Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors

View Author Information
Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
*Environmental Science Research Institute, Huazhong University of Science and Technology, Luoyu Road #1037, Wuhan 430074, China. E-mail: [email protected]. Tel.: +86 027 87792101. Fax: +86 027 87792101.
Cite this: J. Phys. Chem. C 2014, 118, 11, 5626–5636
Publication Date (Web):March 3, 2014
Copyright © 2014 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (1)»


The application of highly ordered TiO2 nanotube arrays (NTAs) for energy storage devices such as supercapacitors has been attractive and of great interest owing to their large surface area and greatly improved charge-transfer pathways compared to those of nonoriented structures. Modification of the semiconductor nature of TiO2 is important for its application in constructing high-performance supercapacitors. Hence, the present study demonstrates a novel method involving fabrication of self-doped TiO2 NTAs by a simple cathodic polarization treatment on the pristine TiO2 NTAs to achieve improved conductivity and capacitive properties of TiO2. The self-doped TiO2 NTAs at −1.4 V (vs SCE) exhibited 5 orders of magnitude improvement on carrier density and 39 times enhancement in capacitance compared to those of the pristine TiO2 NTAs. Impedance analysis based on a proposed simplified transmission line model proved that the enhanced capacitive behavior of the self-doped TiO2 NTAs was due to a decrease of charge-transport resistance through the solid material. Moreover, the MnO2 species was introduced onto the TiO2 NTAs by an impregnation–electrodeposition method, and the optimal specific capacitance achieved (1232 F g–1) clearly confirmed the suitability of self-doped TiO2 NTAs as effective current collector materials for supercapacitors.

Supporting Information

Jump To

SEM of the pristine TiO2, −1.6 V TiO2, and −1.8 V TiO2; N2 adsorption–desorption isotherms and BET analysis; TEM images of the −1.4 V TiO2; survey and O 1s XPS spectra; current transients recorded in the cathodic polarization process; CV and charge–discharge curves; Nyquist plots of the −1.2 V TiO2, −1.6 V TiO2, and −1.8 V TiO2; capacitive equations and calculations; and galvanostatic fabrication of MnO2/TiO2 composite and analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 203 publications.

  1. Pritam Das, N. Usha Kiran, Shyamal Chatterjee. Electron Beam Modulated Wettability and Electrical Conductivity of Hydrogen Titanate Nanowires. The Journal of Physical Chemistry C 2021, 125 (29) , 16191-16199. https://doi.org/10.1021/acs.jpcc.1c03231
  2. Yuanjie Xiong, Xiang Liu, Tian Cheng Zhang, Shaojun Yuan. MnO2/TiO2 Nanotube Array-Coated Titanium Substrates as Anodes for Electrocatalytic Oxidation of As(III) in Aqueous Solution. ACS Applied Nano Materials 2021, 4 (7) , 7404-7415. https://doi.org/10.1021/acsanm.1c01376
  3. Robert Bogdanowicz, Anna Dettlaff, Franciszek Skiba, Konrad Trzcinski, Mariusz Szkoda, Michal Sobaszek, Mateusz Ficek, Bartlomiej Dec, Lukasz Macewicz, Konrad Wyrębski, Grzegorz Pasciak, Dongsheng Geng, Arkadiusz Ignaczak, Jacek Ryl. Enhanced Charge Storage Mechanism and Long-Term Cycling Stability in Diamondized Titania Nanocomposite Supercapacitors Operating in Aqueous Electrolytes. The Journal of Physical Chemistry C 2020, 124 (29) , 15698-15712. https://doi.org/10.1021/acs.jpcc.0c02792
  4. Ding Zhao, Baoqiang Xu, Jia Yang, Jian Wu, Weiran Zhai, Bin Yang, Minghui Liu. Rapid Preparation of TiO2–x and Its Photocatalytic Oxidation for Arsenic Adsorption under Visible Light. Langmuir 2020, 36 (14) , 3853-3861. https://doi.org/10.1021/acs.langmuir.9b02444
  5. Chao Wang, Jingjing Yang, Taozhu Li, Zihan Shen, Taolian Guo, Huigang Zhang, Zhenda Lu. In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. ACS Applied Materials & Interfaces 2020, 12 (5) , 5750-5758. https://doi.org/10.1021/acsami.9b18359
  6. Jun Bai, Xingang Zuo, Xue Feng, Yunfeng Sun, Qunzi Ge, Xuemei Wang, Changyou Gao. Dynamic Titania Nanotube Surface Achieves UV-Triggered Charge Reversal and Enhances Cell Differentiation. ACS Applied Materials & Interfaces 2019, 11 (40) , 36939-36948. https://doi.org/10.1021/acsami.9b11536
  7. Jayashree Swaminathan, Shayan Enayat, Ashokkumar Meiyazhagan, Francisco C. Robles Hernandez, Xiang Zhang, Robert Vajtai, Francisco M. Vargas, Pulickel M. Ajayan. Asphaltene-Derived Metal-Free Carbons for Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces 2019, 11 (31) , 27697-27705. https://doi.org/10.1021/acsami.9b05309
  8. Bin Ou, Jixiao Wang, Ying Wu, Song Zhao, Zhi Wang. Treatment of Polyaniline Wastewater by Coupling of Photoelectro-Fenton and Heterogeneous Photocatalysis with Black TiO2 Nanotubes. ACS Omega 2019, 4 (6) , 9664-9672. https://doi.org/10.1021/acsomega.9b00352
  9. Zili Ma, Thomas Thersleff, Arno L. Görne, Niklas Cordes, Yanbing Liu, Simon Jakobi, Anna Rokicinska, Zebulon G. Schichtl, Robert H. Coridan, Piotr Kustrowski, Wolfgang Schnick, Richard Dronskowski, Adam Slabon. Quaternary Core–Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (21) , 19077-19086. https://doi.org/10.1021/acsami.9b02483
  10. Lizhen Wu, Ke Zhang, Xufei Zhu, Shikai Cao, Dongmei Niu, Xiaojie Feng. Enhanced Capacitance of TiO2 Nanotubes with a Double-Layer Structure Fabricated in NH4F/H3PO4 Mixed Electrolyte. Langmuir 2019, 35 (15) , 5125-5129. https://doi.org/10.1021/acs.langmuir.8b04162
  11. Felipe F. Hudari, Guilherme G. Bessegato, Flávio C. Bedatty Fernandes, Maria V. B. Zanoni, Paulo R. Bueno. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry 2018, 90 (12) , 7651-7658. https://doi.org/10.1021/acs.analchem.8b01501
  12. He Zhou, Xiaopeng Zou, Kaikai Zhang, Peng Sun, Md. Suzaul Islam, Jianyu Gong, Yanrong Zhang, and Jiakuan Yang . Molybdenum–Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (22) , 18699-18709. https://doi.org/10.1021/acsami.7b01871
  13. Min Seok Koo, Kangwoo Cho, Jeyong Yoon, and Wonyong Choi . Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environmental Science & Technology 2017, 51 (11) , 6590-6598. https://doi.org/10.1021/acs.est.7b00774
  14. Wei Dai, Hongji Li, Mingji Li, Cuiping Li, Xiaoguo Wu, and Baohe Yang . Electrochemical Imprinted Polycrystalline Nickel–Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of l-Serine. ACS Applied Materials & Interfaces 2015, 7 (41) , 22858-22867. https://doi.org/10.1021/acsami.5b05642
  15. Choonsoo Kim, Seonghwan Kim, Jaehan Lee, Jiye Kim, and Jeyong Yoon . Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping. ACS Applied Materials & Interfaces 2015, 7 (14) , 7486-7491. https://doi.org/10.1021/acsami.5b00123
  16. Pengli Yan, Guiji Liu, Chunmei Ding, Hongxian Han, Jingying Shi, Yang Gan, and Can Li . Photoelectrochemical Water Splitting Promoted with a Disordered Surface Layer Created by Electrochemical Reduction. ACS Applied Materials & Interfaces 2015, 7 (6) , 3791-3796. https://doi.org/10.1021/am508738d
  17. Chong Wang, Tianai Zhang, Lifeng Yin, Chengsheng Ni, JiuPai Ni, Li-An Hou. Enhanced perfluorooctane acid mineralization by electrochemical oxidation using Ti3+ self-doping TiO2 nanotube arrays anode. Chemosphere 2022, 286 , 131804. https://doi.org/10.1016/j.chemosphere.2021.131804
  18. Kunnambeth M. Thulasi, Sindhu Thalappan Manikkoth, Anjali Paravannoor, Shajesh Palantavida, Baiju Kizhakkekilikoodayil Vijayan. Supercapacitor electrodes based on modified titania nanotube arrays on flexible substrates. International Journal of Materials Research 2021, Article ASAP.
  19. Hanna Maltanava, Semyon Mazheika, Maksim Starykevich, Tatiana Gaevskaya, Artem Konakov, Marta Ferro, João Tedim, Sergey Poznyak. UV-assisted anchoring of gold nanoparticles into TiO2 nanotubes for oxygen electroreduction. Journal of Electroanalytical Chemistry 2021, 9 , 115844. https://doi.org/10.1016/j.jelechem.2021.115844
  20. Kaixuan Wang, Kun Zhao, Xin Qin, Shuo Chen, Hongtao Yu, Xie Quan. Treatment of organic wastewater by a synergic electrocatalysis process with Ti3+ self-doped TiO2 nanotube arrays electrode as both cathode and anode. Journal of Hazardous Materials 2021, 54 , 127747. https://doi.org/10.1016/j.jhazmat.2021.127747
  21. Fan Zhang, Weilai Wang, Lei Xu, Chengzhi Zhou, Yanglong Sun, Junfeng Niu. Treatment of Ni-EDTA containing wastewater by electrochemical degradation using Ti3+ self-doped TiO2 nanotube arrays anode. Chemosphere 2021, 278 , 130465. https://doi.org/10.1016/j.chemosphere.2021.130465
  22. S.A. Adewinbi, W. Buremoh, V.A. Owoeye, Y.A. Ajayeoba, A.O. Salau, H.K. Busari, M.A. Tijani, B.A. Taleatu. Preparation and characterization of TiO2 thin film electrode for optoelectronic and energy storage Potentials: Effects of Co incorporation. Chemical Physics Letters 2021, 779 , 138854. https://doi.org/10.1016/j.cplett.2021.138854
  23. Wasinee Pholauyphon, Ravindra N. Bulakhe, Janjira Praneerad, Rodsathon Attajak, Jedsada Manyam, Insik In, Peerasak Paoprasert. Ultrahigh-performance titanium dioxide-based supercapacitors using sodium polyacrylate-derived carbon dots as simultaneous and synergistic electrode/electrolyte additives. Electrochimica Acta 2021, 390 , 138805. https://doi.org/10.1016/j.electacta.2021.138805
  24. Xubin Qian, Lei Xu, Yunqing Zhu, Haiying Yu, Junfeng Niu. Removal of aqueous triclosan using TiO2 nanotube arrays reactive membrane by sequential adsorption and electrochemical degradation. Chemical Engineering Journal 2021, 420 , 127615. https://doi.org/10.1016/j.cej.2020.127615
  25. Ying Zhang, Haitong Zhao, Jiaxin Wen, Shihu Ding, Wei Wang. Insights into the nonradical degradation mechanisms of antibiotics in persulfate activation by tourmaline. Separation and Purification Technology 2021, 270 , 118772. https://doi.org/10.1016/j.seppur.2021.118772
  26. Antonio Rubino, Joana Almeida, Catia Magro, Pier G. Schiavi, Paula Guedes, Nazare Couto, Eduardo P. Mateus, Pietro Altimari, Maria L. Astolfi, Robertino Zanoni, Alexandra B. Ribeiro, Francesca Pagnanelli. Nanostructured TiO 2 ‐Based Hydrogen Evolution Reaction ( HER ) Electrocatalysts: A Preliminary Feasibility Study in Electrodialytic Remediation with Hydrogen Recovery. 2021,,, 227-249. https://doi.org/10.1002/9781119670186.ch10
  27. Jun Chen, Jiangao Li, Ling Sun, Zhong Lin, Zhengguang Hu, Hongtao Zhang, Xiaoling Wu, Dongbo Zhang, Guoan Cheng, Ruiting Zheng. Tunable oxygen defect density and location for enhancement of energy storage. Journal of Energy Chemistry 2021, 59 , 736-747. https://doi.org/10.1016/j.jechem.2020.12.016
  28. S. Nelson Amirtharaj, M. Mariappan. Rapid and controllable synthesis of Mn2O3 nanorods via a sonochemical method for supercapacitor electrode application. Applied Physics A 2021, 127 (8) https://doi.org/10.1007/s00339-021-04774-5
  29. Miao Qi, Haochuan Zhang, Qi Dong, Jingyi Li, Rebecca A. Musgrave, Yanyan Zhao, Nicholas Dulock, Dunwei Wang, Jeffery A. Byers. Electrochemically switchable polymerization from surface-anchored molecular catalysts. Chemical Science 2021, 12 (26) , 9042-9052. https://doi.org/10.1039/D1SC02163J
  30. Yue Liu, Di Pang, Luyao Wang, Haiou Song, Rumeng Liu, Shen Hu, Yuliang Shen, Aimin Li, Shupeng Zhang. Electrochemically reduced phytic acid-doped TiO2 nanotubes for the efficient electrochemical degradation of toxic pollutants. Journal of Hazardous Materials 2021, 414 , 125600. https://doi.org/10.1016/j.jhazmat.2021.125600
  31. Honghui Pan, Xiaoguang Wang, Zhiwei Xiong, Minghui Sun, Muthu Murugananthan, Yanrong Zhang. Enhanced photocatalytic CO2 reduction with defective TiO2 nanotubes modified by single-atom binary metal components. Environmental Research 2021, 198 , 111176. https://doi.org/10.1016/j.envres.2021.111176
  32. Yangyuan Ji, Junfeng Niu, Dong Xu, Kaixuan Wang, Jacob Brejcha, Seunghyo Jeon, David M Warsinger. Efficient electrocatalysis for denitrification by using TiO2 nanotube arrays cathode and adding chloride ions. Chemosphere 2021, 274 , 129706. https://doi.org/10.1016/j.chemosphere.2021.129706
  33. Saad Ullah Khan, Sajjad Hussain, João Angelo Lima Perini, Hammad Khan, Sabir Khan, Maria Valnice Boldrin Zanoni. Self-doping of Nb2O5NC by cathodic polarization for enhanced conductivity properties and photoelectrocatalytic performance. Chemosphere 2021, 272 , 129880. https://doi.org/10.1016/j.chemosphere.2021.129880
  34. Youhai Liu, Haomin Song, Zongmin Bei, Lyu Zhou, Chao Zhao, Boon S. Ooi, Qiaoqiang Gan. Ultra-thin dark amorphous TiOx hollow nanotubes for full spectrum solar energy harvesting and conversion‡. Nano Energy 2021, 84 , 105872. https://doi.org/10.1016/j.nanoen.2021.105872
  35. Yurou Chen, Xin Feng, Qi Wang, WenXian Gu, Wanyi Wu, Xuqiang Peng, Huile Jin, Jichang Wang, Shun Wang. Titanium and nitrogen co-doped porous carbon for high-performance supercapacitors. Materials Chemistry Frontiers 2021, 5 (9) , 3628-3635. https://doi.org/10.1039/D0QM01133A
  36. Pritam Das, Subhasish Das, Satyajit Ratha, Brahmananda Chakraborty, Shyamal Chatterjee. Ion beam engineered hydrogen titanate nanotubes for superior energy storage application. Electrochimica Acta 2021, 371 , 137774. https://doi.org/10.1016/j.electacta.2021.137774
  37. Di Pang, Yue Liu, Haiou Song, Duozhe Chen, Weiqing Zhu, Rumeng Liu, Hu Yang, Aimin Li, Shupeng Zhang. Trace Ti3+- and N-codoped TiO2 nanotube array anode for significantly enhanced electrocatalytic degradation of tetracycline and metronidazole. Chemical Engineering Journal 2021, 405 , 126982. https://doi.org/10.1016/j.cej.2020.126982
  38. Sakshum Khanna, Priyanka Marathey, Sagar Paneliya, Rakesh Chaudhari, Jay Vora. Fabrication of rutile – TiO2 nanowire on shape memory alloy: A potential material for energy storage application. Materials Today: Proceedings 2021, 34 https://doi.org/10.1016/j.matpr.2021.01.012
  39. Meng-Meng Zhang, Jia-Yuan Chen, Hui Li, Chun-Rui Wang. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Metals 2021, 40 (2) , 249-271. https://doi.org/10.1007/s12598-020-01499-x
  40. Dengji Yu, Yunfang Zhang, Fang Wang, Jun Dai. Preparation of ZnO/two-layer self-doped black TiO 2 nanotube arrays and their enhanced photochemical properties. RSC Advances 2021, 11 (4) , 2307-2314. https://doi.org/10.1039/D0RA09099A
  41. Qi Wang, Shan Zhang, Hanna He, Chunlin Xie, Yougen Tang, Chuanxin He, Minhua Shao, Haiyan Wang. Oxygen Vacancy Engineering in Titanium Dioxide for Sodium Storage. Chemistry – An Asian Journal 2021, 16 (1) , 3-19. https://doi.org/10.1002/asia.202001172
  42. Sema Aslan, Derya Bal Altuntaş, Çağdaş Koçak, Hülya Kara Subaşat. Electrochemical Evaluation of Titanium (IV) Oxide/Polyacrylonitrile Electrospun Discharged Battery Coals as Supercapacitor Electrodes. Electroanalysis 2021, 33 (1) , 120-128. https://doi.org/10.1002/elan.202060239
  43. C.G. Jothi Prakash, R. Prasanth. TiO2-based devices for energy-related applications. 2021,,, 241-265. https://doi.org/10.1016/B978-0-12-819960-2.00016-X
  44. Vitaly Gurylev. Case Study I Defect Engineering of TiO2. 2021,,, 145-187. https://doi.org/10.1007/978-3-030-81911-8_5
  45. Xiaoguang Wang, Honghui Pan, Minghui Sun, Yanrong Zhang. Au single atom-anchored WO 3 /TiO 2 nanotubes for the photocatalytic degradation of volatile organic compounds. Journal of Materials Chemistry A 2021, 203 https://doi.org/10.1039/D1TA08143H
  46. Qimeng Yang, Heng Zhu, Yanghui Hou, Duanduan Liu, Huang Tang, Depei Liu, Weining Zhang, Shicheng Yan, Zhigang Zou. Surface polaron states on single-crystal rutile TiO 2 nanorod arrays enhancing charge separation and transfer. Dalton Transactions 2020, 49 (42) , 15054-15060. https://doi.org/10.1039/D0DT03068F
  47. Chenlong Dong, Wujie Dong, Xueyu Lin, Yantao Zhao, Ruizhe Li, Fuqiang Huang. Recent progress and perspectives of defective oxide anode materials for advanced lithium ion battery. EnergyChem 2020, 2 (6) , 100045. https://doi.org/10.1016/j.enchem.2020.100045
  48. Jong-Won Yun, Tri Khoa Nguyen, Sunghan Lee, Sungdo Kim, Yong Soo Kim, Tri Khoa Nguyen, Cao Khang Nguyen, Yang Ha. Enhanced Plasmonic Electron Transfer from Gold Nanoparticles to TiO2 Nanorods via Electrochemical Surface Reduction. Journal of the Korean Physical Society 2020, 77 (10) , 853-860. https://doi.org/10.3938/jkps.77.853
  49. Jaspal Singh, Shatrudhan Palsaniya, R.K. Soni. Mesoporous dark brown TiO2 spheres for pollutant removal and energy storage applications. Applied Surface Science 2020, 527 , 146796. https://doi.org/10.1016/j.apsusc.2020.146796
  50. Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy & Environment 2020, 24 https://doi.org/10.1016/j.gee.2020.10.004
  51. Minghui Sun, Xiaoguang Wang, Zhiquan Chen, Muthu Murugananthan, Yong Chen, Yanrong Zhang. Stabilized oxygen vacancies over heterojunction for highly efficient and exceptionally durable VOCs photocatalytic degradation. Applied Catalysis B: Environmental 2020, 273 , 119061. https://doi.org/10.1016/j.apcatb.2020.119061
  52. Bharati Debi Biswas, Joydeep Datta, Moushumi Dutta Purkayastha, Dhananjoy Das, Partha Pratim Ray, Abhigyan Dutta, Tapas Pal Majumder. Electrical and photocatalytic properties of composites of manganese and titanium oxides. Surfaces and Interfaces 2020, 20 , 100606. https://doi.org/10.1016/j.surfin.2020.100606
  53. Lei Yang, Xian-Ping Shu, Meng-Yuan Fu, Hao-Yu Wang, Qin-Yu Zhu, Jie Dai. Molybdenum–titanium oxo-cluster, an efficient electrochemical catalyst for the facile preparation of black titanium dioxide film. Dalton Transactions 2020, 49 (30) , 10516-10522. https://doi.org/10.1039/D0DT01959C
  54. Chongyin Yang, Xin Wang, Wujie Dong, I.-Wei Chen, Zhou Wang, Jijian Xu, Tianquan Lin, Hui Gu, Fuqiang Huang. Nitrogen-doped black titania for high performance supercapacitors. Science China Materials 2020, 63 (7) , 1227-1234. https://doi.org/10.1007/s40843-020-1303-4
  55. Xiyue Zhang, Xiaoqing Liu, Yinxiang Zeng, Yexiang Tong, Xihong Lu. Oxygen Defects in Promoting the Electrochemical Performance of Metal Oxides for Supercapacitors: Recent Advances and Challenges. Small Methods 2020, 4 (6) , 1900823. https://doi.org/10.1002/smtd.201900823
  56. Zhong Su, Jiahua Liu, Meng Li, Yuxuan Zhu, Shangshu Qian, Mouyi Weng, Jiaxin Zheng, Yulin Zhong, Feng Pan, Shanqing Zhang. Defect Engineering in Titanium-Based Oxides for Electrochemical Energy Storage Devices. Electrochemical Energy Reviews 2020, 3 (2) , 286-343. https://doi.org/10.1007/s41918-020-00064-5
  57. Elena D. Fakhrutdinova, Anastasiia V. Shabalina, Marina A. Gerasimova, Anna L. Nemoykina, Olga V. Vodyankina, Valery A. Svetlichnyi. Highly Defective Dark Nano Titanium Dioxide: Preparation via Pulsed Laser Ablation and Application. Materials 2020, 13 (9) , 2054. https://doi.org/10.3390/ma13092054
  58. Teena Gakhar, Arnab Hazra. Oxygen vacancy modulation of titania nanotubes by cathodic polarization and chemical reduction routes for efficient detection of volatile organic compounds. Nanoscale 2020, 12 (16) , 9082-9093. https://doi.org/10.1039/C9NR10795A
  59. Jing Tian, Peng Zhao, Shasha Zhang, Guona Huo, Zhaochen Suo, Zhao Yue, Shoumin Zhang, Weiping Huang, Baolin Zhu. Platinum and Iridium Oxide Co-modified TiO2 Nanotubes Array Based Photoelectrochemical Sensors for Glutathione. Nanomaterials 2020, 10 (3) , 522. https://doi.org/10.3390/nano10030522
  60. Yaxiong Zhang, Shifang Duan, Yan Li, Shengming Zhang, Yin Wu, Mingyu Ma, Chunlan Tao, Zhenxing Zhang, Dongdong Qin, Erqing Xie. 2.6 V aqueous symmetric supercapacitors based on phosphorus-doped TiO 2 nanotube arrays. Dalton Transactions 2020, 49 (6) , 1785-1793. https://doi.org/10.1039/C9DT04316K
  61. Kamel Eid, Khaled A. Soliman, Dana Abdulmalik, Dariusz Mitoraj, Mostafa H. Sleim, Maciej O. Liedke, Hany A. El-Sayed, Amina S. AlJaber, Ilham Y. Al-Qaradawi, Oliver Mendoza Reyes, Aboubakr M. Abdullah. Tailored fabrication of iridium nanoparticle-sensitized titanium oxynitride nanotubes for solar-driven water splitting: experimental insights on the photocatalytic–activity–defects relationship. Catalysis Science & Technology 2020, 10 (3) , 801-809. https://doi.org/10.1039/C9CY02366F
  62. Clara Pereira, André M. Pereira, Cristina Freire, Tânia V. Pinto, Rui S. Costa, Joana S. Teixeira. Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. 2020,,, 611-714. https://doi.org/10.1016/B978-0-12-816787-8.00021-1
  63. M. Aulice Scibioh, B. Viswanathan. Electrolyte materials for supercapacitors. 2020,,, 205-314. https://doi.org/10.1016/B978-0-12-819858-2.00004-4
  64. Xiaoguang Wang, Minghui Sun, Muthu Murugananthan, Yanrong Zhang, Lizhi Zhang. Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Applied Catalysis B: Environmental 2020, 260 , 118205. https://doi.org/10.1016/j.apcatb.2019.118205
  65. J.A. Diaz-Real, P. Elsaesser, T. Holm, W. Mérida. Electrochemical reduction on nanostructured TiO2 for enhanced photoelectrocatalytic oxidation. Electrochimica Acta 2020, 329 , 135162. https://doi.org/10.1016/j.electacta.2019.135162
  66. Xin Xu, Jingju Cai, Minghua Zhou, Xuedong Du, Ying Zhang. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. Journal of Hazardous Materials 2020, 382 , 121096. https://doi.org/10.1016/j.jhazmat.2019.121096
  67. Cheng Zhang, Shuang Tian, Chuanmeng Xu, Liyi Li, Jian Zhou, Feng Xue. Anodic TiO2 nanotube supercapacitors enhanced by a facile in situ doping method. Journal of Materials Science: Materials in Electronics 2019, 30 (23) , 20892-20898. https://doi.org/10.1007/s10854-019-02458-8
  68. Kunnambeth M. Thulasi, Sindhu Thalappan Manikkoth, Anjali Paravannoor, Shajesh Palantavida, Margandan Bhagiyalakshmi, Baiju Kizhakkekilikoodayil Vijayan. Ceria deposited titania nanotubes for high performance supercapacitors. Journal of Physics and Chemistry of Solids 2019, 135 , 109111. https://doi.org/10.1016/j.jpcs.2019.109111
  69. Shizhe Lin, Yongliang Cheng, Xiwei Mo, Shuwen Chen, Zisheng Xu, Bingpu Zhou, He Zhou, Bin Hu, Jun Zhou. Electrospun Polytetrafluoroethylene Nanofibrous Membrane for High-Performance Self-Powered Sensors. Nanoscale Research Letters 2019, 14 (1) https://doi.org/10.1186/s11671-019-3091-y
  70. Milan Vraneš, Nikola Cvjetićanin, Snežana Papović, Marko Pavlović, István Szilágyi, Slobodan Gadžurić. Electrochemical study of anatase TiO2 nanotube array electrode in electrolyte based on 1,3-diethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Ionics 2019, 25 (11) , 5501-5513. https://doi.org/10.1007/s11581-019-03129-8
  71. Sung Pil Hong, Seonghwan Kim, Nayeong Kim, Jeyong Yoon, Choonsoo Kim. A short review on electrochemically self-doped TiO2 nanotube arrays: Synthesis and applications. Korean Journal of Chemical Engineering 2019, 36 (11) , 1753-1766. https://doi.org/10.1007/s11814-019-0365-0
  72. Jingju Cai, Minghua Zhou, Yuwei Pan, Xuedong Du, Xiaoye Lu. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Applied Catalysis B: Environmental 2019, 257 , 117902. https://doi.org/10.1016/j.apcatb.2019.117902
  73. Kangwoo Cho, Seonggeun Lee, Hyeonjeong Kim, Hyung-Eun Kim, Aseom Son, Eun-ju Kim, Mengkai Li, Zhimin Qiang, Seok Won Hong. Effects of reactive oxidants generation and capacitance on photoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Applied Catalysis B: Environmental 2019, 257 , 117910. https://doi.org/10.1016/j.apcatb.2019.117910
  74. Nasreen Bibi, Mian Zahid Hussain, Shahid Hussain, Safeer Ahmed, Iqbal Ahmad, Shaowei Zhang, Azhar Iqbal. Excellent electrochemical performance of SrZrO3 nanorods as supercapacitor electrode in aqueous electrolytes. Applied Surface Science 2019, 495 , 143587. https://doi.org/10.1016/j.apsusc.2019.143587
  75. Ata-ur-Rehman, Ghulam Ali, Syed Mustansar Abbas, Muhammad Iftikhar, Muhammad Zahid, Samad Yaseen, Sanum Saleem, Sajjad Haider, Muhammad Arshad, Amin Badshah. Axial expansion of Ni-doped TiO2 nanorods grown on carbon nanotubes for favourable lithium-ion intercalation. Chemical Engineering Journal 2019, 375 , 122021. https://doi.org/10.1016/j.cej.2019.122021
  76. Jinfeng Sun, Lingzhi Guo, Xuan Sun, Jinyang Zhang, Linrui Hou, Li Li, Shuhua Yang, Changzhou Yuan. One‐Dimensional Nanostructured Pseudocapacitive Materials: Design, Synthesis and Applications in Supercapacitors. Batteries & Supercaps 2019, 2 (10) , 820-841. https://doi.org/10.1002/batt.201900021
  77. Ruyi Wang, Lu Wang, Yong Zhou, Zhigang Zou. Al-ZnO/CdS Photoanode Modified with a Triple Functions Conformal TiO2 Film for Enhanced Photoelectrochemical Efficiency and Stability. Applied Catalysis B: Environmental 2019, 255 , 117738. https://doi.org/10.1016/j.apcatb.2019.05.040
  78. Mohammad Qorbani, Omid Khajehdehi, Amr Sabbah, Naimeh Naseri. Ti‐rich TiO 2 Tubular Nanolettuces by Electrochemical Anodization for All‐Solid‐State High‐Rate Supercapacitor Devices. ChemSusChem 2019, 12 (17) , 4064-4073. https://doi.org/10.1002/cssc.201901302
  79. Sarunas Varnagiris, Arturs Medvids, Martynas Lelis, Darius Milcius, Andris Antuzevics. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 2019, 382 , 111941. https://doi.org/10.1016/j.jphotochem.2019.111941
  80. Da Eun Kim, Daewon Pak. Ti plate with TiO2 nanotube arrays as a novel cathode for nitrate reduction. Chemosphere 2019, 228 , 611-618. https://doi.org/10.1016/j.chemosphere.2019.04.071
  81. Ling Gan, Yifan Wu, Haiou Song, Chang Lu, Shupeng Zhang, Aimin Li. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols. Chemosphere 2019, 226 , 329-339. https://doi.org/10.1016/j.chemosphere.2019.03.135
  82. Xishun Jiang, Wenjun He, Shaokang Zheng, Yonghua Shi, Zhaoqi Sun. Precise control the microstructural, optical, photocatalytic, and photoelectrochemical properties of TiO2 nanoarrays through changing with growth substrate via hydrothermal method. Journal of Materials Science: Materials in Electronics 2019, 30 (12) , 11108-11116. https://doi.org/10.1007/s10854-019-01453-3
  83. Liujie Wang, Jie Yang, Zhihua Ma, Pengfa Li. Supercapacitive performance of C-axis preferentially oriented TiO2 nanotube arrays decorated with MnO2 nanoparticles. SN Applied Sciences 2019, 1 (6) https://doi.org/10.1007/s42452-019-0580-7
  84. Liuye Mo, Haitao Zheng. Growth of MnO2 nanoflakes on TiO2 nanorods for pseudocapacitor. Journal of Alloys and Compounds 2019, 788 , 1162-1168. https://doi.org/10.1016/j.jallcom.2019.02.321
  85. Gang Li, Jian Li, Tingyu Li, Kaiying Wang. TiO2 nanotube arrays on silicon substrate for on-chip supercapacitors. Journal of Power Sources 2019, 425 , 39-43. https://doi.org/10.1016/j.jpowsour.2019.03.120
  86. Cheng Zhang, Shuang Tian, Liyi Li, Jian Zhou, Feng Xue, Ching-Ping Wong. Enhanced micro-supercapacitors in aqueous electrolyte based on Si nanowires coated with TiO2. Journal of Materials Science: Materials in Electronics 2019, 30 (9) , 8763-8770. https://doi.org/10.1007/s10854-019-01200-8
  87. Hong Yan Yue, En Hao Guan, Xin Gao, Fei Yao, Wan Qiu Wang, Teng Zhang, Zhao Wang, Shan Shan Song, Hong Jie Zhang. One-step hydrothermal synthesis of TiO2 nanowires-reduced graphene oxide nanocomposite for supercapacitor. Ionics 2019, 25 (5) , 2411-2418. https://doi.org/10.1007/s11581-018-2678-0
  88. Naeimeh Sadat Peighambardoust, Shahin Khameneh Asl, Raheleh Mohammadpour, Shahab Khameneh Asl. Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes. Solar Energy 2019, 184 , 115-126. https://doi.org/10.1016/j.solener.2019.03.073
  89. Lifang Deng, Ge Dong, Yuyuan Zhang, Denian Li, Tao Lu, Yong Chen, Haoran Yuan, Ying Chen. Lysine-modified TiO2 nanotube array for optimizing bioelectricity generation in microbial fuel cells. Electrochimica Acta 2019, 300 , 163-170. https://doi.org/10.1016/j.electacta.2019.01.105
  90. Shaoyun Chen, Ben Liu, Xingying Zhang, Fang Chen, Hong Shi, Chenglong Hu, Jian Chen. Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochimica Acta 2019, 300 , 373-379. https://doi.org/10.1016/j.electacta.2019.01.110
  91. Kuan-Lin Chiu, Lu-Yin Lin. Applied potential-dependent performance of the nickel cobalt oxysulfide nanotube/nickel molybdenum oxide nanosheet core–shell structure in energy storage and oxygen evolution. Journal of Materials Chemistry A 2019, 7 (9) , 4626-4639. https://doi.org/10.1039/C8TA11471D
  92. Derun Li, Wenfeng Guo, Yanshuai Li, Yongfu Tang, Jitong Yan, Xiaojuan Meng, Meirong Xia, Faming Gao. Tunnel structured hollandite K0.06TiO2 microrods as the negative electrode for 2.4 V flexible all-solid-state asymmetric supercapacitors with high performance. Journal of Power Sources 2019, 413 , 34-41. https://doi.org/10.1016/j.jpowsour.2018.11.088
  93. Shikai Cao, Lizhen Wu, Wenqiang Huang, Xufei Zhu, Xiaoping Shen, Ye Song. Electrochemically Doped and Hydrogen Peroxide–Treated TiO 2  Nanotube Arrays as an Electrode for Supercapacitor with Excellent Cycling Stability. Journal of The Electrochemical Society 2019, 166 (10) , A1944-A1949. https://doi.org/10.1149/2.0841910jes
  94. Swaminathan Jayashree, Meiyazhagan Ashokkumar. Switchable Intrinsic Defect Chemistry of Titania for Catalytic Applications. Catalysts 2018, 8 (12) , 601. https://doi.org/10.3390/catal8120601
  95. Alexander Holland, Rachel McKerracher, Andrew Cruden, Richard Wills. Electrochemically Treated TiO2 for Enhanced Performance in Aqueous Al-Ion Batteries. Materials 2018, 11 (11) , 2090. https://doi.org/10.3390/ma11112090
  96. Yi-Jie Gu, Wei Wen, Jin-Ming Wu. Simple air calcination affords commercial carbon cloth with high areal specific capacitance for symmetrical supercapacitors. Journal of Materials Chemistry A 2018, 6 (42) , 21078-21086. https://doi.org/10.1039/C8TA07561A
  97. Jithesh Kavil, P. M. Anjana, Pradeepan Periyat, R. B. Rakhi. Titania nanotubes dispersed graphitic carbon nitride nanosheets as efficient electrode materials for supercapacitors. Journal of Materials Science: Materials in Electronics 2018, 29 (19) , 16598-16608. https://doi.org/10.1007/s10854-018-9753-1
  98. Xiaoyi Wang, Dainan Zhang, Quanjun Xiang, Zhiyong Zhong, Yulong Liao. Review of Water-Assisted Crystallization for TiO2 Nanotubes. Nano-Micro Letters 2018, 10 (4) https://doi.org/10.1007/s40820-018-0230-4
  99. Heng Zhu, Meiming Zhao, Junkang Zhou, Wenchao Li, Haoyu Wang, Zhe Xu, Lei Lu, Lang Pei, Zhan Shi, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental 2018, 234 , 100-108. https://doi.org/10.1016/j.apcatb.2018.04.040
  100. Cheng Zhang, Liyi Li, Chia-Chi Tuan, Jian Zhou, Feng Xue, Ching-Ping Wong. A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing. Journal of Materials Science: Materials in Electronics 2018, 29 (17) , 15130-15137. https://doi.org/10.1007/s10854-018-9654-3
Load more citations