cjcp1601005
  41. Haya Kornweitz, Dan Meyerstein. The plausible role of carbonate in photo-catalytic water oxidation processes. Physical Chemistry Chemical Physics 2016, 18 (16) , 11069-11072. https://doi.org/10.1039/C5CP07389H
  42. Shanshan Dong, Shuangshi Dong, Dandan Zhou, Xian Zhou, Dongmei Ma, Yilin Du. Synthesis of Er3+:Al2O3-doped and rutile-dominant TiO2 composite with increased responsive wavelength range and enhanced photocatalytic performance under visible light irradiation. Journal of Molecular Catalysis A: Chemical 2015, 407 , 38-46. https://doi.org/10.1016/j.molcata.2015.06.016
  43. Pablo Fernández-Castro, Marta Vallejo, Mª Fresnedo San Román, Inmaculada Ortiz. Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species. Journal of Chemical Technology & Biotechnology 2015, 90 (5) , 796-820. https://doi.org/10.1002/jctb.4634
  44. Jie Zhang, Yoshio Nosaka. Photocatalytic oxidation mechanism of methanol and the other reactants in irradiated TiO2 aqueous suspension investigated by OH radical detection. Applied Catalysis B: Environmental 2015, 166-167 , 32-36. https://doi.org/10.1016/j.apcatb.2014.11.006
  45. Peng Luan, Mingzheng Xie, Dening Liu, Xuedong Fu, Liqiang Jing. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities. Scientific Reports 2015, 4 (1) https://doi.org/10.1038/srep06180
  46. Jie Zhang, Yoshio Nosaka. Generation of OH radicals and oxidation mechanism in photocatalysis of WO3 and BiVO4 powders. Journal of Photochemistry and Photobiology A: Chemistry 2015, 303-304 , 53-58. https://doi.org/10.1016/j.jphotochem.2015.01.008
  47. Peng Luan, Mingzheng Xie, Xuedong Fu, Yang Qu, Xiaojun Sun, Liqiang Jing. Improved photoactivity of TiO 2 –Fe 2 O 3 nanocomposites for visible-light water splitting after phosphate bridging and its mechanism. Physical Chemistry Chemical Physics 2015, 17 (7) , 5043-5050. https://doi.org/10.1039/C4CP04631E
  48. B. H. Simpson, J. Rodríguez-López. Emerging techniques for the in situ analysis of reaction intermediates on photo-electrochemical interfaces. Analytical Methods 2015, 7 (17) , 7029-7041. https://doi.org/10.1039/C5AY00503E
  49. Andranik Kazaryan, Rutger van Santen, Evert Jan Baerends. Light-induced water splitting by titanium-tetrahydroxide: a computational study. Physical Chemistry Chemical Physics 2015, 17 (31) , 20308-20321. https://doi.org/10.1039/C5CP01812A
  50. Yusuke Kakuma, Atsuko Y. Nosaka, Yoshio Nosaka. Difference in TiO 2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Physical Chemistry Chemical Physics 2015, 17 (28) , 18691-18698. https://doi.org/10.1039/C5CP02004B
  51. Yukihiro Nakabayashi, Yoshio Nosaka. The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO 2 single crystals. Physical Chemistry Chemical Physics 2015, 17 (45) , 30570-30576. https://doi.org/10.1039/C5CP04531B
  52. Yoshio Nosaka, Masami Nishikawa, Atsuko Nosaka. Spectroscopic Investigation of the Mechanism of Photocatalysis. Molecules 2014, 19 (11) , 18248-18267. https://doi.org/10.3390/molecules191118248
  53. Takayoshi Oshima, Osamu Ishitani, Kazuhiko Maeda. Non‐Sacrificial Water Photo‐Oxidation Activity of Lamellar Calcium Niobate Induced by Exfoliation. Advanced Materials Interfaces 2014, 1 (7) , 1400131. https://doi.org/10.1002/admi.201400131
  54. Jiming Yang, Liman Hou, Bin Xu, Ning Zhang, Yongjiu Liang, Wenjing Tian, Dewen Dong. Polymer Brushes on Planar TiO 2 Substrates. Macromolecular Rapid Communications 2014, 35 (13) , 1224-1229. https://doi.org/10.1002/marc.201400068
  55. Guiyun Yi, Baolin Xing, Jianbo Jia, Liwei Zhao, Yuanfeng Wu, Huihui Zeng, Lunjian Chen. Fabrication and Characteristics of Macroporous TiO 2 Photocatalyst. International Journal of Photoenergy 2014, 2014 , 1-7. https://doi.org/10.1155/2014/783531