Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells

View Author Information
Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan
Mikuni Laboratory at Tokyo University, Mikuni Color Ltd., 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
§ Reserch Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
*E-mail: [email protected]. Phone: +81-52-789-4614.
Cite this: J. Phys. Chem. C 2014, 118, 51, 29517–29524
Publication Date (Web):November 26, 2014
https://doi.org/10.1021/jp508769f
Copyright © 2014 American Chemical Society
Article Views
1104
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

I–III–VI2-semiconductor-based nanocrystals of ZnSe–AgInSe2 solid solution ((AgIn)xZn2(1-x)Se2, ZAISe) with average sizes of 3.5–6.2 nm were successfully synthesized through thermal reaction of corresponding metal acetates and selenourea in a hot oleylamine solution. The optical property of ZAISe solid solution nanocrystals was tunable in a broad wavelength region from visible to near-infrared light by changing the composition of solid solution, where the energy gap of ZAISe nanocrystals was enlarged from 1.44 to 3.00 eV with an increase in the fraction of ZnSe in ZAISe, that is, with a decrease in x from 1.0 to 0. Both levels of conduction band and valence band edges, determined by photoelectron spectroscopy in air, were monotonously shifted to higher levels with an increase in the fraction of ZnSe. Quantum-dot-sensitized solar cells were fabricated with porous TiO2 film electrodes immobilized with ZAISe nanocrystals using 3-mercaptopropionic acid as a cross-linking agent. The light conversion efficiency of the thus-obtained cells was enhanced by covering ZAISe nanocrystals with a CdS thin layer by the SILAR method. The photocurrent action spectra agreed well with absorption spectra of ZAISe nanocrystals immobilized on TiO2 electrodes. Maximum energy conversion efficiency of 1.9% was obtained for the cell fabricated with ZAISe nanocrystals with x = 0.5 as a sensitizer under irradiation with simulated solar light of AM 1.5G.

Supporting Information

ARTICLE SECTIONS
Jump To

Analytical data of ZAISe NCs. Absorption and electrochemical impedance spectra of TiO2/ZAISe electrode. Equivalent circuit employed to fit impedance spectroscopy measurements. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 42 publications.

  1. Anna Zacharia, Paris Papagiorgis, Olesya Yarema, Annina Moser, Andreas Othonos, Mathieu Luisier, Vanessa Wood, Maksym Yarema, Grigorios Itskos. Optical Transitions in Silver Indium Selenide Nanocrystals: Implications for Light-Emitting and Light-Imaging Applications. ACS Applied Nano Materials 2021, 4 (10) , 11239-11248. https://doi.org/10.1021/acsanm.1c02685
  2. Sajjad Hussain, Lingju Guo, Tao He. Hybrid Density Functional Theory Study on Structural and Optoelectronic Properties of ZnSe1–xTex for the Photocatalytic Applications. The Journal of Physical Chemistry C 2021, 125 (29) , 16235-16245. https://doi.org/10.1021/acs.jpcc.1c03670
  3. Tatsuya Kameyama, Hiroki Yamauchi, Takahisa Yamamoto, Toshiki Mizumaki, Hiroshi Yukawa, Masahiro Yamamoto, Shigeru Ikeda, Taro Uematsu, Yoshinobu Baba, Susumu Kuwabata, Tsukasa Torimoto. Tailored Photoluminescence Properties of Ag(In,Ga)Se2 Quantum Dots for Near-Infrared In Vivo Imaging. ACS Applied Nano Materials 2020, 3 (4) , 3275-3287. https://doi.org/10.1021/acsanm.9b02608
  4. Atta Ul Haq, Marius Buerkle, Sadegh Askari, Conor Rocks, Chengsheng Ni, Vladimir Švrček, Paul Maguire, John T. S. Irvine, Davide Mariotti. Controlling the Energy-Level Alignment of Silicon Carbide Nanocrystals by Combining Surface Chemistry with Quantum Confinement. The Journal of Physical Chemistry Letters 2020, 11 (5) , 1721-1728. https://doi.org/10.1021/acs.jpclett.9b03828
  5. Xiaogang Yang, Dunwei Wang. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials 2018, 1 (12) , 6657-6693. https://doi.org/10.1021/acsaem.8b01345
  6. Tatsuya Kameyama, Marino Kishi, Chie Miyamae, Dharmendar Kumar Sharma, Shuzo Hirata, Takahisa Yamamoto, Taro Uematsu, Martin Vacha, Susumu Kuwabata, Tsukasa Torimoto. Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga3+ Doping. ACS Applied Materials & Interfaces 2018, 10 (49) , 42844-42855. https://doi.org/10.1021/acsami.8b15222
  7. Tatsuya Kameyama, Seiya Koyama, Takahisa Yamamoto, Susumu Kuwabata, Tsukasa Torimoto. Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure. The Journal of Physical Chemistry C 2018, 122 (25) , 13705-13715. https://doi.org/10.1021/acs.jpcc.8b00255
  8. Gary Zaiats, Shingo Ikeda, Sachin Kinge, and Prashant V. Kamat . Quantum Dot Light-Emitting Devices: Beyond Alignment of Energy Levels. ACS Applied Materials & Interfaces 2017, 9 (36) , 30741-30745. https://doi.org/10.1021/acsami.7b07893
  9. Martina Sandroni, K. David Wegner, Dmitry Aldakov, and Peter Reiss . Prospects of Chalcopyrite-Type Nanocrystals for Energy Applications. ACS Energy Letters 2017, 2 (5) , 1076-1088. https://doi.org/10.1021/acsenergylett.7b00003
  10. Alexandra Raevskaya, Vladimir Lesnyak, Danny Haubold, Volodymyr Dzhagan, Oleksandr Stroyuk, Nikolai Gaponik, Dietrich R. T. Zahn, and Alexander Eychmüller . A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. The Journal of Physical Chemistry C 2017, 121 (16) , 9032-9042. https://doi.org/10.1021/acs.jpcc.7b00849
  11. Rachel D. Harris, Stephanie Bettis Homan, Mohamad Kodaimati, Chen He, Alexander B. Nepomnyashchii, Nathaniel K. Swenson, Shichen Lian, Raul Calzada, and Emily A. Weiss . Electronic Processes within Quantum Dot-Molecule Complexes. Chemical Reviews 2016, 116 (21) , 12865-12919. https://doi.org/10.1021/acs.chemrev.6b00102
  12. Asad Mumtaz, Norani Muti Mohamed, Muhammad Mazhar, Muhammad Ali Ehsan, and Mohamed Shuaib Mohamed Saheed . Core–Shell Vanadium Modified [email protected]β-In2S3 Hybrid Nanorod Arrays for Superior Interface Stability and Photochemical Activity. ACS Applied Materials & Interfaces 2016, 8 (14) , 9037-9049. https://doi.org/10.1021/acsami.5b10147
  13. Olesya Yarema, Maksym Yarema, Deniz Bozyigit, Weyde M. M. Lin, and Vanessa Wood . Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals. ACS Nano 2015, 9 (11) , 11134-11142. https://doi.org/10.1021/acsnano.5b04636
  14. Tatsuya Kameyama, Takuya Takahashi, Takahiro Machida, Yutaro Kamiya, Takahisa Yamamoto, Susumu Kuwabata, and Tsukasa Torimoto . Controlling the Electronic Energy Structure of ZnS–AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (44) , 24740-24749. https://doi.org/10.1021/acs.jpcc.5b07994
  15. Ru Zhou, Jun Xu, Paifeng Luo, Linhua Hu, Xu Pan, Jinzhang Xu, Yang Jiang, Lianzhou Wang. Near‐Infrared Photoactive Semiconductor Quantum Dots for Solar Cells. Advanced Energy Materials 2021, 11 (40) , 2101923. https://doi.org/10.1002/aenm.202101923
  16. Danilo A.P. Velásquez, Felipe L.N. Sousa, Thiago A.S. Soares, Anderson J. Caires, Denilson V. Freitas, Marcelo Navarro, Giovanna Machado. Boosting the performance of TiO2 nanotubes with ecofriendly AgIn5Se8 quantum dots for photoelectrochemical hydrogen generation. Journal of Power Sources 2021, 506 , 230165. https://doi.org/10.1016/j.jpowsour.2021.230165
  17. Jaehyun Park, Ju Hyun Park, Minseok Yang, Se Hun Joo, Sang Kyu Kwak, Seokhoon Ahn, Seok Ju Kang. Solid solution of semiconducting contorted small molecules for high-performance Li/Na-ion host electrodes. Energy Storage Materials 2021, 36 , 123-131. https://doi.org/10.1016/j.ensm.2020.12.021
  18. Priyanka Ganguly, Syam Kumar R., Marica Muscetta, Nisha T. Padmanabhan, Laura Clarizia, A. Akande, Steven Hinder, Snehamol Mathew, Honey John, Ailish Breen, Suresh C. Pillai. New insights into the efficient charge transfer of ternary chalcogenides composites of TiO2. Applied Catalysis B: Environmental 2021, 282 , 119612. https://doi.org/10.1016/j.apcatb.2020.119612
  19. Oluwatobi Samuel Oluwafemi, El Hadji Mamour Sakho, Sundararajan Parani, Thabang Calvin Lebepe. Synthesis of ternary I–III–VI quantum dots. 2021,,, 47-76. https://doi.org/10.1016/B978-0-12-818303-8.00009-5
  20. Oleksandra Raievska, Oleksandr Stroyuk, Volodymyr Dzhagan, Dmytro Solonenko, Dietrich R. T. Zahn. Ultra-small aqueous glutathione-capped Ag–In–Se quantum dots: luminescence and vibrational properties. RSC Advances 2020, 10 (69) , 42178-42193. https://doi.org/10.1039/D0RA07706B
  21. Ping-Yen Hsieh, Tatsuya Kameyama, Takayuki Takiyama, Ko Masuoka, Takahisa Yamamoto, Yung-Jung Hsu, Tsukasa Torimoto. Controlling the visible-light driven photocatalytic activity of alloyed ZnSe–AgInSe 2 quantum dots for hydrogen production. Journal of Materials Chemistry A 2020, 8 (26) , 13142-13149. https://doi.org/10.1039/D0TA04127K
  22. Tatsuya Kameyama, Kouta Sugiura, Susumu Kuwabata, Tomoki Okuhata, Naoto Tamai, Tsukasa Torimoto. Hot electron transfer in Zn–Ag–In–Te nanocrystal–methyl viologen complexes enhanced with higher-energy photon excitation. RSC Advances 2020, 10 (28) , 16361-16365. https://doi.org/10.1039/D0RA02842H
  23. Tsukasa Torimoto, Tatsuya Kameyama. Controlling Optical Properties of Multinary Quantum Dots for Developing Novel Photoelectrochemical Reactions. 2020,,, 223-237. https://doi.org/10.1007/978-981-15-5451-3_13
  24. Donghao Wang, Feifei Yin, Zhonglin Du, Dongni Han, Jianguo Tang. Recent progress in quantum dot-sensitized solar cells employing metal chalcogenides. Journal of Materials Chemistry A 2019, 7 (46) , 26205-26226. https://doi.org/10.1039/C9TA10557C
  25. Tatsuya Kameyama, Kouta Sugiura, Susumu Kuwabata, Tomoki Okuhata, Naoto Tamai, Tsukasa Torimoto. Enhanced Photoelectrochemical Properties of Zn−Ag−In−Te Nanocrystals with High Energy Photon Excitation. ChemNanoMat 2019, 5 (8) , 1028-1035. https://doi.org/10.1002/cnma.201900241
  26. Ru Zhou, Jun Xu, Jinzhang Xu. Near‐Infrared Responsive Quantum Dot Photovoltaics: Progress, Challenges and Perspectives. 2018,,, 659-717. https://doi.org/10.1002/9781119407690.ch17
  27. Tatsuya KAMEYAMA. Advances in Colloidal I-III-VI2-Based Semiconductor Quantum Dots toward Tailorable Photofunctional Materials. Electrochemistry 2018, 86 (6) , 291-297. https://doi.org/10.5796/electrochemistry.18-6-E2670
  28. Yi Wang, Yuanzhang Huang, Haotong Li, Yusheng Zhou, Lei Wan, Haihong Niu, Yuan Li, Jinzhang Xu, Ru Zhou. In Situ Growth of PbS Nanocubes as Highly Catalytic Counter Electrodes for Quantum Dot Sensitized Solar Cells. IEEE Journal of Photovoltaics 2018, 8 (6) , 1670-1676. https://doi.org/10.1109/JPHOTOV.2018.2863787
  29. Mulu Alemayehu Abate, Jia-Yaw Chang. Boosting the efficiency of AgInSe2 quantum dot sensitized solar cells via core/shell/shell architecture. Solar Energy Materials and Solar Cells 2018, 182 , 37-44. https://doi.org/10.1016/j.solmat.2018.03.008
  30. Anuraj S. Kshirsagar, Pawan. K. Khanna. Reaction Tailoring for Synthesis of Phase-Pure Nanocrystals of AgInSe 2 , Cu 3 SbSe 3 and CuSbSe 2. ChemistrySelect 2018, 3 (10) , 2854-2866. https://doi.org/10.1002/slct.201702986
  31. Oleksandr Stroyuk. Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. 2018,,, 161-240. https://doi.org/10.1007/978-3-319-68879-4_4
  32. Tatsuya Kameyama, Kouta Sugiura, Yujiro Ishigami, Takahisa Yamamoto, Susumu Kuwabata, Tomoki Okuhata, Naoto Tamai, Tsukasa Torimoto. Rod-shaped Zn–Ag–In–Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. Journal of Materials Chemistry C 2018, 6 (8) , 2034-2042. https://doi.org/10.1039/C7TC05624A
  33. Oleksandr Stroyuk, Alexandra Raevskaya, Nikolai Gaponik. Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews 2018, 47 (14) , 5354-5422. https://doi.org/10.1039/C8CS00029H
  34. A. V. Kozytskiy, O. L. Stroyuk, A. E. Raevskaya, S. Ya. Kuchmy. Photoelectrochemical Solar Cells with Semiconductor Nanoparticles and Liquid Electrolytes: a Review. Theoretical and Experimental Chemistry 2017, 53 (3) , 145-179. https://doi.org/10.1007/s11237-017-9512-z
  35. Pei-Ni Li, Anil V. Ghule, Jia-Yaw Chang. Direct aqueous synthesis of quantum dots for high-performance AgInSe 2 quantum-dot-sensitized solar cell. Journal of Power Sources 2017, 354 , 100-107. https://doi.org/10.1016/j.jpowsour.2017.04.040
  36. Chunqi Cai, Lanlan Zhai, Yahui Ma, Chao Zou, Lijie Zhang, Yun Yang, Shaoming Huang. Synthesis of AgInS2 quantum dots with tunable photoluminescence for sensitized solar cells. Journal of Power Sources 2017, 341 , 11-18. https://doi.org/10.1016/j.jpowsour.2016.11.101
  37. Ganga Halder, Sayan Bhattacharyya. Zinc-diffused silver indium selenide quantum dot sensitized solar cells with enhanced photoconversion efficiency. Journal of Materials Chemistry A 2017, 5 (23) , 11746-11755. https://doi.org/10.1039/C7TA00268H
  38. Wubshet Mekonnen Girma, Mochamad Zakki Fahmi, Adi Permadi, Mulu Alemayehu Abate, Jia-Yaw Chang. Synthetic strategies and biomedical applications of I–III–VI ternary quantum dots. Journal of Materials Chemistry B 2017, 5 (31) , 6193-6216. https://doi.org/10.1039/C7TB01156C
  39. Tatsuya KAMEYAMA, Susumu KUWABATA, Tsukasa TORIMOTO. Controlling the Size and Chemical Composition of Multinary Semiconductor Nanocrystals for Improving Photochemical Functions. Hyomen Kagaku 2017, 38 (1) , 18-23. https://doi.org/10.1380/jsssj.38.18
  40. Tsukasa TORIMOTO. Nanostructure Engineering of Size-Quantized Semiconductor Particles for Photoelectrochemical Applications. Electrochemistry 2017, 85 (9) , 534-542. https://doi.org/10.5796/electrochemistry.85.534
  41. Bin Zhou, Mingrun Li, Yihui Wu, Chi Yang, Wen-Hua Zhang, Can Li. Monodisperse AgSbS 2 Nanocrystals: Size-Control Strategy, Large-Scale Synthesis, and Photoelectrochemistry. Chemistry - A European Journal 2015, 21 (31) , 11143-11151. https://doi.org/10.1002/chem.201501000
  42. 晋湘 宋. In Situ Studies on Aqueous Synthesis of ZnSe Quantum Dots. Advances in Condensed Matter Physics 2015, 04 (02) , 77-84. https://doi.org/10.12677/CMP.2015.42009