Template-Free Fabrication of Highly-Oriented Single-Crystalline 1D-Rutile TiO2-MWCNT Composite for Enhanced Photoelectrochemical Activity

View Author Information
Physical & Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune - 411 008, India
Academy of Scientific and Innovative Research, Anusandhan Bhawan, Rafi Marg, New Delhi - 110001, India
§ Center of Excellence on Surface Science, CSIR-National Chemical Laboratory, Pune - 411008, India
Cite this: J. Phys. Chem. C 2014, 118, 33, 19363–19373
Publication Date (Web):May 16, 2014
https://doi.org/10.1021/jp5023983
Copyright © 2014 American Chemical Society
Article Views
949
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

Template-free synthesis of phase pure one-dimensional (1D), single crystalline rutile titania nanorods or wires at low temperature still remains a challenging task due to its complex nature of surface chemistry. In these 1D structures, charge transport is highly favored. To further modify the electrical conductivity and optoelectronic properties of these 1D nanostructures, various methods such as doping of TiO2 with metal and nonmetal and synthesis of branched and hybrid structures are developed. If these hybrid structures can directly synthesize on the substrate, the transport of the electron will improve due to reduced grain boundary and exciton recombination. In this contribution, for the first time, we have simultaneously synthesized 1D-rutile TiO2-multiwalled carbon nanotube (MWCNT) composite film directly grown on fluorine dope conducting oxide (FTO) substrate along with 1D-rutile TiO2-MWCNT composite powder. The as-grown nanorods films were single-crystalline and oriented vertically with respect to the substrate, having an average height of ∼2 μm. The well connected network of TiO2 with MWCNTs was observed through electron microscopy. The composite film shows positive movement of the flat-band edge and increase in charge carrier density. The TiO2-MWCNT composite was successfully used as photoanode in a dye sensitized solar cell (DSSC) and exhibits a 60% increase in energy-conversion efficiency compared with only TiO2 nanorods.

Cited By


This article is cited by 40 publications.

  1. Sagar D. Delekar, Ananta G. Dhodamani, Krantiveer V. More, Tukaram D. Dongale, Rajanish K. Kamat, Steve F. A. Acquah, Naresh S. Dalal, Dillip K. Panda. Structural and Optical Properties of Nanocrystalline TiO2 with Multiwalled Carbon Nanotubes and Its Photovoltaic Studies Using Ru(II) Sensitizers. ACS Omega 2018, 3 (3) , 2743-2756. https://doi.org/10.1021/acsomega.7b01316
  2. Chao Xue, Tianxi Zhang, Shujiang Ding, Jinjia Wei, and Guidong Yang . Anchoring Tailored Low-Index Faceted BiOBr Nanoplates onto TiO2 Nanorods to Enhance the Stability and Visible-Light-Driven Catalytic Activity. ACS Applied Materials & Interfaces 2017, 9 (19) , 16091-16102. https://doi.org/10.1021/acsami.7b00433
  3. Subha Sadhu, Preeti Gupta, and Pankaj Poddar . Physical Mechanism Behind Enhanced Photoelectrochemical and Photocatalytic Properties of Superhydrophilic Assemblies of 3D-TiO2 Microspheres with Arrays of Oriented, Single-Crystalline TiO2 Nanowires as Building Blocks Deposited on Fluorine-Doped Tin Oxide. ACS Applied Materials & Interfaces 2017, 9 (12) , 11202-11211. https://doi.org/10.1021/acsami.6b15420
  4. Pawan Pathak, Satyajit Gupta, Kehley Grosulak, Hiroshi Imahori, and Vaidyanathan (Ravi) Subramanian . Nature-Inspired Tree-Like TiO2 Architecture: A 3D Platform for the Assembly of CdS and Reduced Graphene Oxide for Photoelectrochemical Processes. The Journal of Physical Chemistry C 2015, 119 (14) , 7543-7553. https://doi.org/10.1021/jp512160h
  5. Aoming Huang, Yanchen Ma, Jian Peng, Linlin Li, Shulei Chou, Seeram Ramakrishna, Shengjie Peng. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 5 https://doi.org/10.1016/j.esci.2021.11.006
  6. Md. Mosharraf Hossain Bhuiyan, Fahmid Kabir, Md. Serajum Manir, Md. Saifur Rahaman, Prosenjit Barua, Bikrom Ghosh, Fumiaki Mitsugi, Tomoaki Ikegami. Improvement of Efficiency of Dye Sensitized Solar Cells by Incorporating Carbon Nanotubes. 2021,,https://doi.org/10.5772/intechopen.96630
  7. Zhongrui Yu, Haobo Liu, Mingyuan Zhu, Ying Li, Wenxian Li. Interfacial Charge Transport in 1D TiO 2 Based Photoelectrodes for Photoelectrochemical Water Splitting. Small 2021, 17 (9) , 1903378. https://doi.org/10.1002/smll.201903378
  8. Yu Yao, Dandan Sang, Susu Duan, Qinglin Wang, Cailong Liu. Review on the Properties of Boron-Doped Diamond and One-Dimensional-Metal-Oxide Based P-N Heterojunction. Molecules 2021, 26 (1) , 71. https://doi.org/10.3390/molecules26010071
  9. Navaj Mullani, Ijaz Ali, Tukaram D. Dongale, Gun Hwan Kim, Byung Joon Choi, Muhammad Abdul Basit, Tae Joo Park. Improved resistive switching behavior of multiwalled carbon nanotube/TiO2 nanorods composite film by increased oxygen vacancy reservoir. Materials Science in Semiconductor Processing 2020, 108 , 104907. https://doi.org/10.1016/j.mssp.2019.104907
  10. R. R. Deshmukh, A. S. Kalekar, S. R. Khaladkar, O. C. Maurya. Versatile 1-D Nanostructures for Green Energy Conversion and Storage Devices. 2020,,, 329-354. https://doi.org/10.1007/978-3-030-33774-2_14
  11. Hongjuan Zhang, Zunli Mo, Hebing Pei, Qianqian Jia, Ruijuan Wang, Hangkong Feng, Ruibin Guo, Nijuan Liu. A synthesis of graphene quantum dots/hollow TiO2 nanosphere composites for enhancing visible light photocatalytic activity. Journal of Materials Science: Materials in Electronics 2020, 31 (2) , 1430-1441. https://doi.org/10.1007/s10854-019-02657-3
  12. Deepika Gaur, Sunita Sharma, S.K. Ghoshal, Pooja Seth, Shruti Aggarwal, Neha Aggarwal. Synergistic Effect of Polyethylene Oxide Layer on TiO2/TiO2-Graphene based Perovskite Solar Cell. Asian Journal of Chemistry 2020, 32 (12) , 3219-3226. https://doi.org/10.14233/ajchem.2020.23034
  13. Charan Kuchi, A Lakshmi Narayana, O M Hussain, P Sreedhara Reddy. Electrospun TiO 2 nanofiber electrodes for high performance supercapacitors. Materials Research Express 2020, 7 (1) , 015098. https://doi.org/10.1088/2053-1591/ab688c
  14. James A. Oke, David O. Idisi, Sweety Sarma, S.J. Moloi, Sekhar C. Ray, K.H. Chen, A. Ghosh, A. Shelke, S.-H. Hsieh, W.F. Pong. Tuning of electronic and electrical behaviour of MWCNTs-TiO2 nanocomposites. Diamond and Related Materials 2019, 100 , 107570. https://doi.org/10.1016/j.diamond.2019.107570
  15. A.B. Suriani, Muqoyyanah, A. Mohamed, M.H. Mamat, M.H.D. Othman, M.K. Ahmad, H.P.S. Abdul Khalil, P. Marwoto, M.D. Birowosuto. Titanium dioxide/agglomerated-free reduced graphene oxide hybrid photoanode film for dye-sensitized solar cells photovoltaic performance improvement. Nano-Structures & Nano-Objects 2019, 18 , 100314. https://doi.org/10.1016/j.nanoso.2019.100314
  16. Debasmita Kandi, Arjun Behera, Satyabadi Martha, Brundabana Naik, K.M. Parida. Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. Journal of Environmental Chemical Engineering 2019, 7 (1) , 102821. https://doi.org/10.1016/j.jece.2018.102821
  17. M. M. Yusoff, M. H. Mamat, A. S. Ismail, M. F. Malek, A. S. Zoolfakar, A. B. Suriani, M. K. Ahmad, N. Nayan, I. B. Shameem Banu, M. Rusop. Low-temperature-dependent growth of titanium dioxide nanorod arrays in an improved aqueous chemical growth method for photoelectrochemical ultraviolet sensing. Journal of Materials Science: Materials in Electronics 2019, 30 (2) , 1017-1033. https://doi.org/10.1007/s10854-018-0371-8
  18. Fei Li, Ming Li, Yi Luo, Ming Li, Xinyu Li, Jiye Zhang, Liang Wang. The Synergistic Effect of Pyridinic Nitrogen and Graphitic Nitrogen of Nitrogen-Doped Graphene Quantum Dots for Enhanced TiO2 Nanocomposites’ Photocatalytic Performance. Catalysts 2018, 8 (10) , 438. https://doi.org/10.3390/catal8100438
  19. Viswanathan Karthika, Periyannan Kaleeswarran, Kasi Gopinath, Ayyakannu Arumugam, Marimuthu Govindarajan, Naiyf S. Alharbi, Jamal M. Khaled, Mohammed N. Al-anbr, Giovanni Benelli. Biocompatible properties of nano-drug carriers using TiO2-Au embedded on multiwall carbon nanotubes for targeted drug delivery. Materials Science and Engineering: C 2018, 90 , 589-601. https://doi.org/10.1016/j.msec.2018.04.094
  20. A. B. Suriani, Muqoyyanah, A. Mohamed, M. H. D. Othman, M. H. Mamat, N. Hashim, M. K. Ahmad, N. Nayan, H. P. S. Abdul Khalil. Reduced graphene oxide-multiwalled carbon nanotubes hybrid film with low Pt loading as counter electrode for improved photovoltaic performance of dye-sensitised solar cells. Journal of Materials Science: Materials in Electronics 2018, 29 (13) , 10723-10743. https://doi.org/10.1007/s10854-018-9139-4
  21. M.M. Yusoff, M.H. Mamat, A.S. Ismail, M.F. Malek, Z. Khusaimi, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop. Enhancing the performance of self-powered ultraviolet photosensor using rapid aqueous chemical-grown aluminum-doped titanium oxide nanorod arrays as electron transport layer. Thin Solid Films 2018, 655 , 1-12. https://doi.org/10.1016/j.tsf.2018.03.091
  22. M. Coto, S.C. Troughton, J. Duan, R.V. Kumar, T.W. Clyne. Development and assessment of photo-catalytic membranes for water purification using solar radiation. Applied Surface Science 2018, 433 , 101-107. https://doi.org/10.1016/j.apsusc.2017.10.027
  23. Yi Luo, Ming Li, Guanghui Hu, Tao Tang, Jianfeng Wen, Xinyu Li, Liang Wang. Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO 2 nanocomposites. Materials Research Bulletin 2018, 97 , 428-435. https://doi.org/10.1016/j.materresbull.2017.09.038
  24. Bulkesh Siwach, Devendra Mohan, Sunita Sharma, Divya Jyoti. Process optimization of dye-sensitized solar cells using $$\hbox {TiO}_{2}$$ TiO 2 –graphene nanocomposites. Bulletin of Materials Science 2017, 40 (7) , 1371-1377. https://doi.org/10.1007/s12034-017-1492-z
  25. Mohamed Mokhtar Mohamed, M. Khairy, Salah Eid. Surfactant-assisted formation of silver titanates as active catalysts for methanol electro-oxidation. Applied Catalysis A: General 2017, 547 , 205-213. https://doi.org/10.1016/j.apcata.2017.08.031
  26. Jingang Wang, Haiying Wang, Jiemei Yu. Synthesis of 1-D porous TiO 2 on fly ash carriers through surface modification method. Journal of Physics and Chemistry of Solids 2017, 107 , 7-13. https://doi.org/10.1016/j.jpcs.2017.03.006
  27. Yanhe Han, Lei Zhang, Yafei Wang, Haimin Zhang, Shanqing Zhang. Photoelectrocatalytic activity of an ordered and vertically aligned TiO 2 nanorod array/BDD heterojunction electrode. Science Bulletin 2017, 62 (9) , 619-625. https://doi.org/10.1016/j.scib.2017.03.009
  28. Jiali Lv, Dongpei Li, Kai Dai, Changhao Liang, Dequan Jiang, Luhua Lu, Guangping Zhu. Multi-walled carbon nanotube supported CdS-DETA nanocomposite for efficient visible light photocatalysis. Materials Chemistry and Physics 2017, 186 , 372-381. https://doi.org/10.1016/j.matchemphys.2016.11.008
  29. Junyu Zhang, Guangcan Xiao, Fang-Xing Xiao, Bin Liu. Revisiting one-dimensional TiO 2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Materials Chemistry Frontiers 2017, 1 (2) , 231-250. https://doi.org/10.1039/C6QM00141F
  30. Hailong Peng, Xiaoyan Yang, Peng Zhang, Yiming Zhang, Chengwei Liu, Dan Liu, Jianzhou Gui. Diethylenetriamine-assisted in situ synthesis of TiO 2 nanoparticles on carbon nanotubes with well-defined structure and enhanced photocatalytic performance. RSC Adv. 2017, 7 (79) , 50216-50224. https://doi.org/10.1039/C7RA09324A
  31. Ya Cao, Zhen Li, Yang Wang, Tao Zhang, Yinchang Li, Xueqin Liu, Fei Li. Influence of TiO2 Nanorod Arrays on the Bilayered Photoanode for Dye-Sensitized Solar Cells. Journal of Electronic Materials 2016, 45 (10) , 4989-4998. https://doi.org/10.1007/s11664-016-4670-7
  32. Ailan Qu, Haolong Xie, Xinmei Xu, Yangyu Zhang, Shengwu Wen, Yifan Cui. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity. Applied Surface Science 2016, 375 , 230-241. https://doi.org/10.1016/j.apsusc.2016.03.077
  33. R. Naresh Muthu, S. Rajashabala, R. Kannan. Hexagonal boron nitride (h-BN) nanoparticles decorated multi-walled carbon nanotubes (MWCNT) for hydrogen storage. Renewable Energy 2016, 85 , 387-394. https://doi.org/10.1016/j.renene.2015.06.056
  34. Xinyuan Li, Guowen Wang, Lin Jing, Wei Ni, Huan Yan, Chao Chen, Yi-Ming Yan. A photoelectrochemical methanol fuel cell based on aligned TiO 2 nanorods decorated graphene photoanode. Chemical Communications 2016, 52 (12) , 2533-2536. https://doi.org/10.1039/C5CC09929C
  35. Preeti Padhye, Subha Sadhu, Monika Malik, Pankaj Poddar. A broad spectrum photon responsive, paramagnetic β-NaGdF 4 :Yb 3+ ,Er 3+ – mesoporous anatase titania nanocomposite. RSC Advances 2016, 6 (58) , 53504-53518. https://doi.org/10.1039/C6RA06813H
  36. J.J.L. Hmar, T. Majumder, J.N. Roy, S.P. Mondal. Flexible, transparent, high dielectric and photoconductive thin films using ZnO nanosheets-multi-walled carbon nanotube-polymer nanocomposites. Journal of Alloys and Compounds 2015, 651 , 82-90. https://doi.org/10.1016/j.jallcom.2015.08.101
  37. Xiaoqiang Liu, Rui Yan, Jie Zhu, Xiaohe Huo, Xinhai Wang. DEVELOPMENT OF A PHOTOELECTROCHEMICAL LACTIC DEHYDROGENASE BIOSENSOR USING MULTI-WALL CARBON NANOTUBE -TIO 2 NANOPARTICLE COMPOSITE AS COENZYME REGENERATION TOOL. Electrochimica Acta 2015, 173 , 260-267. https://doi.org/10.1016/j.electacta.2015.05.059
  38. Zhisong Lu, Xiutao Xiang, Long Zou, Jiale Xie. Fluffy-ball-shaped carbon nanotube–TiO 2 nanorod nanocomposites for photocatalytic degradation of methylene blue. RSC Advances 2015, 5 (53) , 42580-42586. https://doi.org/10.1039/C5RA05641A
  39. Jabeen Fatima M. J, Niveditha C. V, Sindhu S. α-Bi 2 O 3 photoanode in DSSC and study of the electrode–electrolyte interface. RSC Advances 2015, 5 (95) , 78299-78305. https://doi.org/10.1039/C5RA12760B
  40. Murugesan Janani, Pillalamarri Srikrishnarka, Shantikumar V. Nair, A. Sreekumaran Nair. An in-depth review on the role of carbon nanostructures in dye-sensitized solar cells. Journal of Materials Chemistry A 2015, 3 (35) , 17914-17938. https://doi.org/10.1039/C5TA03644E