Spectroscopic Studies of Nanoparticulate Thin Films of a Cobalt-Based Oxygen Evolution Catalyst

View Author Information
Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
*E-mail: [email protected]. Tel: 1-617-495-8904.
Cite this: J. Phys. Chem. C 2014, 118, 30, 17060–17066
Publication Date (Web):March 28, 2014
Copyright © 2014 American Chemical Society
Article Views
Read OnlinePDF (5 MB)
Supporting Info (1)»


Nanoparticle (NP) cobalt–phosphate (Co-Pi) water oxidation catalysts are prepared as thin films by anodic electrodeposition from solutions of Co2+ dissolved in proton-accepting electrolytes. Compositional and structural insight into the nature of the catalyst film is provided from advanced spectroscopy. Infrared spectra demonstrate that counteranions incorporate into the Co-Pi thin films and that the phosphate ion, among various anion electrolytes, exhibits the highest binding affinity to the cobalt centers. Atomic force microscopy images show a highly porous morphology of the thin film that is composed of Co-Pi NPs. Whereas conventional X-ray powder diffraction technique shows catalyst films to be amorphous, synchrotron-based X-ray grazing incidence diffraction reveals well-defined diffraction patterns that are indicative of long-range ordering within the film. Azimuthal scans imply that as-prepared films possess a highly preferred orientation and texture on the electrode surface.

Supporting Information

Jump To

Co 2p3/2 XPS spectra of different Co-X films, various Co-X thin-film formation conditions, FTIR spectra of recovery experiment, and SEM and AFM images of Co-Pi on Au and Pt electrodes. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 29 publications.

  1. Cyrille Costentin. Proton-Coupled Electron Transfer Catalyst: Heterogeneous Catalysis. Application to an Oxygen Evolution Catalyst. ACS Catalysis 2020, 10 (14) , 7958-7967. https://doi.org/10.1021/acscatal.0c02532
  2. Hannah J. King, Maxime Fournier, Shannon A. Bonke, Enrico Seeman, Manjunath Chatti, Askhat N. Jumabekov, Bernt Johannessen, Peter Kappen, Alexandr N. Simonov, Rosalie K. Hocking. Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. The Journal of Physical Chemistry C 2019, 123 (47) , 28533-28549. https://doi.org/10.1021/acs.jpcc.9b06944
  3. Cyrille Costentin, Thomas R. Porter, Jean-Michel Savéant. Nature of Electronic Conduction in “Pseudocapacitive” Films: Transition from the Insulator State to Band-Conduction. ACS Applied Materials & Interfaces 2019, 11 (32) , 28769-28773. https://doi.org/10.1021/acsami.9b05240
  4. Joseph Cirone, Syed Rahin Ahmed, Peter C. Wood, Aicheng Chen. Green Synthesis and Electrochemical Study of Cobalt/Graphene Quantum Dots for Efficient Water Splitting. The Journal of Physical Chemistry C 2019, 123 (14) , 9183-9191. https://doi.org/10.1021/acs.jpcc.9b00951
  5. Casey N. Brodsky, D. Kwabena Bediako, Chenyang Shi, Thomas P. Keane, Cyrille Costentin, Simon J. L. Billinge, Daniel G. Nocera. Proton–Electron Conductivity in Thin Films of a Cobalt–Oxygen Evolving Catalyst. ACS Applied Energy Materials 2019, 2 (1) , 3-12. https://doi.org/10.1021/acsaem.8b00785
  6. Cyrille Costentin, Daniel G. Nocera. Dual-Phase Molecular-like Charge Transport in Nanoporous Transition Metal Oxides. The Journal of Physical Chemistry C 2019, 123 (3) , 1966-1973. https://doi.org/10.1021/acs.jpcc.8b10948
  7. Vitor Brasiliense, Jan Clausmeyer, Pascal Berto, Gilles Tessier, Catherine Combellas, Wolfgang Schuhmann, Frédéric Kanoufi. Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry 2018, 90 (12) , 7341-7348. https://doi.org/10.1021/acs.analchem.8b00649
  8. Pablo Garrido-Barros, Carolina Gimbert-Suriñach, Dooshaye Moonshiram, Antonio Picón, Pere Monge, Victor S. Batista, and Antoni Llobet . Electronic π-Delocalization Boosts Catalytic Water Oxidation by Cu(II) Molecular Catalysts Heterogenized on Graphene Sheets. Journal of the American Chemical Society 2017, 139 (37) , 12907-12910. https://doi.org/10.1021/jacs.7b06828
  9. Cyrille Costentin, Thomas R. Porter, and Jean-Michel Savéant . Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. Journal of the American Chemical Society 2016, 138 (17) , 5615-5622. https://doi.org/10.1021/jacs.6b00737
  10. Michael Huynh, Chenyang Shi, Simon J. L. Billinge, and Daniel G. Nocera . Nature of Activated Manganese Oxide for Oxygen Evolution. Journal of the American Chemical Society 2015, 137 (47) , 14887-14904. https://doi.org/10.1021/jacs.5b06382
  11. Masaaki Yoshida, Yosuke Mitsutomi, Takehiro Mineo, Masanari Nagasaka, Hayato Yuzawa, Nobuhiro Kosugi, and Hiroshi Kondoh . Direct Observation of Active Nickel Oxide Cluster in Nickel–Borate Electrocatalyst for Water Oxidation by In Situ O K-Edge X-ray Absorption Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (33) , 19279-19286. https://doi.org/10.1021/acs.jpcc.5b06102
  12. Andrew M. Ullman, Yi Liu, Michael Huynh, D. Kwabena Bediako, Hongsen Wang, Bryce L. Anderson, David C. Powers, John J. Breen, Héctor D. Abruña, and Daniel G. Nocera . Water Oxidation Catalysis by Co(II) Impurities in Co(III)4O4 Cubanes. Journal of the American Chemical Society 2014, 136 (50) , 17681-17688. https://doi.org/10.1021/ja5110393
  13. Nancy Li, Ryan G. Hadt, Dugan Hayes, Lin X. Chen, Daniel G. Nocera. Detection of high-valent iron species in alloyed oxidic cobaltates for catalysing the oxygen evolution reaction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24453-6
  14. Daniela V. Morales, Catalina N. Astudillo, Veronica Anastasoaie, Baptiste Dautreppe, Bruno F. Urbano, Bernabé L. Rivas, Chantal Gondran, Dmitry Aldakov, Benoit Chovelon, Dominique André, Jean-Luc Putaux, Christine Lancelon-Pin, Selim Sirach, Eleonora-Mihaela Ungureanu, Cyrille Costentin, Marie-Noëlle Collomb, Jérôme Fortage. A cobalt oxide–polypyrrole nanocomposite as an efficient and stable electrode material for electrocatalytic water oxidation. Sustainable Energy & Fuels 2021, 5 (18) , 4710-4723. https://doi.org/10.1039/D1SE00363A
  15. Pawan Rekha, Sarika Yadav, Lovjeet Singh. A review on cobalt phosphate-based materials as emerging catalysts for water splitting. Ceramics International 2021, 47 (12) , 16385-16401. https://doi.org/10.1016/j.ceramint.2021.02.215
  16. Xochitl-Andrea Hernández-Contreras, Inti Zumeta-Dubé, Geonel Rodríguez Gattorno, Nicolás Cayetano Castro, José Luis Casas Espínola, Edilso Reguera. Unraveling amazing structural features of a highly efficient “oxo-Co/phosphate” catalyst for water oxidation. Applied Catalysis B: Environmental 2021, 282 , 119549. https://doi.org/10.1016/j.apcatb.2020.119549
  17. Yury Kutin, Nicholas Cox, Wolfgang Lubitz, Alexander Schnegg, Olaf Rüdiger. In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH. Catalysts 2019, 9 (11) , 926. https://doi.org/10.3390/catal9110926
  18. Cyrille Costentin, Jean-Michel Savéant. Molecular approach to catalysis of electrochemical reaction in porous films. Current Opinion in Electrochemistry 2019, 15 , 58-65. https://doi.org/10.1016/j.coelec.2019.03.014
  19. Byunghoon Kim, Inchul Park, Gabin Yoon, Ju Seong Kim, Hyunah Kim, Kisuk Kang. Atomistic Investigation of Doping Effects on Electrocatalytic Properties of Cobalt Oxides for Water Oxidation. Advanced Science 2018, 5 (12) , 1801632. https://doi.org/10.1002/advs.201801632
  20. Lunhong Ai, Zhiguo Niu, Jing Jiang. Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting. Electrochimica Acta 2017, 242 , 355-363. https://doi.org/10.1016/j.electacta.2017.05.032
  21. Casey N. Brodsky, Ryan G. Hadt, Dugan Hayes, Benjamin J. Reinhart, Nancy Li, Lin X. Chen, Daniel G. Nocera. In situ characterization of cofacial Co(IV) centers in Co 4 O 4 cubane: Modeling the high-valent active site in oxygen-evolving catalysts. Proceedings of the National Academy of Sciences 2017, 114 (15) , 3855-3860. https://doi.org/10.1073/pnas.1701816114
  22. Masaaki Yoshida, Takehiro Mineo, Yosuke Mitsutomi, Futaba Yamamoto, Hirokatsu Kurosu, Satoru Takakusagi, Kiyotaka Asakura, Hiroshi Kondoh. Structural Relationship between CoO 6 Cluster and Phosphate Species in a Cobalt–Phosphate Water Oxidation Catalyst Investigated by Co and P K-edge XAFS. Chemistry Letters 2016, 45 (3) , 277-279. https://doi.org/10.1246/cl.151073
  23. Yu Guo, Lan-Lan He, Dong-Xia Zhao, Li-Dong Gong, Cui Liu, Zhong-Zhi Yang. How does ammonia bind to the oxygen-evolving complex in the S 2 state of photosynthetic water oxidation? Theoretical support and implications for the W1 substitution mechanism. Physical Chemistry Chemical Physics 2016, 18 (46) , 31551-31565. https://doi.org/10.1039/C6CP05725J
  24. Ahamed Irshad, Nookala Munichandraiah. Electrochemical deposition of manganese oxide–phosphate–reduced graphene oxide composite and electrocatalysis of the oxygen evolution reaction. RSC Advances 2016, 6 (36) , 30552-30563. https://doi.org/10.1039/C6RA01217E
  25. Jianqing Chen, Donghui Yang, Dan Song, Jinghua Jiang, Aibin Ma, Michael Z. Hu, Chaoying Ni. Recent progress in enhancing solar-to-hydrogen efficiency. Journal of Power Sources 2015, 280 , 649-666. https://doi.org/10.1016/j.jpowsour.2015.01.073
  26. D. Kwabena Bediako, Andrew M. Ullman, Daniel G. Nocera. Catalytic Oxygen Evolution by Cobalt Oxido Thin Films. 2015,,, 173-213. https://doi.org/10.1007/128_2015_649
  27. Sergey Koroidov, Magnus F. Anderlund, Stenbjörn Styring, Anders Thapper, Johannes Messinger. First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles. Energy & Environmental Science 2015, 8 (8) , 2492-2503. https://doi.org/10.1039/C5EE00700C
  28. Debora Ressnig, Menny Shalom, Jörg Patscheider, René Moré, Fabio Evangelisti, Markus Antonietti, Greta R. Patzke. Photochemical and electrocatalytic water oxidation activity of cobalt carbodiimide. Journal of Materials Chemistry A 2015, 3 (9) , 5072-5082. https://doi.org/10.1039/C5TA00369E
  29. Casandra R. Cox, Jungwoo Z. Lee, Daniel G. Nocera, Tonio Buonassisi. Ten-percent solar-to-fuel conversion with nonprecious materials. Proceedings of the National Academy of Sciences 2014, 111 (39) , 14057-14061. https://doi.org/10.1073/pnas.1414290111