Nucleation and Growth of Palladium Clusters on Anatase TiO2(101) Surface: A First Principle Study

View Author Information
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China, and Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
* To whom correspondence should be addressed. E-mail: [email protected]
†Tianjin University.
‡SINOPEC.
Cite this: J. Phys. Chem. C 2008, 112, 49, 19506–19515
Publication Date (Web):November 14, 2008
https://doi.org/10.1021/jp8036523
Copyright © 2008 American Chemical Society
Article Views
1901
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

The nucleation and growth of palladium clusters supported on anatase TiO2(101) surface has been studied using periodic supercell models and density functional theory. The most active site for single Pd adatom on the perfect TiO2(101) surface is the bridge site formed by two two-coordinated oxygen (2cO) atoms at the step edge with the highest adsorption energy of 2.18 eV. On the defective surface, the effect of oxygen vacancy on Pd nucleation is not as strong as that in the Pt or Au deposition case. The shift of active sites for the Pd dimer growing to trimer on the perfect anatase TiO2(101) surface is observed. On both perfect and defective anatase surfaces, the adsorbed Pd3 clusters prefer to form planar triangles and the adsorbed Pd4 and Pd5 clusters tend to three-dimensional structures. The nucleation and growth of Pd clusters at the anatase TiO2(101) surface is mainly driven by the interaction between Pd and surface atoms when the cluster size is less than four. The strength of Pd−Pd interaction turns out to control dominantly the Pd deposition process as the Pd cluster gets larger.

Supporting Information

ARTICLE SECTIONS
Jump To

The test calculation results of different TiO2 layers, k-point values, and cutoff values. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 65 publications.

  1. Liang Xiang, Haisong Feng, Mingyang Liu, Xin Zhang, Guoli Fan, Feng Li. Surface Defect-Induced Site-Specific Dispersion of Pd Nanoclusters on TiO2 Nanoparticles for Semihydrogenation of Phenyl Acetylene. ACS Applied Nano Materials 2021, 4 (5) , 4688-4698. https://doi.org/10.1021/acsanm.1c00301
  2. Yusen Yang, Deming Rao, Yudi Chen, Siyuan Dong, Bin Wang, Xin Zhang, Min Wei. Selective Hydrogenation of Cinnamaldehyde over Co-Based Intermetallic Compounds Derived from Layered Double Hydroxides. ACS Catalysis 2018, 8 (12) , 11749-11760. https://doi.org/10.1021/acscatal.8b02755
  3. Fengshuang Han, Zhaohui Zhou, Xiaohai Zhang, Zhenxiong Huang, Mingtao Li, and Liejin Guo . First-Principles Study on Stability and HER Activity of Noble Metal Single Atoms on TiO2: The Effect of Loading Density. The Journal of Physical Chemistry C 2018, 122 (5) , 2546-2553. https://doi.org/10.1021/acs.jpcc.7b11486
  4. Kevin K. B. Duff, Leonardo Spanu, and Nicholas D. M. Hine . Impact of Carbonyl Formation on Cobalt Ripening over Titania Surface. The Journal of Physical Chemistry C 2017, 121 (29) , 15880-15887. https://doi.org/10.1021/acs.jpcc.7b05371
  5. Cong-Qiao Xu, Deng-Hui Xing, Hai Xiao, and Jun Li . Manipulating Stabilities and Catalytic Properties of Trinuclear Metal Clusters through Tuning the Chemical Bonding: H2 Adsorption and Activation. The Journal of Physical Chemistry C 2017, 121 (20) , 10992-11001. https://doi.org/10.1021/acs.jpcc.7b00081
  6. Peirong Chen, Abhishek Khetan, Fengkai Yang, Vadim Migunov, Philipp Weide, Sascha P. Stürmer, Penghu Guo, Kevin Kähler, Wei Xia, Joachim Mayer, Heinz Pitsch, Ulrich Simon, and Martin Muhler . Experimental and Theoretical Understanding of Nitrogen-Doping-Induced Strong Metal–Support Interactions in Pd/TiO2 Catalysts for Nitrobenzene Hydrogenation. ACS Catalysis 2017, 7 (2) , 1197-1206. https://doi.org/10.1021/acscatal.6b02963
  7. Kakeru Fujiwara, Ulrich Müller, and Sotiris E. Pratsinis . Pd Subnano-Clusters on TiO2 for Solar-Light Removal of NO. ACS Catalysis 2016, 6 (3) , 1887-1893. https://doi.org/10.1021/acscatal.5b02685
  8. Antonio Ruiz Puigdollers, Philomena Schlexer, and Gianfranco Pacchioni . Gold and Silver Clusters on TiO2 and ZrO2 (101) Surfaces: Role of Dispersion Forces. The Journal of Physical Chemistry C 2015, 119 (27) , 15381-15389. https://doi.org/10.1021/acs.jpcc.5b04026
  9. Nicola Seriani, Carlos Pinilla, and Yanier Crespo . Presence of Gap States at Cu/TiO2 Anatase Surfaces: Consequences for the Photocatalytic Activity. The Journal of Physical Chemistry C 2015, 119 (12) , 6696-6702. https://doi.org/10.1021/acs.jpcc.5b00846
  10. Shi-Tong Zhang, Chang-Ming Li, Hong Yan, Min Wei, David G. Evans, and Xue Duan . Density Functional Theory Study on the Metal–Support Interaction between Ru Cluster and Anatase TiO2(101) Surface. The Journal of Physical Chemistry C 2014, 118 (7) , 3514-3522. https://doi.org/10.1021/jp409627p
  11. Changming Li, Yudi Chen, Shitong Zhang, Simin Xu, Junyao Zhou, Fei Wang, Min Wei, David G. Evans, and Xue Duan . Ni–In Intermetallic Nanocrystals as Efficient Catalysts toward Unsaturated Aldehydes Hydrogenation. Chemistry of Materials 2013, 25 (19) , 3888-3896. https://doi.org/10.1021/cm4021832
  12. Jawad Nisar, Zareh Topalian, Abir De Sarkar, Lars Österlund, and Rajeev Ahuja . TiO2-Based Gas Sensor: A Possible Application to SO2. ACS Applied Materials & Interfaces 2013, 5 (17) , 8516-8522. https://doi.org/10.1021/am4018835
  13. Sandeep Nigam and Chiranjib Majumder . Adsorption of Small Palladium Clusters on the α-Al2O3(0001) Surface: A First Principles Study. The Journal of Physical Chemistry C 2012, 116 (4) , 2863-2871. https://doi.org/10.1021/jp2081512
  14. Cunku Dong, Xin Li, and Jingyao Qi . First-Principles Investigation on Electronic Properties of Quantum Dot-Sensitized Solar Cells Based on Anatase TiO2 Nanotubes. The Journal of Physical Chemistry C 2011, 115 (41) , 20307-20315. https://doi.org/10.1021/jp203807t
  15. Minzhen Jian, Jin-Xun Liu, Wei-Xue Li. Hydroxyl improving the activity, selectivity and stability of supported Ni single atoms for selective semi-hydrogenation. Chemical Science 2021, 12 (30) , 10290-10298. https://doi.org/10.1039/D1SC03087F
  16. Miao He, Yueqiang Cao, Jian Ji, Kai Li, Haibao Huang. Superior catalytic performance of Pd-loaded oxygen-vacancy-rich TiO2 for formaldehyde oxidation at room temperature. Journal of Catalysis 2021, 396 , 122-135. https://doi.org/10.1016/j.jcat.2021.01.035
  17. Deobrat Singh, Sanjeev K. Gupta, Nicola Seriani, Igor Lukačević, Yogesh Sonvane, P. N. Gajjar, Rajeev Ahuja. Mechanism of formaldehyde and formic acid formation on (101)-TiO 2 @Cu 4 systems through CO 2 hydrogenation. Sustainable Energy & Fuels 2021, 5 (2) , 564-574. https://doi.org/10.1039/D0SE01587C
  18. Jun Yu, Yusen Yang, Lifang Chen, Zhenhua Li, Wei Liu, Enze Xu, Yuanjing Zhang, Song Hong, Xin Zhang, Min Wei. NiBi intermetallic compounds catalyst toward selective hydrogenation of unsaturated aldehydes. Applied Catalysis B: Environmental 2020, 277 , 119273. https://doi.org/10.1016/j.apcatb.2020.119273
  19. Long Lin, Zhengguang Shi, Longbin Yan, Hualong Tao, Linwei Yao, Shaofei Li, Kun Xie, Jingtao Huang, Zhanying Zhang. First-principles study of CO adsorption on Os atom doped anatase TiO2 (1 0 1) surface. Polyhedron 2020, 191 , 114814. https://doi.org/10.1016/j.poly.2020.114814
  20. Long Lin, Zhengguang Shi, Jingtao Huang, Pengtao Wang, Weiyang Yu, Chaozheng He, Zhanying Zhang. Molecular adsorption properties of CH4 with noble metals doped onto oxygen vacancy defect of anatase TiO2 (1 0 1) surface: First-principles calculations. Applied Surface Science 2020, 514 , 145900. https://doi.org/10.1016/j.apsusc.2020.145900
  21. Lingna Xu, Wenlong Chen, Yingang Gui, Qiaomei Li. Influence of Pd Clusters Doping on Gas Sensing Properties of TiO₂(101) Nanotubes to SF₆ Decomposition Products. IEEE Access 2020, 8 , 205282-205288. https://doi.org/10.1109/ACCESS.2020.3036526
  22. Jinhua Gao, Yuehong Ren, Qingzhen Han, Hao Wen, Zhaotan Jiang. Influences of MgO(001) and TiO2(101) Supports on the Structures and Properties of Au Nanoclusters. Catalysts 2020, 10 (1) , 16. https://doi.org/10.3390/catal10010016
  23. Yusen Yang, Lifang Chen, Yudi Chen, Wei Liu, Haisong Feng, Bin Wang, Xin Zhang, Min Wei. The selective hydrogenation of furfural over intermetallic compounds with outstanding catalytic performance. Green Chemistry 2019, 21 (19) , 5352-5362. https://doi.org/10.1039/C9GC01119F
  24. Satish Kumar Iyemperumal, Thomas G. Fenton, Samantha L. Gillingham, Alexander D. Carl, Ronald L. Grimm, Gonghu Li, N. Aaron Deskins. The stability and oxidation of supported atomic-size Cu catalysts in reactive environments. The Journal of Chemical Physics 2019, 151 (5) , 054702. https://doi.org/10.1063/1.5110300
  25. Yong-Dong Zhou, Zong-Yan Zhao. Interfacial structure and properties of TiO2 phase junction studied by DFT calculations. Applied Surface Science 2019, 485 , 8-21. https://doi.org/10.1016/j.apsusc.2019.04.193
  26. Mengyuan Li, Lifang Chen, Shuteng Ye, Guoli Fan, Lan Yang, Xin Zhang, Feng Li. Dispersive non-noble metal phosphide embedded in alumina arrays derived from layered double hydroxide precursor toward efficient oxygen evolution reaction and biomass upgrading. Journal of Materials Chemistry A 2019, 7 (22) , 13695-13704. https://doi.org/10.1039/C9TA03580J
  27. Yueting Cao, Lixia Ling, Hao Lin, Maohong Fan, Ping Liu, Riguang Zhang, Baojun Wang. DFT study on CO oxidative coupling to DMO over Pd4/TiO2 and Pd4/TiO2-Ov: A role of oxygen vacancy on support. Computational Materials Science 2019, 159 , 1-11. https://doi.org/10.1016/j.commatsci.2018.11.047
  28. Xinyu Liu, Shiyuan Gao, Peng Yang, Bin Wang, Jian Zhen Ou, Zhongqing Liu, Yichao Wang. Synergetic coupling of Pd nanoparticles and amorphous MoS toward highly efficient electrocatalytic hydrogen evolution reactions. Applied Materials Today 2018, 13 , 158-165. https://doi.org/10.1016/j.apmt.2018.09.001
  29. Raina Panta, Chompoonoot Nanthamathee, Vithaya Ruangpornvisuti. Adsorption of hydrogen and hydrogen–containing gases on Pd– and Ag–single atoms doped on anatase TiO2 (1 0 1) surfaces and their sensing performance. Applied Surface Science 2018, 450 , 112-121. https://doi.org/10.1016/j.apsusc.2018.04.165
  30. Shiying Fan, Xinyong Li, Jing Tan, Libin Zeng, Zhifan Yin, Moses O. Tadé, Shaomin Liu. Enhanced photoeletrocatalytic reduction dechlorinations of PCP by Ru-Pd BQDs anchored Titania NAEs composites with double Schottky junctions: First-principles evidence and experimental verifications. Applied Catalysis B: Environmental 2018, 227 , 499-511. https://doi.org/10.1016/j.apcatb.2018.01.043
  31. Peter R. Ellis, Christopher M. Brown, Peter T. Bishop, Dmitrij Ievlev, Jinlong Yin, Kevin Cooke, Richard E. Palmer. High-selectivity palladium catalysts for the partial hydrogenation of alkynes by gas-phase cluster deposition onto oxide powders. Catalysis, Structure & Reactivity 2018, 4 (2) , 1-8. https://doi.org/10.1080/2055074X.2018.1477315
  32. José M. Castillo-Robles, Emilio Orgaz. Structural and optical properties of Ni atoms and $$\hbox {Ni}_{55}$$ Ni 55 cluster adsorbed on a rutile $$\hbox {TiO}_{2}$$ TiO 2 (110) surface. Theoretical Chemistry Accounts 2018, 137 (3) https://doi.org/10.1007/s00214-018-2211-6
  33. Ping Chen, Qianxin Zhang, Yuehan Su, Lingzhi Shen, Fengliang Wang, Haijin Liu, Yang Liu, Zongwei Cai, Wenying Lv, Guoguang Liu. Accelerated photocatalytic degradation of diclofenac by a novel CQDs/BiOCOOH hybrid material under visible-light irradiation: Dechloridation, detoxicity, and a new superoxide radical model study. Chemical Engineering Journal 2018, 332 , 737-748. https://doi.org/10.1016/j.cej.2017.09.118
  34. Jing Li, Hu Zhou, Han Zhuo, Zhongzhe Wei, Guilin Zhuang, Xing Zhong, Shengwei Deng, Xiaonian Li, Jianguo Wang. Oxygen vacancies on TiO 2 promoted the activity and stability of supported Pd nanoparticles for the oxygen reduction reaction. Journal of Materials Chemistry A 2018, 6 (5) , 2264-2272. https://doi.org/10.1039/C7TA09831F
  35. Cui Jin, Ying Dai, Wei Wei, Xiangchao Ma, Mengmeng Li, Baibiao Huang. Effects of single metal atom (Pt, Pd, Rh and Ru) adsorption on the photocatalytic properties of anatase TiO 2. Applied Surface Science 2017, 426 , 639-646. https://doi.org/10.1016/j.apsusc.2017.07.065
  36. Raina Panta, Vithaya Ruangpornvisuti. Adsorption of hydrogen molecule on noble metal doped on oxygen-vacancy defect of anatase TiO2(101) surface: Periodic DFT study. International Journal of Hydrogen Energy 2017, 42 (30) , 19106-19113. https://doi.org/10.1016/j.ijhydene.2017.04.251
  37. Geun-Ho Han, Myung-gi Seo, Young-Hoon Cho, Sang Soo Han, Kwan-Young Lee. Highly dispersed Pd catalysts prepared by a sonochemical method for the direct synthesis of hydrogen peroxide. Molecular Catalysis 2017, 429 , 43-50. https://doi.org/10.1016/j.molcata.2016.12.003
  38. Afnan Alghannam, Christopher L. Muhich, Charles B. Musgrave. Adatom surface diffusion of catalytic metals on the anatase TiO 2 (101) surface. Physical Chemistry Chemical Physics 2017, 19 (6) , 4541-4552. https://doi.org/10.1039/C6CP08789B
  39. Zong-You Jiang, Zong-Yan Zhao. Density functional theory study on the metal–support interaction between a Au 9 cluster and an anatase TiO 2 (001) surface. Physical Chemistry Chemical Physics 2017, 19 (33) , 22069-22077. https://doi.org/10.1039/C7CP03796A
  40. Satish Kumar Iyemperumal, N. Aaron Deskins. Activation of CO 2 by supported Cu clusters. Physical Chemistry Chemical Physics 2017, 19 (42) , 28788-28807. https://doi.org/10.1039/C7CP05718K
  41. Roong Jien Wong, Jason Scott, Peter Kappen, Gary K.-C. Low, Judy N. Hart, Rose Amal. Enhancing bimetallic synergy with light: the effect of UV light pre-treatment on catalytic oxygen activation by bimetallic Au–Pt nanoparticles on a TiO 2 support. Catal. Sci. Technol. 2017, 7 (20) , 4792-4805. https://doi.org/10.1039/C7CY01326D
  42. Zong-You Jiang, Zong-Yan Zhao. Adsorption of Au x Cu y ( x + y = 1, 2, 3) nanoclusters on the anatase TiO 2 (101) surface and their catalytic activity: a density functional theory study. Catalysis Science & Technology 2017, 7 (23) , 5709-5722. https://doi.org/10.1039/C7CY01650F
  43. Kakeru Fujiwara, Kikuo Okuyama, Sotiris E. Pratsinis. Metal–support interactions in catalysts for environmental remediation. Environmental Science: Nano 2017, 4 (11) , 2076-2092. https://doi.org/10.1039/C7EN00678K
  44. Zhi Jiang, Zhongti Sun, Yuqi Yang, Siyu Chen, Wenfeng Shangguan, Xiaojun Wu. The role of metal oxide interactions: revisiting Pt growth on the TiO 2 surface in the process of impregnation method. Nanoscale 2017, 9 (37) , 14272-14279. https://doi.org/10.1039/C7NR02913F
  45. Minsu Jung, Judy N. Hart, Dominic Boensch, Jason Scott, Yun Hau Ng, Rose Amal. Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2. Applied Catalysis A: General 2016, 518 , 221-230. https://doi.org/10.1016/j.apcata.2015.10.040
  46. Jian-Hong Liu, Ling-Dong Meng, Cun-Qin Lv, Gui-Chang Wang. Selective hydrogenation of acetylene over TiO 2 -supported PdAg cluster: carbon species effect. RSC Advances 2016, 6 (18) , 14593-14601. https://doi.org/10.1039/C5RA23507C
  47. Roong Jien Wong, Jason Scott, Gary K.-C. Low, Haifeng Feng, Yi Du, Judy N. Hart, Rose Amal. Investigating the effect of UV light pre-treatment on the oxygen activation capacity of Au/TiO 2. Catalysis Science & Technology 2016, 6 (23) , 8188-8199. https://doi.org/10.1039/C6CY01717G
  48. Yanxin Wang, Yan Su, Mingyuan Zhu, Lihua Kang. Mechanism of CO methanation on the Ni4/γ-Al2O3 and Ni3Fe/γ-Al2O3 catalysts: A density functional theory study. International Journal of Hydrogen Energy 2015, 40 (29) , 8864-8876. https://doi.org/10.1016/j.ijhydene.2015.05.002
  49. Qing-Lu Liu, Zong-Yan Zhao. DFT study on microstructures and electronic structures of Pt mono-/bi-doped anatase TiO 2 (101) surface. RSC Advances 2015, 5 (23) , 17984-17992. https://doi.org/10.1039/C4RA12671H
  50. Yanxin Wang, Yan Su, Mingyuan Zhu, Lihua Kang. Ni cluster nucleation and growth on the anatase TiO 2 (101) surface: a density functional theory study. RSC Advances 2015, 5 (21) , 16582-16591. https://doi.org/10.1039/C4RA13975E
  51. Ling-Dong Meng, Gui-Chang Wang. A DFT + U study of acetylene selective hydrogenation over anatase supported Pd a Ag b (a + b = 4) cluster. Physical Chemistry Chemical Physics 2014, 16 (33) , 17541. https://doi.org/10.1039/C4CP01818D
  52. Hua-Xi Zhang, Ming Zhao, Qing Jiang. Effect of oxygen vacancies on electronic structures and field emission properties of TiO 2 nanotubes: A density-functional theory investigation. Applied Physics Letters 2013, 103 (2) , 023111. https://doi.org/10.1063/1.4813546
  53. Hiromitsu Uehara, Muhammad Haneef Bin Hanaffi, Yuichiro Koike, Keisuke Fujikawa, Shushi Suzuki, Hiroko Ariga, Satoru Takakusagi, Wang-Jae Chun, Yasuhiro Iwasawa, Kiyotaka Asakura. Anisotropic growth of a nickel trimer formed on a highly-stepped TiO2(110) surface. Chemical Physics Letters 2013, 570 , 64-69. https://doi.org/10.1016/j.cplett.2013.02.053
  54. WEI-NA ZHAO, WEN-KAI CHEN. STRUCTURES AND ELECTRONIC PROPERTIES OF A Co 2 P CLUSTER DEPOSITED ON THE RUTILE TiO 2 (110) SURFACE BY FIRST–PRINCIPLES CALCULATIONS. Journal of Theoretical and Computational Chemistry 2013, 12 (01) , 1250102. https://doi.org/10.1142/S0219633612501027
  55. Weina Zhao, Huaxiang Lin, Yi Li, Yongfan Zhang, Xin Huang, Wenkai Chen. Growth mechanism of palladium clusters on rutile TiO2(110) surface. Journal of Natural Gas Chemistry 2012, 21 (5) , 544-555. https://doi.org/10.1016/S1003-9953(11)60403-9
  56. Jie Yang, Li-Xin Cao, Gui-Chang Wang. Acetylene hydrogenation on anatase TiO2(101) supported Pd4 cluster: oxygen deficiency effect. Journal of Molecular Modeling 2012, 18 (7) , 3329-3339. https://doi.org/10.1007/s00894-011-1337-4
  57. Jie Yang, Cun-Qin Lv, Yong Guo, Gui-Chang Wang. A DFT+U study of acetylene selective hydrogenation on oxygen defective anatase (101) and rutile (110) TiO 2 supported Pd 4 cluster. The Journal of Chemical Physics 2012, 136 (10) , 104107. https://doi.org/10.1063/1.3692292
  58. Raina Wanbayor, Vithaya Ruangpornvisuti. A periodic DFT study on binding of Pd, Pt and Au on the anatase TiO2 (001) surface and adsorption of CO on the TiO2 surface-supported Pd, Pt and Au. Applied Surface Science 2012, 258 (7) , 3298-3301. https://doi.org/10.1016/j.apsusc.2011.11.085
  59. You Han, Ming Zhang, Wei Li, Jinli Zhang. Effect of TiO2 support on the structural and electronic properties of PdmAgn clusters: a first-principles study. Physical Chemistry Chemical Physics 2012, 14 (24) , 8683. https://doi.org/10.1039/c2cp40562h
  60. Jin Zhang, Anastassia N. Alexandrova. Structure, stability, and mobility of small Pd clusters on the stoichiometric and defective TiO 2 (110) surfaces. The Journal of Chemical Physics 2011, 135 (17) , 174702. https://doi.org/10.1063/1.3657833
  61. Rainer Koch, Andrew S. Lipton, Slawomir Filipek, Venkatesan Renugopalakrishnan. Arginine interactions with anatase TiO2 (100) surface and the perturbation of 49Ti NMR chemical shifts – a DFT investigation: relevance to Renu-Seeram bio solar cell. Journal of Molecular Modeling 2011, 17 (6) , 1467-1472. https://doi.org/10.1007/s00894-010-0853-y
  62. Yanaris Ortega, Norge Cruz Hernández, Eduardo Menéndez-Proupin, Jesús Graciani, Javier Fdez. Sanz. Nitrogen/gold codoping of the TiO2(101) anatase surface. A theoretical study based on DFT calculations. Physical Chemistry Chemical Physics 2011, 13 (23) , 11340. https://doi.org/10.1039/c0cp02470h
  63. V. E. Matulis, A. S. Mozheiko, O. A. Ivashkevich. Quantum-chemical study of adsorption of Ag2, Ag4, and Ag8 on different parts of the TiO2 surface. Russian Journal of General Chemistry 2010, 80 (6) , 1068-1077. https://doi.org/10.1134/S107036321006006X
  64. Wen Zeng, Tianmo Liu, Zhongchang Wang, Susumu Tsukimoto, Mitsuhiro Saito, Yuichi Ikuhara. Oxygen Adsorption on Anatase TiO2 (101) and (001) Surfaces from First Principles. MATERIALS TRANSACTIONS 2010, 51 (1) , 171-175. https://doi.org/10.2320/matertrans.M2009317
  65. Christopher J. Cramer, Donald G. Truhlar. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics 2009, 11 (46) , 10757. https://doi.org/10.1039/b907148b