A Bismuth Vanadate–Cuprous Oxide Tandem Cell for Overall Solar Water Splitting

View Author Information
Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne, Station 6, 1015-Lausanne, Switzerland
Helmholtz-Zentrum Berlin für Materialien und Energie Gmbh, Institute for Solar Fuels, Hahn-Meitner-Platz 1, Berlin 14109, Germany
§ Materials for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, P.O. Box 5045, Delft 2600GA, The Netherlands
Laboratory for Photonics and Interfaces, École Polytechnique Fédérale de Lausanne, Station 6, 1015-Lausanne Switzerland.
*Laboratory for Molecular Engineering of Optoelectronic Nanomaterials, École Polytechnique Fédérale de Lausanne, Station 6, 1015-Lausanne, Switzerland. E-mail: [email protected]. Tel.: +41 21 693 79 79.
Cite this: J. Phys. Chem. C 2014, 118, 30, 16959–16966
Publication Date (Web):March 21, 2014
https://doi.org/10.1021/jp500441h
Copyright © 2014 American Chemical Society
Article Views
5231
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Through examination of the optoelectronic and photoelectrochemical properties of BiVO4 and Cu2O photoelectrodes, we evaluate the feasibility of a BiVO4/Cu2O photoanode/photocathode tandem cell for overall unassisted solar water splitting. Using state-of-the-art photoelectrodes we identify current-matching conditions by altering the photoanode active layer thickness. By further employing water oxidation and reduction catalysts (Co-Pi and RuOx, respectively) together with an operating point analysis, we show that an unassisted solar photocurrent density on the order of 1 mA cm–2 is possible in a tandem cell and moreover gain insight into routes for improvement. Finally, we demonstrate the unassisted 2-electrode operation of the tandem cell. Photocurrents corresponding to ca. 0.5% solar-to-hydrogen conversion efficiency were found to decay over the course of minutes because of the detachment of the Co-Pi catalyst. This aspect provides a fundamental challenge to the stable operation of the tandem cell with the currently employed catalysts.

Supporting Information

ARTICLE SECTIONS
Jump To

Figure S1 showing the JV performance of the 100 nm BiVO4 photoanode after the stability test. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 193 publications.

  1. Haijiao Lu, Julie Tournet, Kamran Dastafkan, Yun Liu, Yun Hau Ng, Siva Krishna Karuturi, Chuan Zhao, Zongyou Yin. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews 2021, 121 (17) , 10271-10366. https://doi.org/10.1021/acs.chemrev.0c01328
  2. Zichen Gong, Bin Liu, Peng Zhang, Shujie Wang, Shaokun Jiang, Tuo Wang, Jinlong Gong. Performance Prediction of Multiple Photoanodes Systems for Unbiased Photoelectrochemical Water Splitting. ACS Materials Letters 2021, 3 (7) , 939-946. https://doi.org/10.1021/acsmaterialslett.1c00261
  3. Moritz Kölbach, Hannes Hempel, Karsten Harbauer, Markus Schleuning, Andrei Petsiuk, Katja Höflich, Victor Deinhart, Dennis Friedrich, Rainer Eichberger, Fatwa F. Abdi, Roel van de Krol. Grain Boundaries Limit the Charge Carrier Transport in Pulsed Laser Deposited α-SnWO4 Thin Film Photoabsorbers. ACS Applied Energy Materials 2020, 3 (5) , 4320-4330. https://doi.org/10.1021/acsaem.0c00028
  4. Doudou Zhang, Yuexian Cao, Siva Krishna Karuturi, Minyong Du, Mingyao Liu, Chaowei Xue, Ruotian Chen, Pengpeng Wang, Jian Zhang, Jingying Shi, Shengzhong Frank Liu. Enabling Unassisted Solar Water Splitting by Single-Junction Amorphous Silicon Photoelectrodes. ACS Applied Energy Materials 2020, 3 (5) , 4629-4637. https://doi.org/10.1021/acsaem.0c00296
  5. Ruirui Han, Mauricio A. Melo, Jr., Zeqiong Zhao, Zongkai Wu, Frank E. Osterloh. Light Intensity Dependence of Photochemical Charge Separation in the BiVO4/Ru-SrTiO3:Rh Direct Contact Tandem Photocatalyst for Overall Water Splitting. The Journal of Physical Chemistry C 2020, 124 (18) , 9724-9733. https://doi.org/10.1021/acs.jpcc.0c00772
  6. Angang Song, Peter Bogdanoff, Alexander Esau, Ibbi Y. Ahmet, Igal Levine, Thomas Dittrich, Thomas Unold, Roel van de Krol, Sean P. Berglund. Assessment of a W:BiVO4–CuBi2O4Tandem Photoelectrochemical Cell for Overall Solar Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (12) , 13959-13970. https://doi.org/10.1021/acsami.0c00696
  7. Yubin Chen, Xiaoyang Feng, Ya Liu, Xiangjiu Guan, Clemens Burda, Liejin Guo. Metal Oxide-Based Tandem Cells for Self-Biased Photoelectrochemical Water Splitting. ACS Energy Letters 2020, 5 (3) , 844-866. https://doi.org/10.1021/acsenergylett.9b02620
  8. Pramod Patil Kunturu, Jurriaan Huskens. Efficient Solar Water Splitting Photocathodes Comprising a Copper Oxide Heterostructure Protected by a Thin Carbon Layer. ACS Applied Energy Materials 2019, 2 (11) , 7850-7860. https://doi.org/10.1021/acsaem.9b01290
  9. Yanxiao Ma, Pravin S. Shinde, Xiao Li, Shanlin Pan. High-Throughput Screening and Surface Interrogation Studies of Au-Modified Hematite Photoanodes by Scanning Electrochemical Microscopy for Solar Water Splitting. ACS Omega 2019, 4 (17) , 17257-17268. https://doi.org/10.1021/acsomega.9b01907
  10. Sucheol Ju, Junho Jun, Daihong Huh, Soomin Son, Young Hoon Sung, Jaemin Park, Wonjoong Kim, Seungho Baek, Heon Lee. Simultaneous Improvement of Absorption and Separation Efficiencies of Mo:BiVO4 Photoanodes via Nanopatterned SnO2/Au Hybrid Layers. ACS Sustainable Chemistry & Engineering 2019, 7 (20) , 17000-17007. https://doi.org/10.1021/acssuschemeng.9b02452
  11. Wouter Vijselaar, Pramod Patil Kunturu, Thomas Moehl, S. David Tilley, Jurriaan Huskens. Tandem Cuprous Oxide/Silicon Microwire Hydrogen-Evolving Photocathode with Photovoltage Exceeding 1.3 V. ACS Energy Letters 2019, 4 (9) , 2287-2294. https://doi.org/10.1021/acsenergylett.9b01402
  12. Joshua D. Butson, Parvathala Reddy Narangari, Mykhaylo Lysevych, Jennifer Wong-Leung, Yimao Wan, Siva Krishna Karuturi, Hark Hoe Tan, Chennupati Jagadish. InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (28) , 25236-25242. https://doi.org/10.1021/acsami.9b06656
  13. Charles R. Lhermitte, Kevin Sivula. Alternative Oxidation Reactions for Solar-Driven Fuel Production. ACS Catalysis 2019, 9 (3) , 2007-2017. https://doi.org/10.1021/acscatal.8b04565
  14. Jaemin Park, Wooseok Yang, Yunjung Oh, Jeiwan Tan, Hyungsoo Lee, Ramireddy Boppella, Jooho Moon. Efficient Solar-to-Hydrogen Conversion from Neutral Electrolytes using Morphology-Controlled Sb2Se3 Light Absorbers. ACS Energy Letters 2019, 4 (2) , 517-526. https://doi.org/10.1021/acsenergylett.8b02323
  15. Kiwon Kim, Jun Hyuk Moon. Three-Dimensional Bicontinuous BiVO4/ZnO Photoanodes for High Solar Water-Splitting Performance at Low Bias Potential. ACS Applied Materials & Interfaces 2018, 10 (40) , 34238-34244. https://doi.org/10.1021/acsami.8b11241
  16. Ainhoa Cots, Pedro Bonete, Roberto Gómez. Improving the Stability and Efficiency of CuO Photocathodes for Solar Hydrogen Production through Modification with Iron. ACS Applied Materials & Interfaces 2018, 10 (31) , 26348-26356. https://doi.org/10.1021/acsami.8b09892
  17. Ainhoa Cots, Pedro Bonete, David Sebastián, Vincenzo Baglio, Antonino S. Aricò, Roberto Gómez. Toward Tandem Solar Cells for Water Splitting Using Polymer Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (30) , 25393-25400. https://doi.org/10.1021/acsami.8b06826
  18. Ivan Grigioni, Annamaria Corti, Maria Vittoria Dozzi, Elena Selli. Photoactivity and Stability of WO3/BiVO4 Photoanodes: Effects of the Contact Electrolyte and of Ni/Fe Oxyhydroxide Protection. The Journal of Physical Chemistry C 2018, 122 (25) , 13969-13978. https://doi.org/10.1021/acs.jpcc.8b01112
  19. Pravin S. Shinde, Xiaoniu Peng, Jue Wang, Yanxiao Ma, Louis E. McNamara, Nathan I. Hammer, Arunava Gupta, Shanlin Pan. Rapid Screening of Photoanode Materials Using Scanning Photoelectrochemical Microscopy Technique and Formation of Z-Scheme Solar Water Splitting System by Coupling p- and n-type Heterojunction Photoelectrodes. ACS Applied Energy Materials 2018, 1 (5) , 2283-2294. https://doi.org/10.1021/acsaem.8b00381
  20. He Lin, Xia Long, Jue Hu, Yongcai Qiu, Zilong Wang, Ming Ma, Yiming An, Shihe Yang. Exploratory Study of ZnxPbOy Photoelectrodes for Unassisted Overall Solar Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (13) , 10918-10926. https://doi.org/10.1021/acsami.8b00421
  21. Zhangliu Tian, Feng Shao, Wei Zhao, Peng Qin, Jianqiao He, Fuqiang Huang. Enhanced Charge Injection and Collection of Niobium-Doped TiO2/Gradient Tungsten-Doped BiVO4 Nanowires for Efficient Solar Water Splitting. ACS Applied Energy Materials 2018, 1 (3) , 1218-1225. https://doi.org/10.1021/acsaem.7b00322
  22. Fumin Tang, Weiren Cheng, Hui Su, Xu Zhao, and Qinghua Liu . Smoothing Surface Trapping States in 3D Coral-Like CoOOH-Wrapped-BiVO4 for Efficient Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2018, 10 (7) , 6228-6234. https://doi.org/10.1021/acsami.7b15674
  23. Sheng Chu, Srinivas Vanka, Yichen Wang, Jiseok Gim, Yongjie Wang, Yong-Ho Ra, Robert Hovden, Hong Guo, Ishiang Shih, and Zetian Mi . Solar Water Oxidation by an InGaN Nanowire Photoanode with a Bandgap of 1.7 eV. ACS Energy Letters 2018, 3 (2) , 307-314. https://doi.org/10.1021/acsenergylett.7b01138
  24. Lite Zhou, Yang Yang, Jing Zhang, and Pratap M. Rao . Photoanode with Enhanced Performance Achieved by Coating BiVO4 onto ZnO-Templated Sb-Doped SnO2 Nanotube Scaffold. ACS Applied Materials & Interfaces 2017, 9 (13) , 11356-11362. https://doi.org/10.1021/acsami.7b01538
  25. Jie Ge, Paul J. Roland, Prakash Koirala, Weiwei Meng, James L. Young, Reese Petersen, Todd G. Deutsch, Glenn Teeter, Randy J. Ellingson, Robert W. Collins, and Yanfa Yan . Employing Overlayers To Improve the Performance of Cu2BaSnS4 Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials 2017, 29 (3) , 916-920. https://doi.org/10.1021/acs.chemmater.6b03347
  26. Jingyuan Liu, Takashi Hisatomi, Dharmapura H. K. Murthy, Miao Zhong, Mamiko Nakabayashi, Tomohiro Higashi, Yohichi Suzuki, Hiroyuki Matsuzaki, Kazuhiko Seki, Akihiro Furube, Naoya Shibata, Masao Katayama, Tsutomu Minegishi, and Kazunari Domen . Enhancement of Charge Separation and Hydrogen Evolution on Particulate La5Ti2CuS5O7 Photocathodes by Surface Modification. The Journal of Physical Chemistry Letters 2017, 8 (2) , 375-379. https://doi.org/10.1021/acs.jpclett.6b02735
  27. Aniketa Shinde, Dan Guevarra, Guiji Liu, Ian D. Sharp, Francesca M. Toma, John M. Gregoire, and Joel A. Haber . Discovery of Fe–Ce Oxide/BiVO4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings. ACS Applied Materials & Interfaces 2016, 8 (36) , 23696-23705. https://doi.org/10.1021/acsami.6b06714
  28. Ian Sullivan, Brandon Zoellner, and Paul A. Maggard . Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chemistry of Materials 2016, 28 (17) , 5999-6016. https://doi.org/10.1021/acs.chemmater.6b00926
  29. Cong Liu, Jinzhan Su, Jinglan Zhou, and Liejin Guo . A Multistep Ion Exchange Approach for Fabrication of Porous BiVO4 Nanorod Arrays on Transparent Conductive Substrate. ACS Sustainable Chemistry & Engineering 2016, 4 (9) , 4492-4497. https://doi.org/10.1021/acssuschemeng.6b00971
  30. Xiaoyang Feng, Yubin Chen, Zhixiao Qin, Menglong Wang, and Liejin Guo . Facile Fabrication of Sandwich Structured WO3 Nanoplate Arrays for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2016, 8 (28) , 18089-18096. https://doi.org/10.1021/acsami.6b04887
  31. Jiheng Zhao, Yu Guo, Lili Cai, Hong Li, Ken Xingze Wang, In Sun Cho, Chi Hwan Lee, Shanhui Fan, and Xiaolin Zheng . High-Performance Ultrathin BiVO4 Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters 2016, 1 (1) , 68-75. https://doi.org/10.1021/acsenergylett.6b00032
  32. Lite Zhou, Chenqi Zhao, Binod Giri, Patrick Allen, Xiaowei Xu, Hrushikesh Joshi, Yangyang Fan, Lyubov V. Titova, and Pratap M. Rao . High Light Absorption and Charge Separation Efficiency at Low Applied Voltage from Sb-Doped SnO2/BiVO4 Core/Shell Nanorod-Array Photoanodes. Nano Letters 2016, 16 (6) , 3463-3474. https://doi.org/10.1021/acs.nanolett.5b05200
  33. Nikolay Kornienko, Natalie A. Gibson, Hao Zhang, Samuel W. Eaton, Yi Yu, Shaul Aloni, Stephen R. Leone, and Peidong Yang . Growth and Photoelectrochemical Energy Conversion of Wurtzite Indium Phosphide Nanowire Arrays. ACS Nano 2016, 10 (5) , 5525-5535. https://doi.org/10.1021/acsnano.6b02083
  34. Marcel Schreier, Jingshan Luo, Peng Gao, Thomas Moehl, Matthew T. Mayer, and Michael Grätzel . Covalent Immobilization of a Molecular Catalyst on Cu2O Photocathodes for CO2 Reduction. Journal of the American Chemical Society 2016, 138 (6) , 1938-1946. https://doi.org/10.1021/jacs.5b12157
  35. Tae Woo Kim and Kyoung-Shin Choi . Improving Stability and Photoelectrochemical Performance of BiVO4 Photoanodes in Basic Media by Adding a ZnFe2O4 Layer. The Journal of Physical Chemistry Letters 2016, 7 (3) , 447-451. https://doi.org/10.1021/acs.jpclett.5b02774
  36. Brian Pattengale, John Ludwig, and Jier Huang . Atomic Insight into the W-Doping Effect on Carrier Dynamics and Photoelectrochemical Properties of BiVO4 Photoanodes. The Journal of Physical Chemistry C 2016, 120 (3) , 1421-1427. https://doi.org/10.1021/acs.jpcc.5b11451
  37. Jin Hyun Kim, Yimhyun Jo, Ju Hun Kim, Ji Wook Jang, Hyun Jun Kang, Young Hye Lee, Dong Suk Kim, Yongseok Jun, and Jae Sung Lee . Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. ACS Nano 2015, 9 (12) , 11820-11829. https://doi.org/10.1021/acsnano.5b03859
  38. René Wick and S. David Tilley . Photovoltaic and Photoelectrochemical Solar Energy Conversion with Cu2O. The Journal of Physical Chemistry C 2015, 119 (47) , 26243-26257. https://doi.org/10.1021/acs.jpcc.5b08397
  39. Yixin Zhao, Nella M. Vargas-Barbosa, Megan E. Strayer, Nicholas S. McCool, Maria-Erini Pandelia, Timothy P. Saunders, John R. Swierk, Juan F. Callejas, Lasse Jensen, and Thomas E. Mallouk . Understanding the Effect of Monomeric Iridium(III/IV) Aquo Complexes on the Photoelectrochemistry of IrOx·nH2O-Catalyzed Water-Splitting Systems. Journal of the American Chemical Society 2015, 137 (27) , 8749-8757. https://doi.org/10.1021/jacs.5b03470
  40. Fengshou Yu, Fei Li, Biaobiao Zhang, Hua Li, and Licheng Sun . Efficient Electrocatalytic Water Oxidation by a Copper Oxide Thin Film in Borate Buffer. ACS Catalysis 2015, 5 (2) , 627-630. https://doi.org/10.1021/cs501510e
  41. Yong-Siou Chen, Joseph S. Manser, and Prashant V. Kamat . All Solution-Processed Lead Halide Perovskite-BiVO4 Tandem Assembly for Photolytic Solar Fuels Production. Journal of the American Chemical Society 2015, 137 (2) , 974-981. https://doi.org/10.1021/ja511739y
  42. Andreas Bachmeier, Bonnie J. Murphy, and Fraser A. Armstrong . A Multi-Heme Flavoenzyme as a Solar Conversion Catalyst. Journal of the American Chemical Society 2014, 136 (37) , 12876-12879. https://doi.org/10.1021/ja507733j
  43. Michal Bledowski, Lidong Wang, Susann Neubert, Dariusz Mitoraj, and Radim Beranek . Improving the Performance of Hybrid Photoanodes for Water Splitting by Photodeposition of Iridium Oxide Nanoparticles. The Journal of Physical Chemistry C 2014, 118 (33) , 18951-18961. https://doi.org/10.1021/jp506434a
  44. Benjamin D. Sherman, Nelli Klinova McMillan, Debora Willinger, Gyu Leem. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells. Nano Convergence 2021, 8 (1) https://doi.org/10.1186/s40580-021-00257-8
  45. Dingwang Huang, Lintao Li, Kang Wang, Yan Li, Kuang Feng, Feng Jiang. Wittichenite semiconductor of Cu3BiS3 films for efficient hydrogen evolution from solar driven photoelectrochemical water splitting. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24060-5
  46. Gauri A. Kallawar, Divya P. Barai, Bharat A. Bhanvase. Bismuth titanate based photocatalysts for degradation of persistent organic compounds in wastewater: A comprehensive review on synthesis methods, performance as photocatalyst and challenges. Journal of Cleaner Production 2021, 318 , 128563. https://doi.org/10.1016/j.jclepro.2021.128563
  47. Yosuke Kageshima, Haruka Momose, Fumiaki Takagi, Sora Fujisawa, Tetsuya Yamada, Katsuya Teshima, Kazunari Domen, Hiromasa Nishikiori. A semitransparent particulate photoanode composed of SrTiO 3 powder anchored on titania nanosheets. Sustainable Energy & Fuels 2021, 5 (19) , 4850-4857. https://doi.org/10.1039/D1SE00914A
  48. Lei Tang, Jin Xiao, Qiuyun Mao, Zhenhua Zhang, Zhen Yao, Xiangdong Zhu, Qifan Zhong. One-step direct synthesis of nano bismuth vanadate from bismuth oxide and sodium metavanadate via liquid phase ball-milling method: A novel and environmentally friendly process. Journal of the Taiwan Institute of Chemical Engineers 2021, 125 , 304-313. https://doi.org/10.1016/j.jtice.2021.05.052
  49. Shiwen Kou, Qiaonan Yu, Yaru Peng, Guoqiang Li. Benefits on photocarrier transfer from the transition of 3D to a 2D morphology. CrystEngComm 2021, 23 (27) , 4825-4832. https://doi.org/10.1039/D1CE00353D
  50. Pan Wang, Zhifeng Liu, Dong Chen, Shaoce Zhang, Guozhen Fang, Changcun Han, Zhengwang Cheng, Zhengfu Tong. An Unassisted Tandem Photoelectrochemical Cell Based on p- and n-Cu2O Photoelectrodes. Catalysis Letters 2021, 151 (7) , 1976-1983. https://doi.org/10.1007/s10562-020-03483-7
  51. Antonio Alfano, Alessandro Mezzetti, Francesco Fumagalli, Chen Tao, Eugenio Rovera, Annamaria Petrozza, Fabio Di Fonzo. Photoelectrochemical water splitting by hybrid organic-inorganic systems: Setting the path from 2% to 20% solar-to-hydrogen conversion efficiency. iScience 2021, 24 (5) , 102463. https://doi.org/10.1016/j.isci.2021.102463
  52. Benjamin Moss, Oytun Babacan, Andreas Kafizas, Anna Hankin. A Review of Inorganic Photoelectrode Developments and Reactor Scale‐Up Challenges for Solar Hydrogen Production. Advanced Energy Materials 2021, 11 (13) , 2003286. https://doi.org/10.1002/aenm.202003286
  53. Chanon Pornrungroj, Virgil Andrei, Motiar Rahaman, Chawit Uswachoke, Hannah J. Joyce, Dominic S. Wright, Erwin Reisner. Bifunctional Perovskite‐BiVO 4 Tandem Devices for Uninterrupted Solar and Electrocatalytic Water Splitting Cycles. Advanced Functional Materials 2021, 31 (15) , 2008182. https://doi.org/10.1002/adfm.202008182
  54. Nur Aqlili Riana Che Mohamad, Filipe Marques Mota, Dong Ha Kim. Photocatalytic and Photoelectrochemical Overall Water Splitting. 2021,,, 189-242. https://doi.org/10.1002/9783527825073.ch8
  55. Yubin Chen, Wenyu Zheng, Sebastián Murcia-López, Fei Lv, Joan Ramón Morante, Lionel Vayssieres, Clemens Burda. Light management in photoelectrochemical water splitting – from materials to device engineering. Journal of Materials Chemistry C 2021, 9 (11) , 3726-3748. https://doi.org/10.1039/D0TC06071B
  56. Leyla Najafi, Valentino Romano, Reinier Oropesa‐Nuñez, Mirko Prato, Simone Lauciello, Giovanna D'Angelo, Sebastiano Bellani, Francesco Bonaccorso. Hybrid Organic/Inorganic Photocathodes Based on WS 2 Flakes as Hole Transporting Layer Material. Small Structures 2021, 2 (3) , 2000098. https://doi.org/10.1002/sstr.202000098
  57. Mohamad Mohsen Momeni, Zohreh Tahmasebi. Effect of electrodeposition time on morphology and photoelecrochemical performance of bismuth vanadate films. Inorganic Chemistry Communications 2021, 125 , 108445. https://doi.org/10.1016/j.inoche.2021.108445
  58. I.R. Hamdani, A.N. Bhaskarwar. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renewable and Sustainable Energy Reviews 2021, 138 , 110503. https://doi.org/10.1016/j.rser.2020.110503
  59. Shengnan Li, Zhenyuan Xing, Jinhui Feng, Liangguo Yan, Dong Wei, Huan Wang, Dan Wu, Hongmin Ma, Dawei Fan, Qin Wei. A sensitive biosensor of CdS sensitized BiVO4/GaON composite for the photoelectrochemical immunoassay of procalcitonin. Sensors and Actuators B: Chemical 2021, 329 , 129244. https://doi.org/10.1016/j.snb.2020.129244
  60. H.E.A. Mohamed, B.T. Sone, S. Khamlich, E. Coetsee-Hugo, H.C. Swart, T. Thema, R. Sbiaa, M.S. Dhlamini. Biosynthesis of BiVO4 nanorods using Callistemon viminalis extracts: Photocatalytic degradation of methylene blue. Materials Today: Proceedings 2021, 36 , 328-335. https://doi.org/10.1016/j.matpr.2020.04.119
  61. Changli Li, Jingfu He, Yequan Xiao, Yanbo Li, Jean-Jacques Delaunay. Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy & Environmental Science 2020, 13 (10) , 3269-3306. https://doi.org/10.1039/D0EE02397C
  62. Hongjian Zhang, Yufei Lu, Wenqi Han, Jixin Zhu, Yu Zhang, Wei Huang. Solar energy conversion and utilization: Towards the emerging photo-electrochemical devices based on perovskite photovoltaics. Chemical Engineering Journal 2020, 393 , 124766. https://doi.org/10.1016/j.cej.2020.124766
  63. Christina Hill, Mads C. Weber, Jannis Lehmann, Tariq Leinen, Manfred Fiebig, Jens Kreisel, Mael Guennou. Role of the ferroelastic strain in the optical absorption of BiVO 4. APL Materials 2020, 8 (8) , 081108. https://doi.org/10.1063/5.0011507
  64. Yuyang Kang, Runze Chen, Chao Zhen, Lianzhou Wang, Gang Liu, Hui-Ming Cheng. An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Science Bulletin 2020, 65 (14) , 1163-1169. https://doi.org/10.1016/j.scib.2020.03.041
  65. Chongchong Wu, Yangang Sun, Zhe Cui, Fengge Song, Jie Wang. Fabrication of CuS/CuO nanowire heterostructures on copper mesh with improved visible light photocatalytic properties. Journal of Physics and Chemistry of Solids 2020, 140 , 109355. https://doi.org/10.1016/j.jpcs.2020.109355
  66. António Vilanova, Paula Dias, João Azevedo, Michael Wullenkord, Carsten Spenke, Tânia Lopes, Adélio Mendes. Solar water splitting under natural concentrated sunlight using a 200 cm2 photoelectrochemical-photovoltaic device. Journal of Power Sources 2020, 454 , 227890. https://doi.org/10.1016/j.jpowsour.2020.227890
  67. Yewei Huang, Nan Zhang, Zhenjun Wu, Xiuqiang Xie. Artificial nitrogen fixation over bismuth-based photocatalysts: fundamentals and future perspectives. Journal of Materials Chemistry A 2020, 8 (10) , 4978-4995. https://doi.org/10.1039/C9TA13589H
  68. Zhiming Bai, Jia Liu, Yinghua Zhang, Zhian Huang, Yukun Gao, Xiaotong Li, Yan Du. Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell. Journal of Solid State Electrochemistry 2020, 24 (2) , 321-328. https://doi.org/10.1007/s10008-019-04437-9
  69. Xingchen Fu, Hui Chang, Zhichao Shang, Pingle Liu, Jikai Liu, He'an Luo. Three-dimensional Cu2O nanorods modified by hydrogen treated Ti3C2TX MXene with enriched oxygen vacancies as a photocathode and a tandem cell for unassisted solar water splitting. Chemical Engineering Journal 2020, 381 , 122001. https://doi.org/10.1016/j.cej.2019.122001
  70. Jianyong Feng, Huiting Huang, Shicheng Yan, Wenjun Luo, Tao Yu, Zhaosheng Li, Zhigang Zou. Non-oxide semiconductors for artificial photosynthesis: Progress on photoelectrochemical water splitting and carbon dioxide reduction. Nano Today 2020, 30 , 100830. https://doi.org/10.1016/j.nantod.2019.100830
  71. Siti Nur Farhana Mohd Nasir, Mohd Asri Mat-Teridi. Photoelectrochemical tandem cell of Se/BiVO4 photoanode and Cr2O3/CuO:Ni photocathode in aqueous medium. Journal of Sol-Gel Science and Technology 2020, 93 (1) , 1-5. https://doi.org/10.1007/s10971-019-05179-w
  72. Jesus Adrian Diaz-Real, Thomas Holm, Nicolas Alonso-Vante. Photoelectrochemical hydrogen production (PEC H2). 2020,,, 255-289. https://doi.org/10.1016/B978-0-12-817110-3.00009-6
  73. Kristine Rodulfo Tolod, Simelys Hernández, Micaela Castellino, Fabio Alessandro Deorsola, Elahe Davarpanah, Nunzio Russo. Optimization of BiVO4 photoelectrodes made by electrodeposition for sun-driven water oxidation. International Journal of Hydrogen Energy 2020, 45 (1) , 605-618. https://doi.org/10.1016/j.ijhydene.2019.10.236
  74. Yi-Chen Wang, Chao Qin, Zi-Rui Lou, Yang-fan Lu, Li-Ping Zhu. Cu 2 O photocathodes for unassisted solar water-splitting devices enabled by noble-metal cocatalysts simultaneously as hydrogen evolution catalysts and protection layers. Nanotechnology 2019, 30 (49) , 495407. https://doi.org/10.1088/1361-6528/ab40e8
  75. Sheng Ye, Chunmei Ding, Mingyao Liu, Aoqi Wang, Qinge Huang, Can Li. Water Oxidation Catalysts for Artificial Photosynthesis. Advanced Materials 2019, 31 (50) , 1902069. https://doi.org/10.1002/adma.201902069
  76. Jia Liu, Yinghua Zhang, Zhiming Bai, Zhian Huang, Yukun Gao, Yuan Yao. A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu 2 O Photocathode in a Tandem Cell for Overall Solar Water Splitting. Nano 2019, 14 (11) , 1950146. https://doi.org/10.1142/S1793292019501467
  77. Ivan Garcia‐Torregrosa, Andrey Goryachev, Jan P. Hofmann, Emiel J. M. Hensen, Bert M. Weckhuysen. Efficient and Highly Transparent Ultra‐Thin Nickel‐Iron Oxy‐hydroxide Catalyst for Oxygen Evolution Prepared by Successive Ionic Layer Adsorption and Reaction. ChemPhotoChem 2019, 3 (10) , 1050-1054. https://doi.org/10.1002/cptc.201900131
  78. Xiao-Fei Yin, Bang-Di Ge, Li Wei, Xi-Xi Zheng, Yi-Lin Wang, Qi Wei, Guo-Ming Wang. Two bismuth(III) halides directed by in situ generated tripyridine-derivatives: Syntheses, structures and photocatalytic properties. Inorganic Chemistry Communications 2019, 108 , 107516. https://doi.org/10.1016/j.inoche.2019.107516
  79. Xenia Medvedeva, Aleksandra Vidyakina, Feng Li, Andrey Mereshchenko, Anna Klinkova. Reductive and Coordinative Effects of Hydrazine in Structural Transformations of Copper Hydroxide Nanoparticles. Nanomaterials 2019, 9 (10) , 1445. https://doi.org/10.3390/nano9101445
  80. Ibbi Y. Ahmet, Yimeng Ma, Ji-Wook Jang, Tobias Henschel, Bernd Stannowski, Tânia Lopes, António Vilanova, Adélio Mendes, Fatwa F. Abdi, Roel van de Krol. Demonstration of a 50 cm 2 BiVO 4 tandem photoelectrochemical-photovoltaic water splitting device. Sustainable Energy & Fuels 2019, 3 (9) , 2366-2379. https://doi.org/10.1039/C9SE00246D
  81. Indrajit V. Bagal, Nilesh R. Chodankar, Mostafa Afifi Hassan, Aadil Waseem, Muhammad Ali Johar, Do-Heyoung Kim, Sang-Wan Ryu. Cu2O as an emerging photocathode for solar water splitting - A status review. International Journal of Hydrogen Energy 2019, 44 (39) , 21351-21378. https://doi.org/10.1016/j.ijhydene.2019.06.184
  82. Peng Luan, Jie Zhang. Stepping towards Solar Water Splitting: Recent Progress in Bismuth Vanadate Photoanodes. ChemElectroChem 2019, 6 (13) , 3227-3243. https://doi.org/10.1002/celc.201900398
  83. Daijiro Akagi, Yosuke Kageshima, Yuta Hashizume, Shigeki Aoi, Yutaka Sasaki, Hiroyuki Kaneko, Tomohiro Higashi, Takashi Hisatomi, Masao Katayama, Tsutomu Minegishi, Suguru Noda, Kazunari Domen. A Semitransparent Nitride Photoanode Responsive up to λ =600 nm Based on a Carbon Nanotube Thin Film Electrode. ChemPhotoChem 2019, 3 (7) , 521-524. https://doi.org/10.1002/cptc.201900061
  84. Wooseok Yang, Jooho Moon. Recent Advances in Earth‐Abundant Photocathodes for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (9) , 1889-1899. https://doi.org/10.1002/cssc.201801554
  85. Jin Hyun Kim, Jae Sung Lee. Elaborately Modified BiVO 4 Photoanodes for Solar Water Splitting. Advanced Materials 2019, 31 (20) , 1806938. https://doi.org/10.1002/adma.201806938
  86. Félix Urbain, Pengyi Tang, Vladimir Smirnov, Katharina Welter, Teresa Andreu, Friedhelm Finger, Jordi Arbiol, Joan Ramón Morante. Multilayered Hematite Nanowires with Thin‐Film Silicon Photovoltaics in an All‐Earth‐Abundant Hybrid Tandem Device for Solar Water Splitting. ChemSusChem 2019, 12 (7) , 1428-1436. https://doi.org/10.1002/cssc.201802845
  87. Jin Hyun Kim, Dharmesh Hansora, Pankaj Sharma, Ji-Wook Jang, Jae Sung Lee. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chemical Society Reviews 2019, 48 (7) , 1908-1971. https://doi.org/10.1039/C8CS00699G
  88. Dong Ki Lee, Dongho Lee, Margaret A. Lumley, Kyoung-Shin Choi. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting. Chemical Society Reviews 2019, 48 (7) , 2126-2157. https://doi.org/10.1039/C8CS00761F
  89. Biaobiao Zhang, Licheng Sun. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chemical Society Reviews 2019, 48 (7) , 2216-2264. https://doi.org/10.1039/C8CS00897C
  90. Jihua Zhang, Mingsen Deng, Yunan Yan, Tiejun Xiao, Wei Ren, Peihong Zhang. Tunable Type-II Bi VO 4 / g - C 3 N 4 Nanoheterostructures for Photocatalysis Applications. Physical Review Applied 2019, 11 (4) https://doi.org/10.1103/PhysRevApplied.11.044052
  91. Shide Wu, Jiameng Liu, Bingbing Cui, Yanling Li, Yongkang Liu, Bin Hu, Linghao He, Minghua Wang, Zhihong Zhang, Kuan Tian, Yingpan Song. Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochimica Acta 2019, 299 , 231-244. https://doi.org/10.1016/j.electacta.2019.01.012
  92. Xiaoguang Huang, Heechul Woo, Peinian Wu, Qin Wang, Guolong Tan, Jin Woo Choi. Low-cost processed antimony sulfide nanocrystal photoanodes with increased efficiency and stability. Journal of Alloys and Compounds 2019, 777 , 866-871. https://doi.org/10.1016/j.jallcom.2018.11.009
  93. Sang Youn Chae, Se Jin Park, Byong koun Min, Yun Jeong Hwang, Oh-Shim Joo. Charge transportation at cascade energy structure interfaces of CuInxGa1-xSeyS2-y/CdS/ZnS for spontaneous water splitting. Electrochimica Acta 2019, 297 , 633-640. https://doi.org/10.1016/j.electacta.2018.11.184
  94. S. David Tilley. Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Advanced Energy Materials 2019, 9 (2) , 1802877. https://doi.org/10.1002/aenm.201802877
  95. Paula Dias, Adélio Mendes. Hydrogen Production from Photoelectrochemical Water Splitting. 2019,,, 1003-1053. https://doi.org/10.1007/978-1-4939-7789-5_957
  96. Gurudayal. Current Trends and Future Roadmap for Solar Fuels. 2019,,, 445-484. https://doi.org/10.1007/978-981-13-3302-6_14
  97. Mahmoud Ahmed, Ibrahim Dincer. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. International Journal of Hydrogen Energy 2019, 44 (5) , 2474-2507. https://doi.org/10.1016/j.ijhydene.2018.12.037
  98. Zhiqiang Wang, Yankuan Wei, Xinyi Wang, Wenshuai Zhang, Jinzhan Su. Plasmonic Au Nanopraticles Modified Nanopyramid-Arrays BiVO 4 with Enhanced Photoelectrochemical Activity. Journal of The Electrochemical Society 2019, 166 (5) , H3138-H3145. https://doi.org/10.1149/2.0201905jes
  99. Mohit Prasad, Vidhika Sharma, Avinash Rokade, Sandesh Jadkar. Photoelectrochemical Cell: A Versatile Device for Sustainable Hydrogen Production. 2018,,, 59-119. https://doi.org/10.1002/9781119460008.ch3
  100. Gurudayal, Joel Ager, Nripan Mathews. Perovskite Solar Cells for Photoelectrochemical Water Splitting and CO 2 Reduction. 2018,,, 273-292. https://doi.org/10.1002/9783527800766.ch4_02
Load all citations