Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles: Dissecting the Complex Electronic Coupling Dependent Dynamics

View Author Information
Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, United States
*E-mail: [email protected]. Tel.: 419-372-1840.
Cite this: J. Phys. Chem. C 2014, 118, 35, 20209–20221
Publication Date (Web):August 8, 2014
https://doi.org/10.1021/jp506199w
Copyright © 2014 American Chemical Society
Article Views
1242
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

The photosensitized interfacial electron transfer (ET) dynamics of the zinc(II)–5,10,15,20-tetra(3-carboxyphenyl)porphyrin (m-ZnTCPP)–TiO2 nanoparticle (NP) system has been studied using single-molecule photon-stamping spectroscopy. The single-molecule fluorescence intensity trajectories of m-ZnTCPP on TiO2 NP surface show fluctuations and blinking between bright and dark states, which are attributed to the variations in the reactivity of interfacial ET, i.e., intermittent interfacial electron transfer dynamics. Comparing the results with that from our earlier studied p-ZnTCPP–TiO2 nanoparticle system, we show the effect of anchoring group binding geometry (meta or para), hence electronic coupling of sensitizer (m-/p-ZnTCPP) and TiO2 substrate, on interfacial ET dynamics. Compared to p-ZnTCPP on TiO2 NP surface, with m-ZnTCPP, dark states are observed to dominate in single-molecule fluorescence intensity trajectories. This observation coupled with the large difference in lifetime derived from bright and dark states of m-ZnTCPP demonstrates higher charge injection efficiency of m-ZnTCPP than p-ZnTCPP. The nonexponential autocorrelation function decay and the power-law distribution of the dark-time probability density provide a detailed characterization of the inhomogeneous interfacial ET dynamics. The distribution of autocorrelation function decay times (τ) and power-law exponents (mdark) for m-ZnTCPP are found to be different from those for p-ZnTCPP, which indicates the sensitivity of τ and mdark on the molecular structure, molecular environment, and molecule–substrate electronic coupling of the interfacial electron transfer dynamics. Overall, our results strongly suggest that the fluctuation and even intermittency of excited-state chemical reactivity are intrinsic and general properties of molecular systems that involve strong molecule–substrate interactions.

Supporting Information

ARTICLE SECTIONS
Jump To

Figures showing the control experiment for confocal fluorescence imaging, UV–vis absorption and fluorescence emission spectra of m-ZnTCPP, fluorescence emission trajectory showing the photobleaching step, and direct comparison between m-ZnTCPP and p-ZnTCPP data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 32 publications.

  1. Frank S. Benneckendorf, Valentina Rohnacher, Eric Sauter, Sabina Hillebrandt, Maybritt Münch, Can Wang, Stefano Casalini, Katharina Ihrig, Sebastian Beck, Daniel Jänsch, Jan Freudenberg, Wolfram Jaegermann, Paolo Samorì, Annemarie Pucci, Uwe H. F. Bunz, Michael Zharnikov, Klaus Müllen. Tetrapodal Diazatriptycene Enforces Orthogonal Orientation in Self-Assembled Monolayers. ACS Applied Materials & Interfaces 2020, 12 (5) , 6565-6572. https://doi.org/10.1021/acsami.9b16062
  2. Rachel E. Bangle, Gerald J. Meyer. Factors that Control the Direction of Excited-State Electron Transfer at Dye-Sensitized Oxide Interfaces. The Journal of Physical Chemistry C 2019, 123 (42) , 25967-25976. https://doi.org/10.1021/acs.jpcc.9b06755
  3. Pauline G. Lynch, Huw Richards, Kristin L. Wustholz. Unraveling the Excited-State Dynamics of Eosin Y Photosensitizers Using Single-Molecule Spectroscopy. The Journal of Physical Chemistry A 2019, 123 (13) , 2592-2600. https://doi.org/10.1021/acs.jpca.9b00409
  4. Carlito S. Ponseca, Jr., Pavel Chábera, Jens Uhlig, Petter Persson, and Villy Sundström . Ultrafast Electron Dynamics in Solar Energy Conversion. Chemical Reviews 2017, 117 (16) , 10940-11024. https://doi.org/10.1021/acs.chemrev.6b00807
  5. Jenna A. Tan, Sofia Garakyaraghi, Kan A. Tagami, Kristen A. Frano, Heidi M. Crockett, Alana F. Ogata, Joshua D. Patterson, and Kristin L. Wustholz . Contributions from Excited-State Proton and Electron Transfer to the Blinking and Photobleaching Dynamics of Alizarin and Purpurin. The Journal of Physical Chemistry C 2017, 121 (1) , 97-106. https://doi.org/10.1021/acs.jpcc.6b09818
  6. Michael Mattei, Gyeongwon Kang, Guillaume Goubert, Dhabih V. Chulhai, George C. Schatz, Lasse Jensen, and Richard P. Van Duyne . Tip-Enhanced Raman Voltammetry: Coverage Dependence and Quantitative Modeling. Nano Letters 2017, 17 (1) , 590-596. https://doi.org/10.1021/acs.nanolett.6b04868
  7. Stephanie Zaleski, M. Fernanda Cardinal, Dhabih V. Chulhai, Andrew J. Wilson, Katherine A. Willets, Lasse Jensen, and Richard P. Van Duyne . Toward Monitoring Electrochemical Reactions with Dual-Wavelength SERS: Characterization of Rhodamine 6G (R6G) Neutral Radical Species and Covalent Tethering of R6G to Silver Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (43) , 24982-24991. https://doi.org/10.1021/acs.jpcc.6b09022
  8. Vishal Govind Rao and H. Peter Lu . Inhomogeneous and Complex Interfacial Electron-Transfer Dynamics: A Single-Molecule Perspective. ACS Energy Letters 2016, 1 (4) , 773-791. https://doi.org/10.1021/acsenergylett.6b00237
  9. M. Kyle Brennaman, Robert J. Dillon, Leila Alibabaei, Melissa K. Gish, Christopher J. Dares, Dennis L. Ashford, Ralph L. House, Gerald J. Meyer, John M. Papanikolas, and Thomas J. Meyer . Finding the Way to Solar Fuels with Dye-Sensitized Photoelectrosynthesis Cells. Journal of the American Chemical Society 2016, 138 (40) , 13085-13102. https://doi.org/10.1021/jacs.6b06466
  10. Jenna A. Tan, John T. Rose, James P. Cassidy, Simran K. Rohatgi, and Kristin L. Wustholz . Dispersive Electron-Transfer Kinetics of Rhodamines on TiO2: Impact of Structure and Driving Force on Single-Molecule Photophysics. The Journal of Physical Chemistry C 2016, 120 (37) , 20710-20720. https://doi.org/10.1021/acs.jpcc.6b01960
  11. Stephanie Zaleski, Andrew J. Wilson, Michael Mattei, Xu Chen, Guillaume Goubert, M. Fernanda Cardinal, Katherine A. Willets, and Richard P. Van Duyne . Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy. Accounts of Chemical Research 2016, 49 (9) , 2023-2030. https://doi.org/10.1021/acs.accounts.6b00327
  12. Masaaki Mitsui, Aki Unno, and Syun Azechi . Understanding Photoinduced Charge Transfer Dynamics of Single Perylenediimide Dyes in a Polymer Matrix by Bin-Time Dependence of their Fluorescence Blinking Statistics. The Journal of Physical Chemistry C 2016, 120 (28) , 15070-15081. https://doi.org/10.1021/acs.jpcc.6b04114
  13. Yufan He , V. Govind Rao , Jin Cao , and H. Peter Lu . Simultaneous Spectroscopic and Topographic Imaging of Single-Molecule Interfacial Electron-Transfer Reactivity and Local Nanoscale Environment. The Journal of Physical Chemistry Letters 2016, 7 (12) , 2221-2227. https://doi.org/10.1021/acs.jpclett.6b00862
  14. Bharat Dhital, Vishal Govind Rao, and H. Peter Lu . Electronic Coupling–Decoupling-Dependent Single-Molecule Interfacial Electron Transfer Dynamics in Electrostatically Attached Porphyrin on TiO2 Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (22) , 12313-12324. https://doi.org/10.1021/acs.jpcc.6b03784
  15. Vishal Govind Rao, Bharat Dhital, and H. Peter Lu . Probing Driving Force and Electron Accepting State Density Dependent Interfacial Electron Transfer Dynamics: Suppressed Fluorescence Blinking of Single Molecules on Indium Tin Oxide Semiconductor. The Journal of Physical Chemistry B 2016, 120 (8) , 1685-1697. https://doi.org/10.1021/acs.jpcb.5b08807
  16. Papatya C. Sevinc, Bharat Dhital, Vishal Govind Rao, Yuanmin Wang, and H. Peter Lu . Probing Electric Field Effect on Covalent Interactions at a Molecule–Semiconductor Interface. Journal of the American Chemical Society 2016, 138 (5) , 1536-1542. https://doi.org/10.1021/jacs.5b10253
  17. Sunil P. Upadhyay, Katherine M. Lupo, Angela N. Marquard, James D. Ng, Desiree M. Bates, and Randall H. Goldsmith . Fluorescent Dendrimeric Molecular Catalysts Demonstrate Unusual Scaling Behavior at the Single-Molecule Level. The Journal of Physical Chemistry C 2015, 119 (34) , 19703-19714. https://doi.org/10.1021/acs.jpcc.5b06562
  18. Robert Godin, Benjamin D. Sherman, Jesse J. Bergkamp, Carlos A. Chesta, Ana L. Moore, Thomas A. Moore, Rodrigo E. Palacios, and Gonzalo Cosa . Charge-Transfer Dynamics of Fluorescent Dye-Sensitized Electrodes under Applied Biases. The Journal of Physical Chemistry Letters 2015, 6 (14) , 2688-2693. https://doi.org/10.1021/acs.jpclett.5b01061
  19. Piotr Piatkowski, Cristina Martin, Maria Rosaria di Nunzio, Boiko Cohen, Shyam Pandey, Shuzi Hayse, and Abderrazzak Douhal . Complete Photodynamics of the Efficient YD2-o-C8-Based Solar Cell. The Journal of Physical Chemistry C 2014, 118 (51) , 29674-29687. https://doi.org/10.1021/jp510761z
  20. Maxence Urbani, Michael Grätzel, Mohammad Khaja Nazeeruddin, and Tomás Torres . Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells. Chemical Reviews 2014, 114 (24) , 12330-12396. https://doi.org/10.1021/cr5001964
  21. Caique Prado Machado de Oliveira, Ana Luísa Almeida Lage, Dayse Carvalho da Silva Martins, Nelcy Della Santina Mohallem, Marcelo Machado Viana. High surface area TiO2 nanoparticles: impact of carboxylporphyrin sensitizers in the photocatalytic activity. Surfaces and Interfaces 2020, 21 , 100774. https://doi.org/10.1016/j.surfin.2020.100774
  22. Polyssena Renzi, Lucia Mazzapioda, Francesca Nardelli, Francesca Martini, Marco Geppi, Carmine Mancone, Maria Assunta Navarra, Francesca D'Acunzo, Patrizia Gentili. Titanium‐Based Tetrakis‐2,3‐[5,6‐di(Substituted)pyrazino]porphyrazine: Synthesis and Characterization. European Journal of Inorganic Chemistry 2020, 2020 (25) , 2417-2423. https://doi.org/10.1002/ejic.202000193
  23. Zhong‐Qiu Li, Jian‐Hong Tang, Yu‐Wu Zhong. Multidentate Anchors for Surface Functionalization. Chemistry – An Asian Journal 2019, 14 (18) , 3119-3126. https://doi.org/10.1002/asia.201900989
  24. Elzbieta Regulska, Danisha Rivera-Nazario, Joanna Karpinska, Marta Plonska-Brzezinska, Luis Echegoyen. Zinc Porphyrin-Functionalized Fullerenes for the Sensitization of Titania as a Visible-Light Active Photocatalyst: River Waters and Wastewaters Remediation. Molecules 2019, 24 (6) , 1118. https://doi.org/10.3390/molecules24061118
  25. Wei Wang. Imaging the chemical activity of single nanoparticles with optical microscopy. Chemical Society Reviews 2018, 47 (7) , 2485-2508. https://doi.org/10.1039/C7CS00451F
  26. Masaaki Mitsui, Aki Unno, Kyosuke Mori. Methodology for Discriminating between Competitive Photophysical Processes in Photoblinking: Application to the Fluorescence Blinking of Single Dye Molecules Adsorbed on TiO 2. Chemistry Letters 2017, 46 (6) , 866-869. https://doi.org/10.1246/cl.170127
  27. Elzbieta Regulska, Danisha M. Rivera‐Nazario, Joanna Karpinska, Marta E. Plonska‐Brzezinska, Luis Echegoyen. Enhanced Photocatalytic Performance of Porphyrin/Phthalocyanine and Bis (4‐pyridyl)pyrrolidinofullerene modified Titania. ChemistrySelect 2017, 2 (8) , 2462-2470. https://doi.org/10.1002/slct.201700227
  28. Bharat Dhital, Vishal Govind Rao, H. Peter Lu. Probing single-molecule electron–hole transfer dynamics at a molecule–NiO semiconductor nanocrystalline interface. Physical Chemistry Chemical Physics 2017, 19 (26) , 17216-17223. https://doi.org/10.1039/C7CP01476G
  29. Beibei Xu, Xiaojuan Wang, Chaofeng Zhu, Xia Ran, Tianfeng Li, Lijun Guo. Probing the inhomogeneity and intermediates in the photosensitized degradation of rhodamine B by Ag 3 PO 4 nanoparticles from an ensemble to a single molecule approach. RSC Advances 2017, 7 (65) , 40896-40904. https://doi.org/10.1039/C7RA07163A
  30. Yu Yan, Fan Wu, Jiawei Qin, Haijun Xu, Maohu Shi, Jingfeng Zhou, John Mack, Gertrude Fomo, Tebello Nyokong, Zhen Shen. Efficient energy transfer in ethynyl bridged corrole–BODIPY dyads. RSC Advances 2016, 6 (76) , 72852-72858. https://doi.org/10.1039/C6RA12271J
  31. Ruixiang Wu, Ruiyun Chen, Chengbing Qin, Yan Gao, Zhixing Qiao, Guofeng Zhang, Liantuan Xiao, Suotang Jia. An electric field induced reversible single-molecule fluorescence switch. Chemical Communications 2015, 51 (34) , 7368-7371. https://doi.org/10.1039/C5CC00850F
  32. Vishal Govind Rao, Bharat Dhital, H. Peter Lu. Single-molecule interfacial electron transfer dynamics of porphyrin on TiO 2 nanoparticles: dissecting the interfacial electric field and electron accepting state density dependent dynamics. Chemical Communications 2015, 51 (94) , 16821-16824. https://doi.org/10.1039/C5CC06451A