Electrochemical Impedance Spectroscopy Characterization of Electron Transport and Recombination in ZnO Nanorod Dye-Sensitized Solar Cells

View Author Information
Surface Physics Laboratory, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China, and Research and Technology Laboratory, Honeywell Integrated Technology (China) Co., 430 Libing Rd, Shanghai 201203, People’s Republic of China
* To whom correspondence should be addressed. E-mail: [email protected]; [email protected]
†Fudan University.
‡Honeywell Integrated Technology (China) Co.
Cite this: J. Phys. Chem. C 2009, 113, 24, 10322–10325
Publication Date (Web):May 26, 2009
https://doi.org/10.1021/jp902523c
Copyright © 2009 American Chemical Society
Article Views
3651
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

In this work we carried out electrochemical impedance spectroscopic (EIS) characterizations on a ZnO nanorod dye-sensitized solar cell to investigate its electron transport and recombination properties and how these properties influence the cell performance. It is shown that the recombination process in the cell is mediated by an exponential distribution of surface trap states on the nanorods, which also governs the capacitance of the nanorods at low potentials. A strong dependence of recombination on the existence of a constant illumination has been observed, and this is shown to be a major efficiency-limiting factor for this type of devices. The Warburg feature has been observed from the high frequency region of the impedance, and transport resistances of ∼100 to 67 Ω have been determined. The transport resistance shows no dependence on illumination.

Supporting Information

ARTICLE SECTIONS
Jump To

Supplemental figures for impedance spectra under illumination, the transmission line model, comparison of the measured capacitance to the depletion model, charge transfer resistance at open-circuit conditions, and total resistances of the cell. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 81 publications.

  1. Antonio J. Riquelme, Valid Mwatati Mwalukuku, Patricia Sánchez-Fernández, Johan Liotier, Renán Escalante, Gerko Oskam, Renaud Demadrille, Juan A. Anta. Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques. ACS Applied Energy Materials 2021, 4 (9) , 8941-8952. https://doi.org/10.1021/acsaem.1c01204
  2. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  3. Salvatore Cosentino, Giorgia Fiaschi, Vincenzina Strano, Kuo-juei Hu, Ting-Wei Liao, Nofar Mintz Hemed, Anupam Yadav, Salvo Mirabella, Didier Grandjean, Peter Lievens, and Yosi Shacham-Diamand . Role of AuxPt1–x Clusters in the Enhancement of the Electrochemical Activity of ZnO Nanorod Electrodes. The Journal of Physical Chemistry C 2017, 121 (29) , 15644-15652. https://doi.org/10.1021/acs.jpcc.7b00480
  4. Bert Conings, Linny Baeten, Hans-Gerd Boyen, Jan D’Haen, Marlies K. Van Bael, and Jean V. Manca . Relation between Morphology and Recombination Kinetics in Nanostructured Hybrid Solar Cells. The Journal of Physical Chemistry C 2012, 116 (27) , 14237-14242. https://doi.org/10.1021/jp304042v
  5. Márcio Sousa Góes, Ednan Joanni, Elaine C. Muniz, Raluca Savu, Thomas R. Habeck, Paulo R. Bueno, and Francisco Fabregat-Santiago . Impedance Spectroscopy Analysis of the Effect of TiO2 Blocking Layers on the Efficiency of Dye Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (23) , 12415-12421. https://doi.org/10.1021/jp301694r
  6. Juan A. Anta, Elena Guillén, and Ramón Tena-Zaera . ZnO-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2012, 116 (21) , 11413-11425. https://doi.org/10.1021/jp3010025
  7. Nicolas Tétreault, Éric Arsenault, Leo-Philipp Heiniger, Navid Soheilnia, Jérémie Brillet, Thomas Moehl, Shaik Zakeeruddin, Geoffrey A. Ozin, and Michael Grätzel . High-Efficiency Dye-Sensitized Solar Cell with Three-Dimensional Photoanode. Nano Letters 2011, 11 (11) , 4579-4584. https://doi.org/10.1021/nl201792r
  8. S. Agarwala, C. K. N. Peh, and G. W. Ho . Investigation of Ionic Conductivity and Long-Term Stability of a LiI and KI Coupled Diphenylamine Quasi-Solid-State Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2011, 3 (7) , 2383-2391. https://doi.org/10.1021/am200296f
  9. Zhenzhen Yang, Tao Xu, Shanmin Gao, Ulrich Welp, and Wai-Kwong Kwok . Enhanced Electron Collection in TiO2 Nanoparticle-Based Dye-Sensitized Solar Cells by an Array of Metal Micropillars on a Planar Fluorinated Tin Oxide Anode. The Journal of Physical Chemistry C 2010, 114 (44) , 19151-19156. https://doi.org/10.1021/jp108761k
  10. Yu Xie, Prakash Joshi, Seth B. Darling, Qiliang Chen, Ting Zhang, David Galipeau, and Qiquan Qiao . Electrolyte Effects on Electron Transport and Recombination at ZnO Nanorods for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2010, 114 (41) , 17880-17888. https://doi.org/10.1021/jp106302m
  11. Yan-Zhen Zheng, Xia Tao, Li-Xin Wang, Hui Xu, Qian Hou, Wei-Lie Zhou and Jian-Feng Chen . Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells. Chemistry of Materials 2010, 22 (3) , 928-934. https://doi.org/10.1021/cm901780z
  12. Juan Bisquert and Iván Mora-Seró. Simulation of Steady-State Characteristics of Dye-Sensitized Solar Cells and the Interpretation of the Diffusion Length. The Journal of Physical Chemistry Letters 2010, 1 (1) , 450-456. https://doi.org/10.1021/jz900297b
  13. Zhenzhen Yang, Tao Xu, Yasuo Ito, Ulrich Welp and Wai Kwong Kwok. Enhanced Electron Transport in Dye-Sensitized Solar Cells Using Short ZnO Nanotips on A Rough Metal Anode. The Journal of Physical Chemistry C 2009, 113 (47) , 20521-20526. https://doi.org/10.1021/jp908678x
  14. Juan Bisquert, Francisco Fabregat-Santiago, Iván Mora-Seró, Germà Garcia-Belmonte and Sixto Giménez. Electron Lifetime in Dye-Sensitized Solar Cells: Theory and Interpretation of Measurements. The Journal of Physical Chemistry C 2009, 113 (40) , 17278-17290. https://doi.org/10.1021/jp9037649
  15. C. A. Ruiz-Rojas, M. Aguilar-Frutis, F. Ramos-Brito, I. A. Garduño-Wilches, J. Narro-Ríos, L. Lartundo-Rojas, G. Alarcón-Flores. Synthesis, characterization, and temperature-dependent electronic properties of ZnO nanorods using CBD techniques. Journal of Materials Science: Materials in Electronics 2021, 32 (7) , 8944-8957. https://doi.org/10.1007/s10854-021-05565-7
  16. Hani Sayahi, Kioumars Aghapoor, Farshid Mohsenzadeh, Mina Mohebi Morad, Hossein Reza Darabi. TiO2 nanorods integrated with titania nanoparticles: Large specific surface area 1D nanostructures for improved efficiency of dye-sensitized solar cells (DSSCs). Solar Energy 2021, 215 , 311-320. https://doi.org/10.1016/j.solener.2020.12.060
  17. F. TOURI, A. SAHARI, A. ZOUAOUI, F. DEFLORIAN, L. GUERBOUS. OPTICAL, STRUCTURAL, AND MORPHOLOGICAL PROPERTIES OF UNDOPED AND EUROPIUM DOPED ZnO. Surface Review and Letters 2020, 27 (03) , 1950114. https://doi.org/10.1142/S0218625X19501142
  18. Lingyun Zhang, Xinzhe Wang, Xuhui Sun. Improvement of dye-sensitized solar cell performances through introducing europium dye with multiple excitation: dual enhancement in light absorption. New Journal of Chemistry 2019, 43 (33) , 13249-13255. https://doi.org/10.1039/C9NJ02985K
  19. Fang‐I Lai, Jui‐Fu Yang, Yu‐Chao Hsu, Shou‐Yi Kuo. Omnidirectional light‐harvesting enhancement of dye‐sensitized solar cells with ZnO nanorods. International Journal of Energy Research 2019, 43 (8) , 3413-3420. https://doi.org/10.1002/er.4479
  20. Markus Licklederer, Gihoon Cha, Robert Hahn, Patrik Schmuki. Ordered Nanotubular Titanium Disulfide (TiS 2 ) Structures: Synthesis and Use as Counter Electrodes in Dye Sensitized Solar Cells (DSSCs). Journal of The Electrochemical Society 2019, 166 (5) , H3009-H3013. https://doi.org/10.1149/2.0031905jes
  21. Simranjeet Singh, Imtiaz Ahmed, Krishna Kanta Haldar. Nickel oxide decorated zinc oxide composite nanorods: Excellent catalyst for photoreduction of hexavalent chromium. Journal of Colloid and Interface Science 2018, 523 , 1-6. https://doi.org/10.1016/j.jcis.2018.03.012
  22. Hung Tai Nguyen, Thi Lan Tran, Dang Thanh Nguyen, Eui-Chol Shin, Soon-Hyung Kang, Jong-Sook Lee. Full Parametric Impedance Analysis of Photoelectrochemical Cells: Case of a TiO2 Photoanode. Journal of the Korean Ceramic Society 2018, 55 (3) , 244-260. https://doi.org/10.4191/kcers.2018.55.3.11
  23. Pei-Hua Li, Xing-Jiu Huang. Common Electrochemical Principles for PTS Detection. 2018,,, 47-82. https://doi.org/10.1002/9783527344109.ch3
  24. Rohit L. Vekariya, Abhishek Dhar, Jignesh Lunagariya. Doping effect of aminopyridine analogous in supramolecular quasi-solid polymer electrolyte for DSSCs: improvement in ionic diffusion leading to superior efficiency. Ionics 2018, 24 (4) , 1235-1242. https://doi.org/10.1007/s11581-017-2262-z
  25. Amir Moradi Golsheikh, Khosro Zangeneh Kamali, Nay Ming Huang, Ali Khorsand Zak. Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technology 2018, 329 , 282-287. https://doi.org/10.1016/j.powtec.2017.11.065
  26. Yen-Chiao Chen, Ya-Ching Chang, Chih-Ming Chen. The Study of Blocking Effect of Nb 2 O 5 in Dye-Sensitized Solar Cells under Low Power Lighting. Journal of The Electrochemical Society 2018, 165 (7) , F409-F416. https://doi.org/10.1149/2.0091807jes
  27. Simas Rackauskas, Nadia Barbero, Claudia Barolo, Guido Viscardi. ZnO Nanowires for Dye Sensitized Solar Cells. 2017,,https://doi.org/10.5772/67616
  28. Venkata Manthina, Alexander G. Agrios. Facile synthesis of Zn1−Co O/ZnO core/shell nanostructures and their application to dye-sensitized solar cells. Superlattices and Microstructures 2017, 104 , 374-381. https://doi.org/10.1016/j.spmi.2017.02.020
  29. Morteza Asemi, Majid Ghanaatshoar. Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. Journal of Materials Science 2017, 52 (1) , 489-503. https://doi.org/10.1007/s10853-016-0348-z
  30. Meysam Pazoki, Ute B. Cappel, Erik M. J. Johansson, Anders Hagfeldt, Gerrit Boschloo. Characterization techniques for dye-sensitized solar cells. Energy & Environmental Science 2017, 10 (3) , 672-709. https://doi.org/10.1039/C6EE02732F
  31. Qiannan Sun, Yen-Ping Peng, Hanlin Chen, Ken-Lin Chang, Yang-Neng Qiu, Shiau-Wu Lai. Photoelectrochemical oxidation of ibuprofen via Cu2O-doped TiO2 nanotube arrays. Journal of Hazardous Materials 2016, 319 , 121-129. https://doi.org/10.1016/j.jhazmat.2016.02.078
  32. Andrea Cerdán-Pasarán, Diego Esparza, Isaac Zarazúa, Manuel Reséndiz, Tzarara López-Luke, Elder De la Rosa, Rosalba Fuentes-Ramírez, Alejandro Alatorre-Ordaz, Alejandro Martínez-Benítez. Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added. Journal of Applied Electrochemistry 2016, 46 (9) , 975-985. https://doi.org/10.1007/s10800-016-0972-y
  33. Ratna Chauhan, Manish Shinde, Abhinav Kumar, Suresh Gosavi, Dinesh P. Amalnerkar. Hierarchical zinc oxide pomegranate and hollow sphere structures as efficient photoanodes for dye-sensitized solar cells. Microporous and Mesoporous Materials 2016, 226 , 201-208. https://doi.org/10.1016/j.micromeso.2015.11.054
  34. Lingyun Zhang, Yanan Luo, Ruokun Jia, Xuhui Sun, Chunguang Liu, Yingjie Zhang. Novel azobenzene nickel(II) sensitizer for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2016, 318 , 90-96. https://doi.org/10.1016/j.jphotochem.2015.12.001
  35. Hung-Shuo Chen, Wan-Chin Yu, Wei-Chen Chang, Yen-Wei Lu. Olive-shaped ZnO nanocrystallite aggregates as bifunctional light scattering materials in double-layer photoanodes for dye-sensitized solar cells. Electrochimica Acta 2016, 187 , 655-661. https://doi.org/10.1016/j.electacta.2015.11.070
  36. Liang Li, Yulin Yang, Ruiqing Fan, Jian Liu, Yanxia Jiang, Bin Yang, Wenwu Cao. Decatungstate acid improves the photo-induced electron lifetime and retards the recombination in dye sensitized solar cells. Dalton Transactions 2016, 45 (38) , 14940-14947. https://doi.org/10.1039/C6DT02584F
  37. Houpu Li, Jiajie Guo, Hao Sun, Xin Fang, Donghai Wang, Huisheng Peng. Stable Hydrophobic Ionic Liquid Gel Electrolyte for Stretchable Fiber-Shaped Dye-Sensitized Solar Cell. ChemNanoMat 2015, 1 (6) , 399-402. https://doi.org/10.1002/cnma.201500093
  38. Dipal B. Patel, Khushbu R. Chauhan, Indrajit Mukhopadhyay. Impedance Analysis of Inherently Redox-Active Ionic-Liquid-Based Photoelectrochemical Cells: Charge-Transfer Mechanism in the Presence of an Additional Redox Couple. ChemPhysChem 2015, 16 (8) , 1750-1756. https://doi.org/10.1002/cphc.201402837
  39. Xing Chen, Zheng Guo, Zhong-Gang Liu, Yu-Jing Jiang, Dong-Ping Zhan, Jin-Huai Liu, Xing-Jiu Huang. A Versatile Environmental Impedimetric Sensor for Ultrasensitive Determination of Persistent Organic Pollutants (POPs) and Highly Toxic Inorganic Ions. Advanced Science 2015, 2 (5) , 1500013. https://doi.org/10.1002/advs.201500013
  40. Dajiang Zheng, Meidan Ye, Xiaoru Wen, Nan Zhang, Changjian Lin. Electrochemical methods for the characterization and interfacial study of dye-sensitized solar cell. Science Bulletin 2015, 60 (9) , 850-863. https://doi.org/10.1007/s11434-015-0769-0
  41. Xue-Li Zheng, Wen-Jing Qin, Tao Ling, Cao-Feng Pan, Xi-Wen Du. Carbon Nanotube Reinforced CdSe Inverse Opal with Crack-Free Structure and High Conductivity for Photovoltaic Applications. Advanced Materials Interfaces 2015, 2 (2) , 1400464. https://doi.org/10.1002/admi.201400464
  42. Alberto G. Vega-Poot, Manuel Macías-Montero, Jesus Idígoras, Ana Borrás, Angel Barranco, Agustín R. Gonzalez-Elipe, Francisco I. Lizama-Tzec, Gerko Oskam, Juan A. Anta. Mechanisms of Electron Transport and Recombination in ZnO Nanostructures for Dye-Sensitized Solar Cells. ChemPhysChem 2014, 15 (6) , 1088-1097. https://doi.org/10.1002/cphc.201301068
  43. Azimah Omar, Huda Abdullah. Electron transport analysis in zinc oxide-based dye-sensitized solar cells: A review. Renewable and Sustainable Energy Reviews 2014, 31 , 149-157. https://doi.org/10.1016/j.rser.2013.11.031
  44. Liang Li, YuLin Yang, RuiQing Fan, Xin Wang, Qingming Zhang, Lingyun Zhang, Bin Yang, Wenwu Cao, Wenzhi Zhang, Yazhen Wang, Liqun Ma. Photocurrent enhanced dye-sensitized solar cells based on TiO 2 loaded K 6 SiW 11 O 39 Co( ii )(H 2 O)·xH 2 O photoanode materials. Dalton Trans. 2014, 43 (4) , 1577-1582. https://doi.org/10.1039/C3DT52201F
  45. Dipal B. Patel, Khushbu R. Chauhan, Indrajit Mukhopadhyay. Revealing the charge transport mechanism of a photoelectrochemical cell: analysis using A.C. voltage perturbation. Phys. Chem. Chem. Phys. 2014, 16 (38) , 20900-20908. https://doi.org/10.1039/C4CP01734J
  46. Yantao Shi, Chao Zhu, Yanxiang Wang, Lin Wang, Yi Du, Junfu Gu, Tingli Ma, Anders Hagfeldt, Ning Wang. A green route and rational design for ZnO-based high-efficiency photovoltaics. Nanoscale 2014, 6 (10) , 5093. https://doi.org/10.1039/c3nr06261a
  47. Khalid Mahmood, Hyung Jin Sung. A dye-sensitized solar cell based on a boron-doped ZnO (BZO) film with double light-scattering-layers structured photoanode. Journal of Materials Chemistry A 2014, 2 (15) , 5408. https://doi.org/10.1039/c3ta14305h
  48. I. Zarazúa, T. López-Luke, J. Reyes-Gómez, A. Torres-Castro, J. Z. Zhang, E. De la Rosa. Impedance Analysis of CdSe Quantum Dot-Sensitized TiO 2 Solar Cells Decorated with Au Nanoparticles and P3OT. Journal of The Electrochemical Society 2014, 161 (3) , H68-H74. https://doi.org/10.1149/2.012403jes
  49. Hui Li, Jiafan Bai, Bo Feng, Xiong Lu, Jie Weng, Chongxi Jiang, Jianxin Wang. Dye-sensitized solar cells with a tri-layer ZnO photo-electrode. Journal of Alloys and Compounds 2013, 578 , 507-511. https://doi.org/10.1016/j.jallcom.2013.06.191
  50. Xiao Tang. Improvement of the Performance of Dye-Sensitized Solar Cells with TiO2 Photoanodes in Unsaturated. Applied Mechanics and Materials 2013, 448-453 , 2979-2985. https://doi.org/10.4028/www.scientific.net/AMM.448-453.2979
  51. Azimah Omar, Huda Abdullah, Sahbudin Shaari, Mohd Raihan Taha. Characterization of zinc oxide dye-sensitized solar cell incorporation with single-walled carbon nanotubes. Journal of Materials Research 2013, 28 (13) , 1753-1760. https://doi.org/10.1557/jmr.2013.25
  52. Xiaohuan Miao, Kai Pan, Qingjiang Pan, Wei Zhou, Lei Wang, Yongping Liao, Guohui Tian, Guofeng Wang. Highly crystalline graphene/carbon black composite counter electrodes with controllable content: Synthesis, characterization and application in dye-sensitized solar cells. Electrochimica Acta 2013, 96 , 155-163. https://doi.org/10.1016/j.electacta.2013.02.092
  53. Xiao Tang, Yuxun Wang, Guozhong Cao. Effect of the adsorbed concentration of dye on charge recombination in dye-sensitized solar cells. Journal of Electroanalytical Chemistry 2013, 694 , 6-11. https://doi.org/10.1016/j.jelechem.2013.01.036
  54. Constance Magne, Thomas Moehl, Mathieu Urien, Michael Grätzel, Thierry Pauporté. Effects of ZnO film growth route and nanostructure on electron transport and recombination in dye-sensitized solar cells. J. Mater. Chem. A 2013, 1 (6) , 2079-2088. https://doi.org/10.1039/C2TA00674J
  55. Yan Xiong, Liang Tao, Hong Liu, Wenzhong Shen. Current promoted micro-annealing in anodic TiO 2 tube arrays and its application in sensitized solar cells. J. Mater. Chem. A 2013, 1 (3) , 783-791. https://doi.org/10.1039/C2TA00810F
  56. Bo Chen, Grayson Doucette, Shashank Priya. Improved performance of flexible dye-sensitized solar cells based on hierarchical TiO2 nanostructures with high surface area. RSC Advances 2013, 3 (46) , 24560. https://doi.org/10.1039/c3ra44061c
  57. Lingyun Zhang, Yulin Yang, Ruiqing Fan, Jia Yu, Liang Li. Improving the efficiency of ZnO-based dye-sensitized solar cells by Pr and N co-doping. Journal of Materials Chemistry A 2013, 1 (39) , 12066. https://doi.org/10.1039/c3ta11570d
  58. Lu-Lin Li, Yu-Cheng Chang, Hui-Ping Wu, Eric Wei-Guang Diau. Characterisation of electron transport and charge recombination using temporally resolved and frequency-domain techniques for dye-sensitised solar cells. International Reviews in Physical Chemistry 2012, 31 (3) , 420-467. https://doi.org/10.1080/0144235X.2012.733539
  59. Tao Ling, Mingke Wu, Xiwen Du. Template synthesis and photovoltaic application of CdS nanotube arrays. Semiconductor Science and Technology 2012, 27 (5) , 055017. https://doi.org/10.1088/0268-1242/27/5/055017
  60. Nicolas Tétreault, Michael Grätzel. Novel nanostructures for next generation dye-sensitized solar cells. Energy & Environmental Science 2012, 5 (9) , 8506. https://doi.org/10.1039/c2ee03242b
  61. Liang Tao, Yan Xiong, Hong Liu, Wenzhong Shen. Chemical assisted formation of secondary structures towards high efficiency solar cells based on ordered TiO2 nanotube arrays. Journal of Materials Chemistry 2012, 22 (16) , 7863. https://doi.org/10.1039/c2jm00005a
  62. Peiwei Gong, Zhaofeng Wang, Jinqing Wang, Honggang Wang, Zhangpeng Li, Zengjie Fan, Ye Xu, Xiuxun Han, Shengrong Yang. One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. Journal of Materials Chemistry 2012, 22 (33) , 16950. https://doi.org/10.1039/c2jm32294c
  63. Prashant Poudel, Qiquan Qiao. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells. Nanoscale 2012, 4 (9) , 2826. https://doi.org/10.1039/c2nr30347g
  64. Lijuan Luo, Wei Tao, Xiaoyan Hu, Ting Xiao, Bojun Heng, Wei Huang, Heng Wang, Hongwei Han, Qike Jiang, Jianbo Wang, Yiwen Tang. Mesoporous F-doped ZnO prism arrays with significantly enhanced photovoltaic performance for dye-sensitized solar cells. Journal of Power Sources 2011, 196 (23) , 10518-10525. https://doi.org/10.1016/j.jpowsour.2011.08.011
  65. Hee Kwan Lee, Myung Sub Kim, Jae Su Yu. Effect of AZO seed layer on electrochemical growth and optical properties of ZnO nanorod arrays on ITO glass. Nanotechnology 2011, 22 (44) , 445602. https://doi.org/10.1088/0957-4484/22/44/445602
  66. Ming Ke Wu, Tao Ling, Yang Xie, Xue Guang Huang, Xi Wen Du. Performance comparison of dye-sensitized solar cells with different ZnO photoanodes. Semiconductor Science and Technology 2011, 26 (10) , 105001. https://doi.org/10.1088/0268-1242/26/10/105001
  67. M. Dutta, D. Basak. Photosensitization of multiwalled carbon nanotube scaffolds with ZnO quantum dots for photovoltaic applications. Journal of Nanoparticle Research 2011, 13 (10) , 5311-5319. https://doi.org/10.1007/s11051-011-0517-6
  68. P. Sudhagar, R. Saravana Kumar, June Hyuk Jung, Woohyung Cho, R. Sathyamoorthy, Jongok Won, Yong Soo Kang. Facile synthesis of highly branched jacks-like ZnO nanorods and their applications in dye-sensitized solar cells. Materials Research Bulletin 2011, 46 (9) , 1473-1479. https://doi.org/10.1016/j.materresbull.2011.04.027
  69. Braden Bills, Mariyappan Shanmugam, Mahdi Farrokh Baroughi. Effects of atomic layer deposited HfO2 compact layer on the performance of dye-sensitized solar cells. Thin Solid Films 2011, 519 (22) , 7803-7808. https://doi.org/10.1016/j.tsf.2011.05.007
  70. Linny Baeten, Bert Conings, Hans-Gerd Boyen, Jan D'Haen, An Hardy, Marc D'Olieslaeger, Jean V. Manca, Marlies K. Van Bael. Towards Efficient Hybrid Solar Cells Based on Fully Polymer Infiltrated ZnO Nanorod Arrays. Advanced Materials 2011, 23 (25) , 2802-2805. https://doi.org/10.1002/adma.201100414
  71. Xiaoming Fang, Lihua Peng, Xiaoying Shang, Zhengguo Zhang. Controlled synthesis of ZnO branched nanorod arrays by hierarchical solution growth and application in dye-sensitized solar cells. Thin Solid Films 2011, 519 (19) , 6307-6312. https://doi.org/10.1016/j.tsf.2011.04.008
  72. E. Guillén, J. Idígoras, T. Berger, J. A. Anta, C. Fernández-Lorenzo, R. Alcántara, J. Navas, J. Martín-Calleja. ZnO-based dye solar cell with pure ionic-liquid electrolyte and organic sensitizer: the relevance of the dye–oxide interaction in an ionic-liquid medium. Phys. Chem. Chem. Phys. 2011, 13 (1) , 207-213. https://doi.org/10.1039/C0CP00507J
  73. Feng Xu, Litao Sun. Solution-derived ZnOnanostructures for photoanodes of dye-sensitized solar cells. Energy Environ. Sci. 2011, 4 (3) , 818-841. https://doi.org/10.1039/C0EE00448K
  74. Francisco Fabregat-Santiago, Germà Garcia-Belmonte, Iván Mora-Seró, Juan Bisquert. Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Physical Chemistry Chemical Physics 2011, 13 (20) , 9083. https://doi.org/10.1039/c0cp02249g
  75. Elena Guillén, Eneko Azaceta, Laurence M. Peter, Arnost Zukal, Ramón Tena-Zaera, Juan A. Anta. ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy & Environmental Science 2011, 4 (9) , 3400. https://doi.org/10.1039/c0ee00500b
  76. Guan-nan He, Bo Huang, Hui Shen. Decisive role of Au layer on the oriented growth of ZnO nanorod arrays via a simple aqueous solution method. Journal of Crystal Growth 2010, 312 (24) , 3619-3624. https://doi.org/10.1016/j.jcrysgro.2010.09.061
  77. Masayuki Itagaki, Kazuya Hoshino, Yuya Nakano, Isao Shitanda, Kunihiro Watanabe. Faradaic impedance of dye-sensitized solar cells. Journal of Power Sources 2010, 195 (19) , 6905-6923. https://doi.org/10.1016/j.jpowsour.2010.04.014
  78. Hui Li, Zhibin Xie, Yu Zhang, John Wang. The effects of ethyl cellulose on PV performance of DSSC made of nanostructured ZnO pastes. Thin Solid Films 2010, 518 (24) , e68-e71. https://doi.org/10.1016/j.tsf.2010.03.125
  79. Byoung-Yong Chang, Su-Moon Park. Electrochemical Impedance Spectroscopy. Annual Review of Analytical Chemistry 2010, 3 (1) , 207-229. https://doi.org/10.1146/annurev.anchem.012809.102211
  80. Yang Qu, Wei Zhou, Kai Pan, Chungui Tian, Zhiyu Ren, Youzhen Dong, Honggang Fu. Hierarchical anatase TiO2 porous nanopillars with high crystallinity and controlled length: an effective candidate for dye-sensitized solar-cells. Physical Chemistry Chemical Physics 2010, 12 (32) , 9205. https://doi.org/10.1039/b922658c
  81. Guang Zhu, Zujun Cheng, Tian Lv, Likun Pan, Qingfei Zhao, Zhuo Sun. Zn-doped nanocrystalline TiO2 films for CdS quantum dot sensitized solar cells. Nanoscale 2010, 2 (7) , 1229. https://doi.org/10.1039/c0nr00087f