Electron Transport in Dye-Sensitized Solar Cells Based on ZnO Nanotubes: Evidence for Highly Efficient Charge Collection and Exceptionally Rapid Dynamics

View Author Information
Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, Departament de Física, Universitat Jaume I, Av. Sos Baynat, s/n, 12071 Castelló, Spain, and Departamento de Físico-Química, Instituto de Química de Araraquara, Universidade Estadual Paulista, R. Prof. Francisco Degni s/n, 14800-900 Araraquara SP, Brazil
†Part of the “George C. Schatz Festschrift”.
* To whom correspondence should be addressed. E-mail: [email protected], [email protected]
⊥Northwestern University.
‡Argonne National Laboratory.
§Universitat Jaume I.
∥Universidade Estadual Paulista.
Cite this: J. Phys. Chem. A 2009, 113, 16, 4015–4021
Publication Date (Web):February 10, 2009
Copyright © 2009 American Chemical Society
Article Views
Read OnlinePDF (1 MB)


Dye-sensitized solar cells based on ordered arrays of polycrystalline ZnO nanotubes, 64 μm in length, are shown to exhibit efficient electron collection over the entire photoanode array length. Electrochemical impedance spectroscopy, open-circuit photovoltage decay analysis, and incident-photon-to-current efficiency spectra are used to quantify charge transport and lifetimes. Despite the relatively thick photoanode, the charge extraction time is found to be faster than observed in traditional TiO2 nanoparticle photoanodes. If the extraction dynamics are interpreted as diffusive, effective electron diffusion coefficients of up to 0.4 cm2 s−1 are obtained, making these pseudo-1D photoanodes the fastest reported for an operating DSC to date. Rapid electron collection is of practical significance because it should enable alternative redox shuttles, which display relatively fast electron-interception dynamics, to be employed without significant loss of photocurrent.

Cited By

This article is cited by 237 publications.

  1. Tea-Yon Kim, Byung Su Kim, Jong Gyu Oh, Seul Chan Park, Jaeyoung Jang, Thomas W. Hamann, Young Soo Kang, Jin Ho Bang, Sixto Giménez, Yong Soo Kang. Interfacial Engineering at Quantum Dot-Sensitized TiO2 Photoelectrodes for Ultrahigh Photocurrent Generation. ACS Applied Materials & Interfaces 2021, 13 (5) , 6208-6218. https://doi.org/10.1021/acsami.0c19352
  2. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  3. Daniel Commandeur, Grant Brown, Peter McNulty, Christopher Dadswell, John Spencer, Qiao Chen. Yttrium-Doped ZnO Nanorod Arrays for Increased Charge Mobility and Carrier Density for Enhanced Solar Water Splitting. The Journal of Physical Chemistry C 2019, 123 (30) , 18187-18197. https://doi.org/10.1021/acs.jpcc.9b03609
  4. Qiong Wang. Fast Voltage Decay in Perovskite Solar Cells Caused by Depolarization of Perovskite Layer. The Journal of Physical Chemistry C 2018, 122 (9) , 4822-4827. https://doi.org/10.1021/acs.jpcc.8b01033
  5. Vishal Govind Rao and H. Peter Lu . Inhomogeneous and Complex Interfacial Electron-Transfer Dynamics: A Single-Molecule Perspective. ACS Energy Letters 2016, 1 (4) , 773-791. https://doi.org/10.1021/acsenergylett.6b00237
  6. Jason R. Avila, Michael J. Katz, Omar K. Farha, and Joseph T. Hupp . Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. The Journal of Physical Chemistry C 2016, 120 (37) , 20922-20928. https://doi.org/10.1021/acs.jpcc.6b02651
  7. Woohyung Cho, Jongchul Lim, Tea-Yon Kim, Young Rae Kim, Donghoon Song, Taiho Park, Francisco Fabregat-Santiago, Juan Bisquert, and Yong Soo Kang . Electron-Transfer Kinetics through Interfaces between Electron-Transport and Ion-Transport Layers in Solid-State Dye-Sensitized Solar Cells Utilizing Solid Polymer Electrolyte. The Journal of Physical Chemistry C 2016, 120 (5) , 2494-2500. https://doi.org/10.1021/acs.jpcc.5b09259
  8. Haibin Wang, Victoria Gonzalez-Pedro, Takaya Kubo, Francisco Fabregat-Santiago, Juan Bisquert, Yoshitaka Sanehira, Jotaro Nakazaki, and Hiroshi Segawa . Enhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowires. The Journal of Physical Chemistry C 2015, 119 (49) , 27265-27274. https://doi.org/10.1021/acs.jpcc.5b09152
  9. M. Hosni, Y. Kusumawati, S. Farhat, N. Jouini, A. L. Ivansyah, M. A. Martoprawiro, and Th. Pauporté . Ruthenium Polypyridyl TG6 Dye for the Sensitization of Nanoparticle and Nanocrystallite Spherical Aggregate Photoelectrodes. ACS Applied Materials & Interfaces 2015, 7 (3) , 1568-1577. https://doi.org/10.1021/am5068645
  10. Vishal Govind Rao, Bharat Dhital, Yufan He, and H. Peter Lu . Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles: Dissecting the Complex Electronic Coupling Dependent Dynamics. The Journal of Physical Chemistry C 2014, 118 (35) , 20209-20221. https://doi.org/10.1021/jp506199w
  11. Feng Xu, Jing Chen, Xing Wu, Yi Zhang, Yuxi Wang, Jun Sun, Hengchang Bi, Wei Lei, Yaru Ni, and Litao Sun . Graphene Scaffolds Enhanced Photogenerated Electron Transport in ZnO Photoanodes for High-Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (17) , 8619-8627. https://doi.org/10.1021/jp312379b
  12. Jiandong Fan, Yan Hao, Andreu Cabot, Erik M. J. Johansson, Gerrit Boschloo, and Anders Hagfeldt . Cobalt(II/III) Redox Electrolyte in ZnO Nanowire-Based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (6) , 1902-1906. https://doi.org/10.1021/am400042s
  13. Michael J. Katz, Michael J. D. Vermeer, Omar K. Farha, Michael J. Pellin, and Joseph T. Hupp . Effects of Adsorbed Pyridine Derivatives and Ultrathin Atomic-Layer-Deposited Alumina Coatings on the Conduction Band-Edge Energy of TiO2 and on Redox-Shuttle-Derived Dark Currents. Langmuir 2013, 29 (2) , 806-814. https://doi.org/10.1021/la303962y
  14. Zhenzhen Yang, Shanmin Gao, Tao Li, Fa-Qian Liu, Yang Ren, and Tao Xu . Enhanced Electron Extraction from Template-Free 3D Nanoparticulate Transparent Conducting Oxide (TCO) Electrodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2012, 4 (8) , 4419-4427. https://doi.org/10.1021/am301090a
  15. Vennesa O. Williams, Nak Cheon Jeong, Chaiya Prasittichai, Omar K. Farha, Michael J. Pellin, and Joseph T. Hupp . Fast Transporting ZnO–TiO2 Coaxial Photoanodes for Dye-Sensitized Solar Cells Based on ALD-Modified SiO2 Aerogel Frameworks. ACS Nano 2012, 6 (7) , 6185-6196. https://doi.org/10.1021/nn3015695
  16. Juan A. Anta, Elena Guillén, and Ramón Tena-Zaera . ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (21) , 11413-11425. https://doi.org/10.1021/jp3010025
  17. Chengkun Xu and Di Gao . Two-Stage Hydrothermal Growth of Long ZnO Nanowires for Efficient TiO2 Nanotube-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (12) , 7236-7241. https://doi.org/10.1021/jp300960r
  18. Shengye Jin, Alex B. F. Martinson, and Gary P. Wiederrecht . Reduced Heterogeneity of Electron Transfer into Polycrystalline TiO2 Films: Site Specific Kinetics Revealed by Single-Particle Spectroscopy. The Journal of Physical Chemistry C 2012, 116 (4) , 3097-3104. https://doi.org/10.1021/jp2117505
  19. Xiao-Yun Yu, Jin-Yun Liao, Kang-Qiang Qiu, Dai-Bin Kuang, and Cheng-Yong Su . Dynamic Study of Highly Efficient CdS/CdSe Quantum Dot-Sensitized Solar Cells Fabricated by Electrodeposition. ACS Nano 2011, 5 (12) , 9494-9500. https://doi.org/10.1021/nn203375g
  20. Zhongjie Huang, Gayatri Natu, Zhiqiang Ji, Panitat Hasin, and Yiying Wu . p-Type Dye-Sensitized NiO Solar Cells: A Study by Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry C 2011, 115 (50) , 25109-25114. https://doi.org/10.1021/jp205306g
  21. Zheng-ji Zhou, Jun-qi Fan, Xia Wang, Wen-hui Zhou, Zu-liang Du, and Si-xin Wu . Effect of Highly Ordered Single-Crystalline TiO2 Nanowire Length on the Photovoltaic Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2011, 3 (11) , 4349-4353. https://doi.org/10.1021/am201001t
  22. Nicolas Tétreault, Éric Arsenault, Leo-Philipp Heiniger, Navid Soheilnia, Jérémie Brillet, Thomas Moehl, Shaik Zakeeruddin, Geoffrey A. Ozin, and Michael Grätzel . High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode. Nano Letters 2011, 11 (11) , 4579-4584. https://doi.org/10.1021/nl201792r
  23. S. Agarwala, C. K. N. Peh, and G. W. Ho . Investigation of Ionic Conductivity and Long-Term Stability of a LiI and KI Coupled Diphenylamine Quasi-Solid-State Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2011, 3 (7) , 2383-2391. https://doi.org/10.1021/am200296f
  24. Tina C. Li, Francisco Fabregat-Santiago, Omar K. Farha, Alexander M. Spokoyny, Sonia R. Raga, Juan Bisquert, Chad A. Mirkin, Tobin J. Marks, and Joseph T. Hupp . SiO2 Aerogel Templated, Porous TiO2 Photoanodes for Enhanced Performance in Dye-Sensitized Solar Cells Containing a Ni(III)/(IV) Bis(dicarbollide) Shuttle. The Journal of Physical Chemistry C 2011, 115 (22) , 11257-11264. https://doi.org/10.1021/jp112139h
  25. Chengkun Xu, Jiamin Wu, Umang V. Desai, and Di Gao . Multilayer Assembly of Nanowire Arrays for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (21) , 8122-8125. https://doi.org/10.1021/ja202135n
  26. Zhenzhen Yang, Shanmin Gao, Wei Li, Vitalii Vlasko-Vlasov, Ulrich Welp, Wai-Kwong Kwok, and Tao Xu . Three-Dimensional Photonic Crystal Fluorinated Tin Oxide (FTO) Electrodes: Synthesis and Optical and Electrical Properties. ACS Applied Materials & Interfaces 2011, 3 (4) , 1101-1108. https://doi.org/10.1021/am1012408
  27. Jiazang Chen, Bo Li, Jianfeng Zheng, Suping Jia, Jianghong Zhao, Huanwang Jing, and Zhenping Zhu . Role of One-Dimensional Ribbonlike Nanostructures in Dye-Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry C 2011, 115 (14) , 7104-7113. https://doi.org/10.1021/jp2004369
  28. Zhenzhen Yang, Tao Xu, Shanmin Gao, Ulrich Welp, and Wai-Kwong Kwok . Enhanced Electron Collection in TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells by an Array of Metal Micropillars on a Planar Fluorinated Tin Oxide Anode. The Journal of Physical Chemistry C 2010, 114 (44) , 19151-19156. https://doi.org/10.1021/jp108761k
  29. Anders Hagfeldt, Gerrit Boschloo, Licheng Sun, Lars Kloo, and Henrik Pettersson. Dye-Sensitized Solar Cells. Chemical Reviews 2010, 110 (11) , 6595-6663. https://doi.org/10.1021/cr900356p
  30. Yu Xie, Prakash Joshi, Seth B. Darling, Qiliang Chen, Ting Zhang, David Galipeau, and Qiquan Qiao . Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (41) , 17880-17888. https://doi.org/10.1021/jp106302m
  31. Kai Zhu, Nathan R. Neale, Adam F. Halverson, Jin Young Kim and Arthur J. Frank. Effects of Annealing Temperature on the Charge-Collection and Light-Harvesting Properties of TiO2 Nanotube-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (32) , 13433-13441. https://doi.org/10.1021/jp102137x
  32. Chaiya Prasittichai and Joseph T. Hupp. Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition. The Journal of Physical Chemistry Letters 2010, 1 (10) , 1611-1615. https://doi.org/10.1021/jz100361f
  33. Tina C. Li, Alexander M. Spokoyny, Chunxing She, Omar K. Farha, Chad A. Mirkin, Tobin J. Marks and Joseph T. Hupp. Ni(III)/(IV) Bis(dicarbollide) as a Fast, Noncorrosive Redox Shuttle for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2010, 132 (13) , 4580-4582. https://doi.org/10.1021/ja100396n
  34. Rebecca A. Jensen, Hal Van Ryswyk, Chunxing She, Jodi M. Szarko, Lin X. Chen and Joseph T. Hupp. Dye-Sensitized Solar Cells: Sensitizer-Dependent Injection into ZnO Nanotube Electrodes. Langmuir 2010, 26 (3) , 1401-1404. https://doi.org/10.1021/la902991z
  35. Jesse W. Ondersma and Thomas W. Hamann. Impedance Investigation of Dye-Sensitized Solar Cells Employing Outer-Sphere Redox Shuttles. The Journal of Physical Chemistry C 2010, 114 (1) , 638-645. https://doi.org/10.1021/jp908442p
  36. Zhenzhen Yang, Tao Xu, Yasuo Ito, Ulrich Welp and Wai Kwong Kwok. Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Rough Metal Anode. The Journal of Physical Chemistry C 2009, 113 (47) , 20521-20526. https://doi.org/10.1021/jp908678x
  37. Chuan He, Zhi Zheng, Huili Tang, Linan Zhao and Fang Lu. Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (24) , 10322-10325. https://doi.org/10.1021/jp902523c
  38. Brishty Deb Choudhury, Chen Lin, Sk Md Ali Zaker Shawon, Javier Soliz-Martinez, Hasina Huq, Mohammed Jasim Uddin. A photoanode with hierarchical nanoforest TiO2 structure and silver plasmonic nanoparticles for flexible dye sensitized solar cell. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-87123-z
  39. Yu-Sheng Tsai, Jyun-Rong Chen, Chang-Hsueh Lee, Chih-Chen Kuo, Ya-Hsuan Lin, Chun-Chieh Wang, Yu-Cheng Chang, YewChung Sermon Wu, Hsiang Chen. Morphologies and material properties of ZnO nanotubes, ZnO/ZnS core-shell nanorods, and ZnO/ZnS core-shell nanotubes. Ceramics International 2021, 133 https://doi.org/10.1016/j.ceramint.2021.11.283
  40. Andreas Ringleb, Raffael Ruess, Nico Hofeditz, Wolfram Heimbrodt, Tsukasa Yoshida, Derck Schlettwein. Influence of Mg-doping on the characteristics of ZnO photoanodes in dye-sensitized solar cells. Physical Chemistry Chemical Physics 2021, 23 (14) , 8393-8402. https://doi.org/10.1039/D1CP00179E
  41. Helliomar Pereira Barbosa, Diele Aparecida Gouveia Araújo, Lauro Antonio Pradela-Filho, Regina Massako Takeuchi, Renata Galvão de Lima, Jefferson Luis Ferrari, Márcio Sousa Góes, André Luiz dos Santos. Zinc Oxide as a Multifunctional Material: From Biomedical Applications to Energy Conversion and Electrochemical Sensing. 2021,,, 251-305. https://doi.org/10.1007/978-3-030-53065-5_7
  42. Antonio Paulo Santos Souza, Natália Macêdo Cavalcante, Francisco Nivaldo Aguiar Freire, Ana Fabíola Leite Almeida. Performance evaluation of titanium oxide deposited by electrophoresis in photoelectrodes of dye-sensitized solar cells. Matéria (Rio de Janeiro) 2021, 26 (1) https://doi.org/10.1590/s1517-707620210001.1251
  43. Ennio Luigi Comi, Evelyne Knapp, Stefano Weidmann, Christoph Kirsch, Sandra Jenatsch, Roman Hiestand, Beat Ruhstaller. Sinusoidal small-signal (AC) and steady-state (DC) analysis of large-area solar cells. Solar Energy Advances 2021, 1 , 100003. https://doi.org/10.1016/j.seja.2021.100003
  44. Azimah Omar, Mohd Syukri Ali, Nasrudin Abd Rahim. Electron transport properties analysis of titanium dioxide dye-sensitized solar cells (TiO2-DSSCs) based natural dyes using electrochemical impedance spectroscopy concept: A review. Solar Energy 2020, 207 , 1088-1121. https://doi.org/10.1016/j.solener.2020.07.028
  45. Yi Hou, Erkan Aydin, Michele De Bastiani, Chuanxiao Xiao, Furkan H. Isikgor, Ding-Jiang Xue, Bin Chen, Hao Chen, Behzad Bahrami, Ashraful H. Chowdhury, Andrew Johnston, Se-Woong Baek, Ziru Huang, Mingyang Wei, Yitong Dong, Joel Troughton, Rawan Jalmood, Alessandro J. Mirabelli, Thomas G. Allen, Emmanuel Van Kerschaver, Makhsud I. Saidaminov, Derya Baran, Qiquan Qiao, Kai Zhu, Stefaan De Wolf, Edward H. Sargent. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 2020, 367 (6482) , 1135-1140. https://doi.org/10.1126/science.aaz3691
  46. F. TOURI, A. SAHARI, A. ZOUAOUI, F. DEFLORIAN, L. GUERBOUS. OPTICAL, STRUCTURAL, AND MORPHOLOGICAL PROPERTIES OF UNDOPED AND EUROPIUM DOPED ZnO. Surface Review and Letters 2020, 27 (03) , 1950114. https://doi.org/10.1142/S0218625X19501142
  47. Evan Thomas Vickers, Ke Xu, Xueming Li, Jin Zhong Zhang. Dependence of stability and electronic and optical properties of perovskite quantum dots on capping ligand chain length. The Journal of Chemical Physics 2020, 152 (3) , 034701. https://doi.org/10.1063/1.5133803
  48. Baoshun Liu, Xiujian Zhao, Ivan P. Parkin, Kazuya Nakata. Charge carrier transfer in photocatalysis. 2020,,, 103-159. https://doi.org/10.1016/B978-0-08-102890-2.00004-X
  49. Sergio Andrés Arguello, Cristian Stanhaus, Janine Carvalho Padilha, Luis Fernando Cabeça, Jefferson Luis Ferrari, Márcio Sousa Góes. Use of ionic liquid TEA-PS.BF4 as media synthesis of ZnO based on coprecipitation method. Journal of Alloys and Compounds 2019, 810 , 151835. https://doi.org/10.1016/j.jallcom.2019.151835
  50. Rahul Kumar, Veena Sahajwalla, Parag Bhargava. Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2-methyl-8-hydroxyquinolinol (Mq). Nanoscale Advances 2019, 1 (8) , 3192-3199. https://doi.org/10.1039/C9NA00206E
  51. Z.N. Urgessa, Raffael Ruess, S.R. Tankio Djiokap, J.R. Botha, Derck Schlettwein. Effect of morphology and surface treatment on the performance of ZnO nanorod-based dye-sensitized solar cells. Journal of Alloys and Compounds 2019, 798 , 249-256. https://doi.org/10.1016/j.jallcom.2019.05.298
  52. Venkata Thulasivarma Chebrolu, Hee-Je Kim. Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode. Journal of Materials Chemistry C 2019, 7 (17) , 4911-4933. https://doi.org/10.1039/C8TC06476H
  53. Williams S. Ebhota, Tien-Chien Jen. Efficient Low-Cost Materials for Solar Energy Applications: Roles of Nanotechnology. 2019,,https://doi.org/10.5772/intechopen.79136
  54. A. A. Ojo, W. M. Cranton, I. M. Dharmadasa. Photovoltaic Solar Cells: Materials, Concepts and Devices. 2019,,, 17-40. https://doi.org/10.1007/978-3-319-96667-0_2
  55. Qiong Wang, Antonio Abate. Perovskite Solar Cells: Promises and Challenges. 2018,,, 261-356. https://doi.org/10.1002/9781119407690.ch9
  56. Runbang Tao, Gerald Ensang Timuda, Keiko Waki. Electrochemical analysis of dye sensitized solar cell employing indoline-based and ruthenium-based dye combined with volatile and low-volatility solution-based electrolyte. Journal of Materials Science: Materials in Electronics 2018, 29 (22) , 19245-19255. https://doi.org/10.1007/s10854-018-0051-8
  57. Daniel Siopa, Ricardo Nunes, Filomena Martins, M. Soledade C. S. Santos, Killian Lobato, Anabela Gomes. The role of ethanol-water solvent mixtures in N719 sensitization of electrodeposited ZnO nanorods. Journal of Solid State Electrochemistry 2018, 22 (9) , 2779-2787. https://doi.org/10.1007/s10008-018-3985-0
  58. T. Marimuthu, N. Anandhan, R. Thangamuthu, S. Surya. Effect of hexamethylenetetramine on the properties of electrodeposited ZnO thin films for dye sensitized solar cell applications. Journal of Materials Science: Materials in Electronics 2018, 29 (15) , 12830-12841. https://doi.org/10.1007/s10854-018-9402-8
  59. P. Ilanchezhiyan, G. Mohan Kumar, Fu Xiao, A. Madhankumar, C. Siva, Shavkat U. Yuldashev, H.D. Cho, T.W. Kang. Interfacial charge transfer in ZnTe/ZnO nano arrayed heterostructures and their improved photoelectronic properties. Solar Energy Materials and Solar Cells 2018, 183 , 73-81. https://doi.org/10.1016/j.solmat.2018.04.010
  60. Dong-Myeong Shin, Jong-ryul Choi, Jin-Woo Oh, Hyung Kook Kim, Dong-Wook Han, Kyujung Kim, Yoon-Hwae Hwang. Exploring the use of impedance spectroscopy in relaxation and electrochemical studies. Applied Spectroscopy Reviews 2018, 53 (2-4) , 157-176. https://doi.org/10.1080/05704928.2017.1328425
  61. Amir Moradi Golsheikh, Khosro Zangeneh Kamali, Nay Ming Huang, Ali Khorsand Zak. Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technology 2018, 329 , 282-287. https://doi.org/10.1016/j.powtec.2017.11.065
  62. G. R. A. Kumara, U. Deshapriya, C. S. K. Ranasinghe, E. N. Jayaweera, R. M. G. Rajapakse. Efficient dye-sensitized solar cells from mesoporous zinc oxide nanostructures sensitized by N719 dye. Journal of Semiconductors 2018, 39 (3) , 033005. https://doi.org/10.1088/1674-4926/39/3/033005
  63. Priyanka Das, Biswanath Mondal, Kalisadhan Mukherjee. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode. Applied Physics A 2018, 124 (1) https://doi.org/10.1007/s00339-017-1486-0
  64. Jin Woo Park, Arunprabaharan Subramanian, Mahadeo A. Mahadik, Su Yong Lee, Sun Hee Choi, Jum Suk Jang. Insights into the enhanced photoelectrochemical performance of hydrothermally controlled hematite nanostructures for proficient solar water oxidation. Dalton Transactions 2018, 47 (12) , 4076-4086. https://doi.org/10.1039/C7DT04536K
  65. E. C. Prima, A. Nuruddin, B. Yuliarto, G. Kawamura, A. Matsuda. Combined spectroscopic and TDDFT study of single-double anthocyanins for application in dye-sensitized solar cells. New Journal of Chemistry 2018, 42 (14) , 11616-11628. https://doi.org/10.1039/C8NJ01202D
  66. Adriano Sacco. Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews 2017, 79 , 814-829. https://doi.org/10.1016/j.rser.2017.05.159
  67. Tanvi, Vibha Saxena, Ajay Singh, Om Prakash, A. Mahajan, A.K. Debnath, K.P. Muthe, S.C. Gadkari. Improved performance of dye sensitized solar cell via fine tuning of ultra-thin compact TiO 2 layer. Solar Energy Materials and Solar Cells 2017, 170 , 127-136. https://doi.org/10.1016/j.solmat.2017.05.013
  68. Simas Rackauskas, Nadia Barbero, Claudia Barolo, Guido Viscardi. ZnO Nanowires for Dye Sensitized Solar Cells. 2017,,https://doi.org/10.5772/67616
  69. S. A. M. Samsuri, M. Y. A. Rahman, A. A. Umar. Comparative study of the properties of TiO2 nanoflower and TiO2-ZnO composite nanoflower and their application in dye-sensitized solar cells. Ionics 2017, 23 (7) , 1897-1902. https://doi.org/10.1007/s11581-017-2010-4
  70. Yongqiang Liu, Huili Ran, Jiajie Fan, Xiaoli Zhang, Jing Mao, Guosheng Shao. Fabrication and photovoltaic performance of niobium doped TiO2 hierarchical microspheres with exposed {001} facets and high specific surface area. Applied Surface Science 2017, 410 , 241-248. https://doi.org/10.1016/j.apsusc.2017.03.085
  71. A. A. Ojo, I. M. Dharmadasa. Progress in development of graded bandgap thin film solar cells with electroplated materials. Journal of Materials Science: Materials in Electronics 2017, 28 (9) , 6359-6365. https://doi.org/10.1007/s10854-017-6366-z
  72. R. Krithikadevi, M. Arulmozhi, C. Siva, B. Balraj, G. Mohan Kumar. Optical and electrical properties of n-ZnAgAuO/p-Si heterojunction diodes. Journal of Materials Science: Materials in Electronics 2017, 28 (7) , 5440-5445. https://doi.org/10.1007/s10854-016-6205-7
  73. Qiu-Ping Luo, Bo Wang, Yuanzhi Cao. Single-crystalline porous ZnO nanosheet frameworks for efficient fully flexible dye-sensitized solar cells. Journal of Alloys and Compounds 2017, 695 , 3324-3330. https://doi.org/10.1016/j.jallcom.2016.10.130
  74. Nailiang Yang. Introduction. 2017,,, 1-40. https://doi.org/10.1007/978-3-662-53485-4_1
  75. Eka Cahya Prima, Novianto Nur Hidayat, Brian Yuliarto, Suyatman, Hermawan Kresno Dipojono. A combined spectroscopic and TDDFT study of natural dyes extracted from fruit peels of Citrus reticulata and Musa acuminata for dye-sensitized solar cells. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2017, 171 , 112-125. https://doi.org/10.1016/j.saa.2016.07.024
  76. Bharat Dhital, Vishal Govind Rao, H. Peter Lu. Probing single-molecule electron–hole transfer dynamics at a molecule–NiO semiconductor nanocrystalline interface. Physical Chemistry Chemical Physics 2017, 19 (26) , 17216-17223. https://doi.org/10.1039/C7CP01476G
  77. M. Vafaei, M. R. Mohammadi. Impact of chromium doping on physical, optical, electronic and photovoltaic properties of nanoparticle TiO 2 photoanodes in dye-sensitized solar cells. New Journal of Chemistry 2017, 41 (23) , 14516-14527. https://doi.org/10.1039/C7NJ02838E
  78. Ruri Agung Wahyuono, Benjamin Schulze, Mihai Rusu, Maria Wächtler, Jan Dellith, Martin Seyring, Markus Rettenmayr, Jonathan Plentz, Anna Ignaszak, Ulrich S. Schubert, Benjamin Dietzek. ZnO Nanostructures for Dye-Sensitized Solar Cells Using the TEMPO + /TEMPO Redox Mediator and Ruthenium(II) Photosensitizers with 1,2,3-Triazole-Derived Ligands. ChemPlusChem 2016, 81 (12) , 1281-1291. https://doi.org/10.1002/cplu.201600377
  79. Nikolaos Balis, Emmanuel Stratakis, Emmanuel Kymakis. Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Materials Today 2016, 19 (10) , 580-594. https://doi.org/10.1016/j.mattod.2016.03.018
  80. Rajour Tanyi Ako, D.S.U. Peiris, Piyasiri Ekanayake, Ai Ling Tan, David James Young, Zhang Zheng, Vijila Chellappan. DSSCs with [email protected] core–shell photoanodes showing improved V: Modification of energy gradients and potential barriers with Cd and Mg ion dopants. Solar Energy Materials and Solar Cells 2016, 157 , 18-27. https://doi.org/10.1016/j.solmat.2016.05.009
  81. Xiong He, Xin Li, Menghua Zhu. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources 2016, 333 , 10-16. https://doi.org/10.1016/j.jpowsour.2016.09.133
  82. Pipat Ruankham, Supab Choopun, Duangmanee Wongratanaphisan, Takashi Sagawa. Influence of surface modification with D205 dye on charge dynamics of hybrid ZnO nanorods/polymer solar cells. Integrated Ferroelectrics 2016, 175 (1) , 113-119. https://doi.org/10.1080/10584587.2016.1202704
  83. S. Mahalingam, H. Abdullah, S. Shaari, A. Muchtar. Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes. Ionics 2016, 22 (10) , 1985-1997. https://doi.org/10.1007/s11581-016-1724-z
  84. Ákos Kukovecz, Krisztián Kordás, János Kiss, Zoltán Kónya. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires. Surface Science Reports 2016, 71 (3) , 473-546. https://doi.org/10.1016/j.surfrep.2016.06.001
  85. Chuan-Pei Lee, Ping-Wei Chen, Chun-Ting Li, Yi-June Huang, Sie-Rong Li, Ling-Yu Chang, Pei-Yu Chen, Lu-Yin Lin, R. Vittal, Shih-Sheng Sun, Jiang-Jen Lin, Kuo-Chuan Ho. ZnO double layer film with a novel organic sensitizer as an efficient photoelectrode for dye–sensitized solar cells. Journal of Power Sources 2016, 325 , 209-219. https://doi.org/10.1016/j.jpowsour.2016.06.032
  86. Nikola Tasić, Zorica Marinković Stanojević, Zorica Branković, Uroš Lačnjevac, Vesna Ribić, Milan Žunić, Tatjana Novaković, Matejka Podlogar, Goran Branković. Mesoporous films prepared from synthesized TiO2 nanoparticles and their application in dye-sensitized solar cells (DSSCs). Electrochimica Acta 2016, 210 , 606-614. https://doi.org/10.1016/j.electacta.2016.05.179
  87. J. Qu, Y. Zhu, Z. Chen, N. Yuan, J. Ding. Synthesis of ZnO nanomaterials with controlled morphology and their photoelectrochemical properties. Russian Journal of Physical Chemistry A 2016, 90 (8) , 1621-1627. https://doi.org/10.1134/S0036024416080252
  88. Mohammad Javadi, Yaser Abdi, Ezatollah Arzi. Local collection efficiency in the nano-crystalline solar cells. Solar Energy 2016, 133 , 549-555. https://doi.org/10.1016/j.solener.2016.04.021
  89. A. M. Bakhshayesh, N. Bakhshayesh. Facile one-pot synthesis of uniform niobium-doped titanium dioxide microparticles for nanostructured dye-sensitized solar cells. Journal of Electroceramics 2016, 36 (1-4) , 112-121. https://doi.org/10.1007/s10832-016-0025-2
  90. Gurpreet Singh Selopal, Hui-Ping Wu, Jianfeng Lu, Yu-Cheng Chang, Mingkui Wang, Alberto Vomiero, Isabella Concina, Eric Wei-Guang Diau. Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep18756
  91. Mohammad Sajedi Alvar, Mohammad Javadi, Yaser Abdi, Ezatollah Arzi. Enhancing the electron lifetime and diffusion coefficient in dye-sensitized solar cells by patterning the layer of TiO 2 nanoparticles. Journal of Applied Physics 2016, 119 (11) , 114302. https://doi.org/10.1063/1.4943772
  92. Yuanyao Dou, Fang Wu, Liang Fang, Gaobin Liu, Caiying Mao, Kai Wan, Miao Zhou. Enhanced performance of dye-sensitized solar cell using Bi2Te3 nanotube/ZnO nanoparticle composite photoanode by the synergistic effect of photovoltaic and thermoelectric conversion. Journal of Power Sources 2016, 307 , 181-189. https://doi.org/10.1016/j.jpowsour.2015.12.113
  93. A. M. Bakhshayesh. Sr, Zn co-doped TiO2 xerogel film made of uniform spheres for high-performance dye-sensitized solar cells. Journal of Solid State Electrochemistry 2016, 20 (2) , 389-400. https://doi.org/10.1007/s10008-015-3057-7
  94. Jing Li, Jun Cao, Xiufang Zhang, Song Wang, Yingying Zheng, Jiaqi Pan, Chaorong Li. Preparation of cotton cellulose nanofibers/ZnO/CdS nanocomposites and its photocatalytic activity. Journal of Materials Science: Materials in Electronics 2016, 27 (2) , 1479-1484. https://doi.org/10.1007/s10854-015-3914-2
  95. Juan Bisquert, Sixto Giménez, Luca Bertoluzzi, Isaac Herraiz-Cardona. Analysis of Photoelectrochemical Systems by Impedance Spectroscopy. 2016,,, 281-321. https://doi.org/10.1007/978-3-319-29641-8_6
  96. Sheng Zhang, Zhang Lan, Jihuai Wu, Xin Chen, Caiyan Zhang. Preparation of novel TiO 2 quantum dot blocking layers at conductive glass/TiO 2 interfaces for efficient CdS quantum dot sensitized solar cells. Journal of Alloys and Compounds 2016, 656 , 253-258. https://doi.org/10.1016/j.jallcom.2015.09.242
  97. A.M. Bakhshayesh. Light scattering management of dye-sensitized solar cells based on double-layered photoanodes aided by uniform TiO 2 aggregates. Materials Research Bulletin 2016, 73 , 268-275. https://doi.org/10.1016/j.materresbull.2015.09.017
  98. A.M. Bakhshayesh, N. Bakhshayesh. Enhanced short circuit current density of dye-sensitized solar cells aided by Sr,V co-doped TiO 2 particles. Materials Science in Semiconductor Processing 2016, 41 , 92-101. https://doi.org/10.1016/j.mssp.2015.08.030
  99. Haining Chen, Shihe Yang. Hierarchical nanostructures of metal oxides for enhancing charge separation and transport in photoelectrochemical solar energy conversion systems. Nanoscale Horizons 2016, 1 (2) , 96-108. https://doi.org/10.1039/C5NH00033E
  100. P. Ilanchezhiyan, C. Siva, A. Madhan Kumar, Fu Xiao, G. Mohan Kumar, T. W. Kang. Optoelectronic characteristics of chemically processed ultra-thin In y Zn 1−y O nanostructures. CrystEngComm 2016, 18 (18) , 3204-3210. https://doi.org/10.1039/C6CE00558F
Load more citations