Low-Temperature CO Oxidation and Long-Term Stability of Au/In2O3−TiO2 Catalysts

View Author Information
Departamento de Ecomateriales y Energía, UANL, Instituto de Ingeniería Civil, Av. Universidad S/N, San Nicolás de los Garza, Nuevo León, C.P. 66451, Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria A. P. 70-186, Delegación Coyoacán, C.P. 04510, México D. F. Mexico, and Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No 186, México 09340, D.F. Mexico
* To whom correspondence should be addressed. E-mail: [email protected]. Tel.: +52(55)56228602, ext. 1115. Fax: +52(55)56228651.
†Instituto de Ingeniería Civil.
‡Universidad Nacional Autónoma de México.
§Universidad Autónoma Metropolitana-Iztapalapa.
Cite this: J. Phys. Chem. C 2009, 113, 20, 8911–8917
Publication Date (Web):April 29, 2009
https://doi.org/10.1021/jp8099797
Copyright © 2009 American Chemical Society
Article Views
1449
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (7 MB)

Abstract

In the present work, the preparation of Au/In2O3−TiO2 catalysts with loadings of 1, 6, and 12 wt % of In is reported. In2O3−TiO2 supports prepared by the sol−gel method allow the formation of solids with high specific surface area. By means of the urea deposition−precipitation method, gold nanoparticles in the range of 2.4−3.6 nm were obtained on the supported gold catalysts. Catalysts tested in the CO oxidation showed a very high activity at the subambient reaction temperature (0 °C). The indium oxide catalysts (6 and 12 wt % of In) are more active than the Au/TiO2 parent catalyst. Full conversion was achieved at temperatures lower than 150 °C on the Au/In−TiO2 (6 wt % of In). It is shown that under reaction conditions, the Au/In−TiO2 catalysts are more stable than the Au/TiO2 parent catalyst. This behavior is related to the strong anchoring of the gold particles on the well-dispersed indium oxide and on the structural defects of the support caused by the doping with In of the anatase support.

Cited By


This article is cited by 36 publications.

  1. Yong Zheng, Chen Wang, Juanjuan Li, Fulan Zhong, Yihong Xiao, Lilong Jiang. Enhanced Methane Oxidation over Co3O4–In2O3-x Composite Oxide Nanoparticles via Controllable Substitution of Co3+/Co2+ by In3+ Ions. ACS Applied Nano Materials 2020, 3 (9) , 9470-9479. https://doi.org/10.1021/acsanm.0c02075
  2. Shashank Mishra, Franck Morfin, Violaine Mendez, Prakash N. Swamy, Jean-Luc Rousset, Stéphane Daniele. Nanometric NaYF4 as an Unconventional Support for Gold Catalysts for Oxidation Reactions. ACS Omega 2019, 4 (3) , 5852-5861. https://doi.org/10.1021/acsomega.9b00173
  3. Jing-Jing Li, Bao-Lin Zhu, Gui-Chang Wang, Zun-Feng Liu, Wei-Ping Huang, Shou-Min Zhang. Role of Hydroxyl Groups in Low-Temperature CO Catalytic Oxidation over Zn4Si2O7(OH)2 Nanowire-Supported Gold Nanoparticles. The Journal of Physical Chemistry C 2018, 122 (44) , 25456-25466. https://doi.org/10.1021/acs.jpcc.8b08209
  4. Xiao-man Zhang, Pengfei Tian, Weifeng Tu, Zhenzhou Zhang, Jing Xu, Yi-Fan Han. Tuning the Dynamic Interfacial Structure of Copper–Ceria Catalysts by Indium Oxide during CO Oxidation. ACS Catalysis 2018, 8 (6) , 5261-5275. https://doi.org/10.1021/acscatal.7b04287
  5. Rodolfo Zanella, Vicente Rodríguez-González, Yamin Arzola, and Albino Moreno-Rodriguez . Au/Y-TiO2 Catalyst: High Activity and Long-Term Stability in CO Oxidation. ACS Catalysis 2012, 2 (1) , 1-11. https://doi.org/10.1021/cs200332v
  6. Yafei Li, Zhen Zhou, Guangtao Yu, Wei Chen and Zhongfang Chen. CO Catalytic Oxidation on Iron-Embedded Graphene: Computational Quest for Low-Cost Nanocatalysts. The Journal of Physical Chemistry C 2010, 114 (14) , 6250-6254. https://doi.org/10.1021/jp911535v
  7. G. Cerrato, G. Magnacca, C. Morterra, J. Montero and J. A. Anderson . Modification to the Surface Properties of Titania by Addition of India. The Journal of Physical Chemistry C 2009, 113 (47) , 20401-20410. https://doi.org/10.1021/jp9066789
  8. Ujjal Mondal, Ganapati D. Yadav. Methanol economy and net zero emissions: critical analysis of catalytic processes, reactors and technologies. Green Chemistry 2021, 23 (21) , 8361-8405. https://doi.org/10.1039/D1GC02078A
  9. Abulkosim Nasriddinov, Vadim Platonov, Alexey Garshev, Marina Rumyantseva. Low Temperature HCHO Detection by SnO2/[email protected] and SnO2/[email protected]: Understanding by In-Situ DRIFT Spectroscopy. Nanomaterials 2021, 11 (8) , 2049. https://doi.org/10.3390/nano11082049
  10. Calvin H. Bartholomew, Mahmood Rahmati, Marcus A. Reynolds. Optimizing preparations of Co Fischer-Tropsch catalysts for stability against sintering. Applied Catalysis A: General 2020, 602 , 117609. https://doi.org/10.1016/j.apcata.2020.117609
  11. Reza Katal, Mohammad Hossein Davood Abadi Farahani, Saeid Masudy-Panah, Say Leong Ong, Jiangyong Hu. Polypyrrole- and polyaniline-supported TiO 2 for removal of pollutants from water. Journal of Environmental Engineering and Science 2019, 14 (2) , 67-89. https://doi.org/10.1680/jenes.18.00003
  12. Archana Sharma, Anurag Srivastava, Mushahid Husain, Mohd. Shahid Khan. Computational investigations of Cu-embedded MoS2 sheet for CO oxidation catalysis. Journal of Materials Science 2018, 53 (13) , 9578-9588. https://doi.org/10.1007/s10853-018-2269-5
  13. Jiuli Guo, Qiuwan Han, Siyuan Zhong, Baolin Zhu, Weiping Huang, Shoumin Zhang. Au/M-TiO2 nanotube catalysts (M=Ce, Ga, Co, Y): preparation, characterization and their catalytic activity for CO oxidation. Journal of Sol-Gel Science and Technology 2018, 86 (3) , 699-710. https://doi.org/10.1007/s10971-018-4691-1
  14. Shaimaa K. Mohamed, Amr Awad Ibrahim, A.A. Mousa, Mohamed A. Betiha, E.A. El-Sharkawy, Hassan M.A. Hassan. Facile fabrication of ordered mesoporous Bi/Ti-MCM-41 nanocomposites for visible light-driven photocatalytic degradation of methylene blue and CO oxidation. Separation and Purification Technology 2018, 195 , 174-183. https://doi.org/10.1016/j.seppur.2017.12.008
  15. Maobin Dou, Minhua Zhang, Yifei Chen, Yingzhe Yu. Theoretical insights into the surface structure of In2O3(1 1 0) surface and its effect on methanol synthesis from CO2 hydrogenation. Computational and Theoretical Chemistry 2018, 1126 , 7-15. https://doi.org/10.1016/j.comptc.2018.01.008
  16. Mariana Hinojosa-Reyes, Roberto Camposeco-Solis, Rodolfo Zanella, Vicente Rodríguez-González, Facundo Ruiz. Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catalysis Letters 2018, 148 (1) , 383-396. https://doi.org/10.1007/s10562-017-2260-9
  17. M. Z. Naik, A. V. Salker. A systematic study of cobalt doped In 2 O 3 nanoparticles and their applications. Materials Research Innovations 2017, 21 (4) , 237-243. https://doi.org/10.1080/14328917.2016.1207044
  18. Ming Yu Zhao, Ru Meng Zhao, Meng Meng Niu, Wei Li, Ya Qiang Ma, Yi Li, Ya Nan Tang, Xian Qi Dai. Promotion of CO oxidation on the Fe/N X clusters embedded graphene. Applied Physics A 2017, 123 (3) https://doi.org/10.1007/s00339-017-0820-x
  19. Dong-Dong Ma, Ding Ding, Jun-Jie Huang, Hong Zhang, Yan-Ping Zheng, Ming-Shu Chen, Hui-Lin Wan. Promoting Effect of Bismuth Oxide on Palladium for Low-Temperature Carbon Monoxide Oxidation. ChemCatChem 2017, 9 (3) , 499-504. https://doi.org/10.1002/cctc.201601181
  20. Chunlei Wang, Junling Lu. Sub-nanometer-thick AI 2 O 3 Overcoat Remarkably Enhancing Thermal Stability of Supported Gold Catalysts. Chinese Journal of Chemical Physics 2016, 29 (5) , 571-577. https://doi.org/10.1063/1674-0068/29/cjcp1604065
  21. Ghenadii Korotcenkov, Vladimir Brinzari, Beong K. Cho. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchimica Acta 2016, 183 (3) , 1033-1054. https://doi.org/10.1007/s00604-015-1741-z
  22. Toshiyuki Goto, Takeo Hyodo, Taro Ueda, Kai Kamada, Kazunari Kaneyasu, Yasuhiro Shimizu. CO-sensing Properties of Potentiometric Gas Sensors Using an Anion-conducting Polymer Electrolyte and Au-loaded Metal Oxide Electrodes. Electrochimica Acta 2015, 166 , 232-243. https://doi.org/10.1016/j.electacta.2015.03.045
  23. Juanrong Chen, Fengxian Qiu, Wanzhen Xu, Shunsheng Cao, Huijun Zhu. Recent progress in enhancing photocatalytic efficiency of TiO 2 -based materials. Applied Catalysis A: General 2015, 495 , 131-140. https://doi.org/10.1016/j.apcata.2015.02.013
  24. Mu Yao Guo, Fangzhou Liu, Jenkin Tsui, Albert A. Voskanyan, Alan Man Ching Ng, Aleksandra B. Djurišić, Wai Kin Chan, Kwong-Yu Chan. Indium oxide cubes prepared by hydrothermal synthesis as catalysts for CO oxidation. Materials Chemistry and Physics 2015, 153 , 243-247. https://doi.org/10.1016/j.matchemphys.2015.01.009
  25. A.Y. Zamora, J.U. Reveles, R. Mejia-Olvera, T. Baruah, R.R. Zope. FeO2/MgO(1 0 0) supported cluster: Computational pursual for a low-cost and low-temperature CO nanocatalyst. Chemical Physics Letters 2014, 612 , 117-123. https://doi.org/10.1016/j.cplett.2014.07.061
  26. Tuo Ji, Licheng Li, Meng Wang, Zhuhong Yang, Xiaohua Lu. Carbon-protected Au nanoparticles supported on mesoporous TiO 2 for catalytic reduction of p-nitrophenol. RSC Adv. 2014, 4 (56) , 29591-29594. https://doi.org/10.1039/C4RA04412F
  27. Xiao Yan Liu, Aiqin Wang, Tao Zhang, Chung-Yuan Mou. Catalysis by gold: New insights into the support effect. Nano Today 2013, 8 (4) , 403-416. https://doi.org/10.1016/j.nantod.2013.07.005
  28. Ferdi Schüth. Colloidal deposition as method to study the influence of the support on the activity of gold catalysts in CO-oxidation. physica status solidi (b) 2013, 250 (6) , 1142-1151. https://doi.org/10.1002/pssb.201248499
  29. Yu Zhang, Bao Zhaorigetu, Meilin Jia, Chuncheng Chen, Jincai Zhao. Clay-based SiO2 as active support of gold nanoparticles for CO oxidation catalyst: Pivotal role of residual Al. Catalysis Communications 2013, 35 , 72-75. https://doi.org/10.1016/j.catcom.2013.02.006
  30. Shashank Mishra, Violaine Mendez, Erwann Jeanneau, Valérie Caps, Stéphane Daniele. A Single Source Precursor Route to Group 13 Homo‐ and Heterometallic Oxides as Highly Active Supports for Gold‐Catalyzed Aerobic Epoxidation of trans ‐Stilbene. European Journal of Inorganic Chemistry 2013, 2013 (4) , 500-510. https://doi.org/10.1002/ejic.201201191
  31. Hong-Yu Fan, Chuan Shi, Xiao-Song Li, Shuo Zhang, Jing-Lin Liu, Ai-Min Zhu. In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Applied Catalysis B: Environmental 2012, 119-120 , 49-55. https://doi.org/10.1016/j.apcatb.2012.02.016
  32. Jiamin Zheng, Jie Huang, Xian Li, Wei-Lin Dai, Kangnian Fan. Novel magnetic-separable and efficient Au/Fe–Al–O composite for the lactonization of 1,4-butanediol to γ-butyrolactone. RSC Advances 2012, 2 (9) , 3801. https://doi.org/10.1039/c2ra20196h
  33. Ningya Yu, Yan Ding, An-Ya Lo, Shing-Jong Huang, Pei-Hao Wu, Cheng Liu, Donghong Yin, Zaihui Fu, Dulin Yin, Chin-Te Hung, Zhibin Lei, Shang-Bin Liu. Gold nanoparticles supported on periodic mesoporous organosilicas for epoxidation of olefins: Effects of pore architecture and surface modification method of the supports. Microporous and Mesoporous Materials 2011, 143 (2-3) , 426-434. https://doi.org/10.1016/j.micromeso.2011.03.030
  34. Zhaodi Xu, Yuexiang Li, Shaoqin Peng, Gongxuan Lu, Shuben Li. Composition, morphology and photocatalytic activity of Zn-In-S composite synthesized by a NaCl-assisted hydrothermal method. CrystEngComm 2011, 13 (14) , 4770. https://doi.org/10.1039/c1ce05150d
  35. Shih-Chang Huang, Chia-Hao Lin, J.-H. Wang. Trends of Water Gas Shift Reaction on Close-Packed Transition Metal Surfaces. The Journal of Physical Chemistry C 2010, 114 (21) , 9826-9834. https://doi.org/10.1021/jp1005814
  36. Anmin Cao, Rongwen Lu, Götz Veser. Stabilizing metal nanoparticles for heterogeneous catalysis. Physical Chemistry Chemical Physics 2010, 12 (41) , 13499. https://doi.org/10.1039/c0cp00729c