Role of pH in the Formation of Structurally Stable and Catalytically Active TiO2-Supported Gold Catalysts

View Author Information
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
* Corresponding author. Fax: (865) 574-4143. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2009, 113, 1, 269–280
Publication Date (Web):December 12, 2008
https://doi.org/10.1021/jp808249f
Copyright © 2008 American Chemical Society
Article Views
1898
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

We report the investigation of titania (Degussa P25) supported gold catalysts prepared by magnetron sputtering. Catalysts grown on natural fumed titania were structurally unstable, resulting in the rapid coarsening of 2.4 nm gold clusters into large ∼20 nm gold clusters in a few days at room temperature under normal atmospheric conditions. However, treating the titania support powder to a mock deposition−precipitation process, at pH 4, followed by the subsequent deposition of gold onto this treated powder produced a remarkable enhancement in gold particle stability and a 20-fold enhancement of catalytic activity. Furthermore, it was found that treating the titania under basic conditions (pH 10) resulted in a further enhancement of structural stability and a further doubling of the reaction rate to 0.28 mol of CO/mol of Au·s. This enhancement cannot be attributed to removing surface Cl species from the titania, the formation of oxygen vacancies on the TiO2 surface, or an electronic effect. Instead, it appears to be associated with the formation of strongly bound hydroxyl species on the TiO2 surface. The formation of surface hydroxyls during the deposition−precipitation method is coincidental and contributes significantly to the properties of Au/TiO2 catalysts.

Supporting Information

ARTICLE SECTIONS
Jump To

Raw, noncorrected, digital camera images (S1−S4), Au/natural P25 histogram (S5), N2 BET data (S6), support O 1s XPS data (S7), fitting data for O 1s peaks (S8, S10−S12), Au/TiO2 Ti 2p XPS data (S9), Au 4f XPS data (S13), Au XAS data (S14), and Cl 2p XPS data for TiO2 supports (S15). This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 61 publications.

  1. Lingfeng Li, Quan Zhang, Xiaohao Wang, Juhua Zhang, Huajun Gu, Wei-Lin Dai. Au Nanoparticles Embedded in Carbon Self-Doping g-C3N4: Facile Photodeposition Method for Superior Photocatalytic H2 Evolution. The Journal of Physical Chemistry C 2021, 125 (20) , 10964-10973. https://doi.org/10.1021/acs.jpcc.1c02269
  2. Yevgeny Rakita, Daniel O’Nolan, Rebecca D. McAuliffe, Gabriel M. Veith, Peter J. Chupas, Simon J. L. Billinge, Karena W. Chapman. Active Reaction Control of Cu Redox State Based on Real-Time Feedback from In Situ Synchrotron Measurements. Journal of the American Chemical Society 2020, 142 (44) , 18758-18762. https://doi.org/10.1021/jacs.0c09418
  3. Claire L. Seitzinger, Robert L. Sacci, Jaclyn E. Coyle, Christopher A. Apblett, Kevin A. Hays, Ryan R. Armstrong, Alexander M. Rogers, Beth L. Armstrong, Tyler H. Bennet, Nathan R. Neale, Gabriel M. Veith. Intrinsic Chemical Reactivity of Silicon Electrode Materials: Gas Evolution. Chemistry of Materials 2020, 32 (7) , 3199-3210. https://doi.org/10.1021/acs.chemmater.0c00308
  4. Gabriel M. Veith, Beth L. Armstrong, Hsin Wang, Sergiy Kalnaus, Wyatt E. Tenhaeff, and Mary L. Patterson . Shear Thickening Electrolytes for High Impact Resistant Batteries. ACS Energy Letters 2017, 2 (9) , 2084-2088. https://doi.org/10.1021/acsenergylett.7b00511
  5. Jan-Yves Ruzicka, Faridah Abu Bakar, Christoffer Hoeck, Rohul Adnan, Campbell McNicoll, Tim Kemmitt, Bruce C. Cowie, Gregory F. Metha, Gunther G. Andersson, and Vladimir B. Golovko . Toward Control of Gold Cluster Aggregation on TiO2 via Surface Treatments. The Journal of Physical Chemistry C 2015, 119 (43) , 24465-24474. https://doi.org/10.1021/acs.jpcc.5b07732
  6. Jacqueline B. Priebe, Jörg Radnik, Alastair J. J. Lennox, Marga-Martina Pohl, Michael Karnahl, Dirk Hollmann, Kathleen Grabow, Ursula Bentrup, Henrik Junge, Matthias Beller, and Angelika Brückner . Solar Hydrogen Production by Plasmonic Au–TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates. ACS Catalysis 2015, 5 (4) , 2137-2148. https://doi.org/10.1021/cs5018375
  7. Yuichi Fujimori, William E. Kaden, Matthew A. Brown, Beatriz Roldan Cuenya, Martin Sterrer, and Hans-Joachim Freund . Hydrogen Evolution from Metal–Surface Hydroxyl Interaction. The Journal of Physical Chemistry C 2014, 118 (31) , 17717-17723. https://doi.org/10.1021/jp504655e
  8. Gabriel M. Veith, Andrew R. Lupini, Loïc Baggetto, James F. Browning, Jong K. Keum, Alberto Villa, Laura Prati, Alexander B. Papandrew, Gabriel A. Goenaga, David R. Mullins, Steven E. Bullock, and Nancy J. Dudney . Evidence for the Formation of Nitrogen-Rich Platinum and Palladium Nitride Nanoparticles. Chemistry of Materials 2013, 25 (24) , 4936-4945. https://doi.org/10.1021/cm403224m
  9. Ming Yang, Lawrence F. Allard, and Maria Flytzani-Stephanopoulos . Atomically Dispersed Au–(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction. Journal of the American Chemical Society 2013, 135 (10) , 3768-3771. https://doi.org/10.1021/ja312646d
  10. Joseph A. Singh, Steven H. Overbury, Nancy J. Dudney, Meijun Li, and Gabriel M. Veith . Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation. ACS Catalysis 2012, 2 (6) , 1138-1146. https://doi.org/10.1021/cs3001094
  11. P. Ganesh , P. R. C. Kent , Gabriel M. Veith . Role of Hydroxyl Groups on the Stability and Catalytic Activity of Au Clusters on a Rutile Surface. The Journal of Physical Chemistry Letters 2011, 2 (22) , 2918-2924. https://doi.org/10.1021/jz2013177
  12. Matthew A. Brown, Yuichi Fujimori, Franziska Ringleb, Xiang Shao, Fernando Stavale, Niklas Nilius, Martin Sterrer, and Hans-Joachim Freund . Oxidation of Au by Surface OH: Nucleation and Electronic Structure of Gold on Hydroxylated MgO(001). Journal of the American Chemical Society 2011, 133 (27) , 10668-10676. https://doi.org/10.1021/ja204798z
  13. Gregory W. Peterson, Joseph A. Rossin, Christopher J. Karwacki, and T. Grant Glover . Surface Chemistry and Morphology of Zirconia Polymorphs and the Influence on Sulfur Dioxide Removal. The Journal of Physical Chemistry C 2011, 115 (19) , 9644-9650. https://doi.org/10.1021/jp201173x
  14. De-en Jiang, Steven H. Overbury, and Sheng Dai . Interaction of Gold Clusters with a Hydroxylated Surface. The Journal of Physical Chemistry Letters 2011, 2 (10) , 1211-1215. https://doi.org/10.1021/jz200420t
  15. Xiaolin Zheng, Gabriel M. Veith, Evgeniy Redekop, Cynthia S. Lo, Gregory S. Yablonsky, and John T. Gleaves . Oxygen and CO Adsorption on Au/SiO2 Catalysts Prepared by Magnetron Sputtering: The Role of Oxygen Storage. Industrial & Engineering Chemistry Research 2010, 49 (21) , 10428-10437. https://doi.org/10.1021/ie100547f
  16. Matthew A. Brown, Esther Carrasco, Martin Sterrer and Hans-Joachim Freund. Enhanced Stability of Gold Clusters Supported on Hydroxylated MgO(001) Surfaces. Journal of the American Chemical Society 2010, 132 (12) , 4064-4065. https://doi.org/10.1021/ja100343m
  17. Kai Li, Gabriel M. Veith, Meghan E. Lamm, Annie Stevens, Tej Lamichhane, Wei Guo, Shannon M. Mahurin, Kaushik Biswas, Diana Hun, Hsin Wang, Edgar Lara-Curzio, Soydan Ozcan, Tolga Aytug. Hermetically sealed porous-wall hollow microspheres enabled by monolithic glass coatings: Potential for thermal insulation applications. Vacuum 2021, 42 , 110667. https://doi.org/10.1016/j.vacuum.2021.110667
  18. Hamed Mohtasham, Behnam Gholipour, Sadegh Rostamnia, Azra Ghiasi-Moaser, Mustafa Farajzadeh, Nasrin Nouruzi, Ho Won Jang, Rajender S. Varma, Mohammadreza Shokouhimehr. Hydrothermally exfoliated P-doped g-C3N4 decorated with gold nanorods for highly efficient reduction of 4-nitrophenol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 614 , 126187. https://doi.org/10.1016/j.colsurfa.2021.126187
  19. Chunchuan Xu, Jun Yang, Ershuai Liu, Qingying Jia, Gabriel M. Veith, Gokul Nair, Stephen DiPietro, Kai Sun, Jixin Chen, P. Pietrasz, Zijie Lu, Mark Jagner, Kerrie K. Gath, Sanjeev Mukerjee, James R. Waldecker. Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. Journal of Power Sources 2020, 451 , 227709. https://doi.org/10.1016/j.jpowsour.2020.227709
  20. Xiangxiang Ding, Yulin Feng, Peng Huang, Lifeng Liu, Jinfeng Kang. Low-Power Resistive Switching Characteristic in HfO2/TiOx Bi-Layer Resistive Random-Access Memory. Nanoscale Research Letters 2019, 14 (1) https://doi.org/10.1186/s11671-019-2956-4
  21. Wenhui Li, Yi Liu, Minchen Mu, Fanshu Ding, Zhongmin Liu, Xinwen Guo, Chunshan Song. Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation. Applied Catalysis B: Environmental 2019, 254 , 531-540. https://doi.org/10.1016/j.apcatb.2019.05.028
  22. Rasoul Khayyam Nekouei, Farshid Pahlevani, Rabeeh Golmohammadzadeh, Mohammad Assefi, Ravindra Rajarao, Yen-Hao Chen, Veena Sahajwalla. Recovery of heavy metals from waste printed circuit boards: statistical optimization of leaching and residue characterization. Environmental Science and Pollution Research 2019, 26 (24) , 24417-24429. https://doi.org/10.1007/s11356-019-05596-y
  23. Danilo Bonincontro, Alice Lolli, Alberto Villa, Laura Prati, Nikolaos Dimitratos, Gabriel M. Veith, Lidia E. Chinchilla, Gianlugi A. Botton, Fabrizio Cavani, Stefania Albonetti. AuPd-nNiO as an effective catalyst for the base-free oxidation of HMF under mild reaction conditions. Green Chemistry 2019, 21 (15) , 4090-4099. https://doi.org/10.1039/C9GC01283D
  24. Zhi-Guang Sun, Xiao-Song Li, Jing-Lin Liu, Bin Zhu, Xingguo Li, Ai-Min Zhu. Effect of ammonia-derived species on visible-light photocatalytic activity of Au supported on amorphous TiO 2 activated by plasma. Plasma Processes and Polymers 2018, 15 (11) , 1800095. https://doi.org/10.1002/ppap.201800095
  25. Muhammad Shahid Arshad, Špela Trafela, Kristina Žužek Rožman, Janez Kovač, Petar Djinović, Albin Pintar. Determination of Schottky barrier height and enhanced photoelectron generation in novel plasmonic immobilized multisegmented (Au/TiO 2 ) nanorod arrays (NRAs) suitable for solar energy conversion applications. Journal of Materials Chemistry C 2017, 5 (40) , 10509-10516. https://doi.org/10.1039/C7TC02633A
  26. A. V. Marikutsa, M. N. Rumyantseva, A. M. Gaskov, A. M. Samoylov. Nanocrystalline tin dioxide: Basics in relation with gas sensing phenomena part II. Active centers and sensor behavior. Inorganic Materials 2016, 52 (13) , 1311-1338. https://doi.org/10.1134/S0020168516130045
  27. Yongfang Yang, Zheng Ma, Lidong Xu, Hefang Wang, Nian Fu. Preparation of reduced graphene oxide/meso-TiO 2 /AuNPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Applied Surface Science 2016, 369 , 576-583. https://doi.org/10.1016/j.apsusc.2016.02.078
  28. Alberto Villa, Nikolaos Dimitratos, Carine E. Chan-Thaw, Ceri Hammond, Gabriel M. Veith, Di Wang, Maela Manzoli, Laura Prati, Graham J. Hutchings. Characterisation of gold catalysts. Chemical Society Reviews 2016, 45 (18) , 4953-4994. https://doi.org/10.1039/C5CS00350D
  29. F. Sordello, E. Odorici, K. Hu, C. Minero, M. Cerruti, P. Calza. Shape controllers enhance the efficiency of graphene–TiO 2 hybrids in pollutant abatement. Nanoscale 2016, 8 (6) , 3407-3415. https://doi.org/10.1039/C5NR07257C
  30. Roong Jien Wong, Jason Scott, Gary K.-C. Low, Haifeng Feng, Yi Du, Judy N. Hart, Rose Amal. Investigating the effect of UV light pre-treatment on the oxygen activation capacity of Au/TiO 2. Catalysis Science & Technology 2016, 6 (23) , 8188-8199. https://doi.org/10.1039/C6CY01717G
  31. M. Sarro, M. Cerruti, P. Calza, L. Anfossi. Carboxylated graphene–TiO 2 hybrids as multifunctional materials: from photocatalysis to peroxidase alternatives. RSC Advances 2016, 6 (55) , 49845-49851. https://doi.org/10.1039/C6RA07808G
  32. Carine Chan-Thaw, Laura Prati, Alberto Villa. Miscellaneous. 2015,,, 123-134. https://doi.org/10.1201/b19911-6
  33. Gabriel Veith. X-Ray Photoelectron Spectroscopy Characterization of Gold Catalysts. 2015,,, 171-203. https://doi.org/10.1201/b19911-8
  34. Nan Yi, Maria Flytzani-Stephanopoulos. Gold/Ceria. 2015,,, 133-158. https://doi.org/10.1016/B978-0-12-801217-8.00005-0
  35. Fei Qi, Bingbing Xu, Wei Chu. Heterogeneous catalytic ozonation of phenacetin in water using magnetic spinel ferrite as catalyst: Comparison of surface property and efficiency. Journal of Molecular Catalysis A: Chemical 2015, 396 , 164-173. https://doi.org/10.1016/j.molcata.2014.10.001
  36. Chuanyi Jia, Weiliu Fan. A theoretical study of O 2 activation by the Au 7 -cluster on Mg(OH) 2 : roles of surface hydroxyls and hydroxyl defects. Physical Chemistry Chemical Physics 2015, 17 (45) , 30736-30743. https://doi.org/10.1039/C5CP05591A
  37. A. Leelavathi, Giridhar Madras, N. Ravishankar. Ultrathin Au nanowires supported on rGO/TiO 2 as an efficient photoelectrocatalyst. Journal of Materials Chemistry A 2015, 3 (33) , 17459-17468. https://doi.org/10.1039/C5TA03988F
  38. Johnny Saavedra, Hieu A. Doan, Christopher J. Pursell, Lars C. Grabow, Bert D. Chandler. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 2014, 345 (6204) , 1599-1602. https://doi.org/10.1126/science.1256018
  39. Subhajyoti Samanta, Satyabadi Martha, Kulamani Parida. Facile Synthesis of Au/g-C 3 N 4 Nanocomposites: An Inorganic/Organic Hybrid Plasmonic Photocatalyst with Enhanced Hydrogen Gas Evolution Under Visible-Light Irradiation. ChemCatChem 2014, 238 , n/a-n/a. https://doi.org/10.1002/cctc.201300949
  40. Estephania Lira, Jonas Ø. Hansen, Lindsay R. Merte, Phillip T. Sprunger, Zheshen Li, Flemming Besenbacher, Stefan Wendt. Growth of Ag and Au Nanoparticles on Reduced and Oxidized Rutile TiO2(110) Surfaces. Topics in Catalysis 2013, 56 (15-17) , 1460-1476. https://doi.org/10.1007/s11244-013-0141-z
  41. Jiaying Cai, Hong Ma, Junjie Zhang, Qi Song, Zhongtian Du, Yizheng Huang, Jie Xu. Gold Nanoclusters Confined in a Supercage of Y Zeolite for Aerobic Oxidation of HMF under Mild Conditions. Chemistry - A European Journal 2013, 19 (42) , 14215-14223. https://doi.org/10.1002/chem.201301735
  42. Katie L. Browning, Loïc Baggetto, Raymond R. Unocic, Nancy J. Dudney, Gabriel M. Veith. Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation. Journal of Power Sources 2013, 239 , 341-346. https://doi.org/10.1016/j.jpowsour.2013.03.118
  43. Kunfeng ZHAO, Botao QIAO, Yanjie ZHANG, Junhu WANG. The roles of hydroxyapatite and FeOx in a Au/FeOx hydroxyapatite catalyst for CO oxidation. Chinese Journal of Catalysis 2013, 34 (7) , 1386-1394. https://doi.org/10.1016/S1872-2067(12)60590-7
  44. Martin Sterrer, Hans-Joachim Freund. Towards Realistic Surface Science Models of Heterogeneous Catalysts: Influence of Support Hydroxylation and Catalyst Preparation Method. Catalysis Letters 2013, 143 (5) , 375-385. https://doi.org/10.1007/s10562-013-0987-5
  45. Julia L. Rodríguez, Tatiana Poznyak, Miguel A. Valenzuela, Hugo Tiznado, Isaac Chairez. Surface interactions and mechanistic studies of 2,4-dichlorophenoxyacetic acid degradation by catalytic ozonation in presence of Ni/TiO2. Chemical Engineering Journal 2013, 222 , 426-434. https://doi.org/10.1016/j.cej.2013.02.086
  46. Kexin Li, Tong Chen, Liushui Yan, Yuhua Dai, Zhimin Huang, Jingjing Xiong, Dongyang Song, Ying Lv, Zhenxing Zeng. Design of graphene and silica co-doped titania composites with ordered mesostructure and their simulated sunlight photocatalytic performance towards atrazine degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 422 , 90-99. https://doi.org/10.1016/j.colsurfa.2013.01.039
  47. Niklas Nilius, Thomas Risse, Shamil Shaikhutdinov, Martin Sterrer, Hans-Joachim Freund. Model Catalysts Based on Au Clusters and Nanoparticles. 2013,,, 91-138. https://doi.org/10.1007/430_2013_135
  48. Maria Flytzani-Stephanopoulos, Bruce C. Gates. Atomically Dispersed Supported Metal Catalysts. Annual Review of Chemical and Biomolecular Engineering 2012, 3 (1) , 545-574. https://doi.org/10.1146/annurev-chembioeng-062011-080939
  49. Takashi Takei, Tomoki Akita, Isao Nakamura, Tadahiro Fujitani, Mitsutaka Okumura, Kazuyuki Okazaki, Jiahui Huang, Tamao Ishida, Masatake Haruta. Heterogeneous Catalysis by Gold. 2012,,, 1-126. https://doi.org/10.1016/B978-0-12-385516-9.00001-6
  50. Laura Prati, Alberto Villa, Andrew R. Lupini, Gabriel M. Veith. Gold on carbon: one billion catalysts under a single label. Physical Chemistry Chemical Physics 2012, 14 (9) , 2969. https://doi.org/10.1039/c2cp23405j
  51. Hui-Feng Wang, William E. Kaden, Rhys Dowler, Martin Sterrer, Hans-Joachim Freund. Model oxide-supported metal catalysts – comparison of ultrahigh vacuum and solution based preparation of Pd nanoparticles on a single-crystalline oxide substrate. Physical Chemistry Chemical Physics 2012, 14 (32) , 11525. https://doi.org/10.1039/c2cp41459g
  52. Fatiha Barka-Bouaifel, Karim Makaoui, Pierre-Yves Jouan, Xavier Castel, Nacer Bezzi, Rabah Boukherroub, Sabine Szunerits. Preparation and photocatalytic properties of quartz/gold nanostructures/TiO2 lamellar structures. RSC Advances 2012, 2 (32) , 12482. https://doi.org/10.1039/c2ra20995k
  53. Yoongu Kim, Gabriel M. Veith, Jagjit Nanda, Raymond R. Unocic, Miaofang Chi, Nancy J. Dudney. High voltage stability of LiCoO2 particles with a nano-scale Lipon coating. Electrochimica Acta 2011, 56 (19) , 6573-6580. https://doi.org/10.1016/j.electacta.2011.03.070
  54. Ranjan Ramachandra, Hendrix Demers, Niels de Jonge. Atomic-resolution scanning transmission electron microscopy through 50-nm-thick silicon nitride membranes. Applied Physics Letters 2011, 98 (9) , 093109. https://doi.org/10.1063/1.3561758
  55. Norbert Kruse, Sergey Chenakin. XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects. Applied Catalysis A: General 2011, 391 (1-2) , 367-376. https://doi.org/10.1016/j.apcata.2010.05.039
  56. Kunfeng Zhao, Botao Qiao, Junhu Wang, Yanjie Zhang, Tao Zhang. A highly active and sintering-resistant Au/FeO x –hydroxyapatite catalyst for CO oxidation. Chem. Commun. 2011, 47 (6) , 1779-1781. https://doi.org/10.1039/C0CC04171H
  57. Gabriel M. Veith, Nancy J. Dudney. Current Collectors for Rechargeable Li-Air Batteries. Journal of The Electrochemical Society 2011, 158 (6) , A658. https://doi.org/10.1149/1.3569750
  58. Namal de Silva, Jeong-Myeong Ha, Andrew Solovyov, Michael M. Nigra, Isao Ogino, Sheila W. Yeh, Kathleen A. Durkin, Alexander Katz. A bioinspired approach for controlling accessibility in calix[4]arene-bound metal cluster catalysts. Nature Chemistry 2010, 2 (12) , 1062-1068. https://doi.org/10.1038/nchem.860
  59. Gabriel M. Veith, Andrew R. Lupini, Stephen J. Pennycook, Nancy J. Dudney. Influence of Support Hydroxides on the Catalytic Activity of Oxidized Gold Clusters. ChemCatChem 2010, 2 (3) , 281-286. https://doi.org/10.1002/cctc.200900243
  60. Geoffrey Bond, . Formulation of mechanisms for gold-catalysed reactions. Gold Bulletin 2009, 42 (4) , 247-259. https://doi.org/10.1007/BF03214946
  61. Maria Vittoria Dozzi, Laura Prati, Patrizia Canton, Elena Selli. Effects of gold nanoparticles deposition on the photocatalytic activity of titanium dioxide under visible light. Physical Chemistry Chemical Physics 2009, 11 (33) , 7171. https://doi.org/10.1039/b907317e