Disassembly, Reassembly, and Photoelectrochemistry of Etched TiO2 Nanotubes

View Author Information
Radiation Laboratory and Departments of Chemistry and Biochemistry, and Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556
* Address correspondence to this author. E-mail: [email protected]. Web: http://www.nd.edu/∼pkamat.
Cite this: J. Phys. Chem. C 2009, 113, 41, 17967–17972
Publication Date (Web):September 17, 2009
Copyright © 2009 American Chemical Society
Article Views
Read OnlinePDF (3 MB)


Etched TiO2 nanotubes are removed from the titanium foil substrate by sonication and are reassembled onto new electrodes for photovoltaic applications. CdS nanocrystallites were deposited on the restructured electrodes to compare their performance as quantum dot-sensitized solar cells to aligned nanotube electrodes. The sensitized photoresponses of the photoelectrochemical cell created from reassembled TiO2 nanotubes are very similar to aligned TiO2 nanotube arrays. Transient absorption spectroscopy of dispersed tubes indicates that electron transfer from excited CdS nanocrystallites into TiO2 nanotubes occurs at a rate of 2.0 × 1010 s−1. BET surface area analysis is investigated on etched nanotube powder without the need for weight approximation and was found to be 77.0 ± 2.9 m2/g. The importance of nanotube orientation and porosity on the electrode surface in stabilizing accumulated electrons in TiO2 nanotubes is elucidated from the open circuit voltage decay. Nanotube orientation was also seen to affect electron transport in photocurrent experiments.

Cited By

This article is cited by 44 publications.

  1. Matthew A. Becker, Emmy J. Radich, Bruce A. Bunker, Prashant V. Kamat. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (9) , 1575-1582. https://doi.org/10.1021/jz500481v
  2. Damon A. Wheeler, Yichuan Ling, Robert J. Dillon, Robert C. Fitzmorris, Christopher G. Dudzik, Liat Zavodivker, Tijana Rajh, Nada M. Dimitrijevic, Glenn Millhauser, Christopher Bardeen, Yat Li, and Jin Z. Zhang . Probing the Nature of Bandgap States in Hydrogen-Treated TiO2 Nanowires. The Journal of Physical Chemistry C 2013, 117 (50) , 26821-26830. https://doi.org/10.1021/jp409857j
  3. Zi-Rong Tang, Xia Yin, Yanhui Zhang, and Yi-Jun Xu . Synthesis of Titanate Nanotube–CdS Nanocomposites with Enhanced Visible Light Photocatalytic Activity. Inorganic Chemistry 2013, 52 (20) , 11758-11766. https://doi.org/10.1021/ic4010483
  4. Bratindranath Mukherjee, York R. Smith, and Vaidyanathan (Ravi) Subramanian . CdSe Nanocrystal Assemblies on Anodized TiO2 Nanotubes: Optical, Surface, and Photoelectrochemical Properties. The Journal of Physical Chemistry C 2012, 116 (29) , 15175-15184. https://doi.org/10.1021/jp208879f
  5. Taro Toyoda and Qing Shen . Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties. The Journal of Physical Chemistry Letters 2012, 3 (14) , 1885-1893. https://doi.org/10.1021/jz3004602
  6. Zhibin Shao, Wei Zhu, Zhi Li, Qianhui Yang, and Guanzhong Wang . One-Step Fabrication of CdS Nanoparticle-Sensitized TiO2 Nanotube Arrays via Electrodeposition. The Journal of Physical Chemistry C 2012, 116 (3) , 2438-2442. https://doi.org/10.1021/jp2078117
  7. Hyunbong Choi, Roxana Nicolaescu, Sanghyun Paek, Jaejung Ko, and Prashant V. Kamat . Supersensitization of CdS Quantum Dots with a Near-Infrared Organic Dye: Toward the Design of Panchromatic Hybrid-Sensitized Solar Cells. ACS Nano 2011, 5 (11) , 9238-9245. https://doi.org/10.1021/nn2035022
  8. Vidhya Chakrapani, David Baker, and Prashant V. Kamat . Understanding the Role of the Sulfide Redox Couple (S2–/Sn2–) in Quantum Dot-Sensitized Solar Cells. Journal of the American Chemical Society 2011, 133 (24) , 9607-9615. https://doi.org/10.1021/ja203131b
  9. York R. Smith and Vaidyanathan (Ravi) Subramanian . Heterostructural Composites of TiO2 Mesh−TiO2 Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. The Journal of Physical Chemistry C 2011, 115 (16) , 8376-8385. https://doi.org/10.1021/jp110200s
  10. Tae Hwa Jeon, Wonyong Choi, and Hyunwoong Park . Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays: Energy Level Mismatch versus Surface Specific Reactivity. The Journal of Physical Chemistry C 2011, 115 (14) , 7134-7142. https://doi.org/10.1021/jp201215t
  11. Néstor Guijarro, Teresa Lana-Villarreal, Qing Shen, Taro Toyoda, and Roberto Gómez. Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies. The Journal of Physical Chemistry C 2010, 114 (50) , 21928-21937. https://doi.org/10.1021/jp105890x
  12. Prashant V. Kamat, Kevin Tvrdy, David R. Baker, Emmy J. Radich. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews 2010, 110 (11) , 6664-6688. https://doi.org/10.1021/cr100243p
  13. David R. Baker and Prashant V. Kamat. Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement. Langmuir 2010, 26 (13) , 11272-11276. https://doi.org/10.1021/la100580g
  14. Sankaran Murugesan, York R. Smith and Vaidyanathan (Ravi) Subramanian. Hydrothermal Synthesis of Bi12TiO20 Nanostrucutures Using Anodized TiO2 Nanotubes and Its Application in Photovoltaics. The Journal of Physical Chemistry Letters 2010, 1 (10) , 1631-1636. https://doi.org/10.1021/jz100404v
  15. Qi Wang, Musen Li, Zhou Wang. Supercapacitive performance of TiO 2 boosted by a unique porous TiO 2 /Ti network and activated Ti 3+. RSC Advances 2019, 9 (14) , 7811-7817. https://doi.org/10.1039/C8RA10671A
  16. Senthilkumar Muthu, Gary Zaiats, Moorthy Babu Sridharan, Prashant V. Kamat. Influence of Plasmonic Cu x S Interfacing Layer on Photovoltaic Performance of CIZS Quantum Dot Sensitized Solar Cells. Journal of The Electrochemical Society 2019, 166 (5) , H3133-H3137. https://doi.org/10.1149/2.0221905jes
  17. Asmaa Kadim Ayal, Zulkarnain Zainal, Hong Ngee Lim, Zainal Abidin Talib, Ying-Chin Lim, Sook-Keng Chang, Araa Mebdir Holi. Fabrication of CdSe nanoparticles sensitized TiO 2 nanotube arrays via pulse electrodeposition for photoelectrochemical application. Materials Research Bulletin 2018, 106 , 257-262. https://doi.org/10.1016/j.materresbull.2018.05.040
  18. Unseock Kang, Kyu Jun Park, Dong Suk Han, Young-Min Kim, Seungdo Kim, Hyunwoong Park. Photoelectrochemical hydrogen production using CdS nanoparticles photodeposited onto Li-ion-inserted titania nanotube arrays. Catalysis Today 2018, 303 , 289-295. https://doi.org/10.1016/j.cattod.2017.08.049
  19. Xue Bai, Lingyu Ma, Zhangyan Dai, Hanchang Shi. Electrochemical synthesis of p-Cu 2 O/n-TiO 2 heterojunction electrode with enhanced photoelectrocatalytic activity. Materials Science in Semiconductor Processing 2018, 74 , 319-328. https://doi.org/10.1016/j.mssp.2017.10.049
  20. Mingzheng Ge, Qingsong Li, Chunyan Cao, Jianying Huang, Shuhui Li, Songnan Zhang, Zhong Chen, Keqin Zhang, Salem S. Al-Deyab, Yuekun Lai. One-dimensional TiO 2 Nanotube Photocatalysts for Solar Water Splitting. Advanced Science 2017, 4 (1) , 1600152. https://doi.org/10.1002/advs.201600152
  21. Ying Chang, Chonggang Wu, Huihu Wang, Yan Xiong, Yuan Chen, Kai Ke, Yao He, Shijie Dong. Effect of post-heat treatment on the photocatalytic activity of titanium dioxide nanowire membranes deposited on a Ti substrate. RSC Advances 2017, 7 (35) , 21422-21429. https://doi.org/10.1039/C7RA02092A
  22. Chao Shen, Denis Fichou, Qing Wang. Interfacial Engineering for Quantum-Dot-Sensitized Solar Cells. Chemistry - An Asian Journal 2016, 11 (8) , 1183-1193. https://doi.org/10.1002/asia.201600034
  23. Ping Yu, Jinzhong Zhang. Some interesting properties of black hydrogen-treated TiO2 nanowires and their potential application in solar energy conversion. Science China Chemistry 2015, 58 (12) , 1810-1815. https://doi.org/10.1007/s11426-015-5400-3
  24. Chang-Yeol Cho, Jaemin Lee, Doh C. Lee, Jun Hyuk Moon. Uniform Decoration of CdS Nanoparticles on TiO2 Inverse Opals for Visible Light Photoelectrochemical Cell. Electrochimica Acta 2015, 166 , 350-355. https://doi.org/10.1016/j.electacta.2015.03.055
  25. V.C. Anitha, Arghya Narayan Banerjee, Sang Woo Joo, Bong Ki Min. Barrier-oxide layer engineering of TiO2 nanotube arrays to get single- and multi-stage Y-branched nanotubes: Effect of voltage ramping and electrolyte conductivity. Materials Science and Engineering: B 2015, 195 , 1-11. https://doi.org/10.1016/j.mseb.2015.01.005
  26. Wai Lee, Chin Lai, Sharifah Hamid. One-Step Formation of WO3-Loaded TiO2 Nanotubes Composite Film for High Photocatalytic Performance. Materials 2015, 8 (5) , 2139-2153. https://doi.org/10.3390/ma8052139
  27. Meral Aydin, Aydın Hasimoglu, Yahya Bayrak, Oguz Kaan Ozdemir. Kinetic properties of co-reduced Co-B/graphene catalyst powder for hydrogen generation of sodium borohydride. Journal of Renewable and Sustainable Energy 2015, 7 (1) , 013117. https://doi.org/10.1063/1.4906914
  28. Kai Liu, Shiwei Lin, Jianjun Liao, Nengqian Pan, Min Zeng. Synthesis and Characterization of Hierarchical Structured TiO 2 Nanotubes and Their Photocatalytic Performance on Methyl Orange. Journal of Nanomaterials 2015, 2015 , 1-8. https://doi.org/10.1155/2015/201650
  29. Toshia L. Wrenn, James R. McBride, Nathanael J. Smith, Sandra J. Rosenthal. Has the Sun Set on Quantum Dot-Sensitized Solar Cells?. Nanomaterials and Nanotechnology 2015, 5 , 16. https://doi.org/10.5772/60736
  30. W. H. Lee, C. W. Lai, Y. S. Lim, S. B. A. Hamid. One-dimensional TiO 2 nanotubes arrays: Influence of anodisation voltage and their photocatalytic activity performance. Materials Research Innovations 2014, 18 (sup6) , S6-474-S6-476. https://doi.org/10.1179/1432891714Z.0000000001001
  31. Cuili Xiang, Zhe She, Yongjin Zou, Jun Cheng, Hailiang Chu, Shujun Qiu, Huanzhi Zhang, Lixian Sun, Fen Xu. A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO 2 nanotubes. Ceramics International 2014, 40 (10) , 16343-16348. https://doi.org/10.1016/j.ceramint.2014.07.073
  32. Xuyan Zhang, Fang Xu, Bingqing Zhao, Xin Ji, Yanwen Yao, Dapeng Wu, Zhiyong Gao, Kai Jiang. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochimica Acta 2014, 133 , 615-622. https://doi.org/10.1016/j.electacta.2014.04.089
  33. Chin Wei Lai, Srimala Sreekantan. Photoelectrochemical properties of TiO 2 nanotube arrays: effect of electrolyte pH and annealing temperature. Journal of Experimental Nanoscience 2014, 9 (3) , 230-239. https://doi.org/10.1080/17458080.2011.654276
  34. M. Cerro-Lopez, Y. Meas-Vong, M.A. Méndez-Rojas, C.A. Martínez-Huitle, M.A. Quiroz. Formation and growth of PbO2 inside TiO2 nanotubes for environmental applications. Applied Catalysis B: Environmental 2014, 144 , 174-181. https://doi.org/10.1016/j.apcatb.2013.07.018
  35. Chao-Feng Du, Ting You, Lei Jiang, Song-Qiu Yang, Kun Zou, Ke-Li Han, Wei-Qiao Deng. Controllable synthesis of ultrasmall CuInSe 2 quantum dots for photovoltaic application. RSC Adv. 2014, 4 (64) , 33855-33860. https://doi.org/10.1039/C4RA04727C
  36. Chin Wei Lai, Joon Ching Juan, Weon Bae Ko, Sharifah Bee Abd Hamid. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation. International Journal of Photoenergy 2014, 2014 , 1-14. https://doi.org/10.1155/2014/524135
  37. Oguz Kaan Ozdemir, Aydın Hasimoglu, Ali Sems Ahsen. Synthesis of graphene-based Co-B catalyst via simultaneous chemical reduction for hydrolysis of sodium borohydride. Journal of Renewable and Sustainable Energy 2013, 5 (6) , 063135. https://doi.org/10.1063/1.4854658
  38. Unseock Kang, Hyunwoong Park. Lithium ion-inserted TiO2 nanotube array photoelectrocatalysts. Applied Catalysis B: Environmental 2013, 140-141 , 233-240. https://doi.org/10.1016/j.apcatb.2013.04.003
  39. Xiaoyue Wang, Haibo Li, Yong Liu, Wenxia Zhao, Chaolun Liang, Hong Huang, Delin Mo, Zhong Liu, Xiao Yu, Youjun Deng, Hui Shen. Hydrothermal synthesis of well-aligned hierarchical TiO2 tubular macrochannel arrays with large surface area for high performance dye-sensitized solar cells. Applied Energy 2012, 99 , 198-205. https://doi.org/10.1016/j.apenergy.2012.05.014
  40. Yanzhong Hao, Yinhu Cao, Bao Sun, Yingpin Li, Yanhui Zhang, Dongsheng Xu. A novel semiconductor-sensitized solar cell based on [email protected]@TiO2 core-shell nanotube array. Solar Energy Materials and Solar Cells 2012, 101 , 107-113. https://doi.org/10.1016/j.solmat.2012.02.032
  41. Wen Zhu, Xi Liu, Huiqiong Liu, Dali Tong, Junyou Yang, Jiangying Peng. An efficient approach to control the morphology and the adhesion properties of anodized TiO2 nanotube arrays for improved photoconversion efficiency. Electrochimica Acta 2011, 56 (6) , 2618-2626. https://doi.org/10.1016/j.electacta.2010.11.012
  42. Jing Chen, Chu Li, Goki Eda, Yan Zhang, Wei Lei, Manish Chhowalla, William I. Milne, Wei-Qiao Deng. Incorporation of graphene in quantum dot sensitized solar cells based on ZnO nanorods. Chemical Communications 2011, 47 (21) , 6084. https://doi.org/10.1039/c1cc10162e
  43. Srimala Sreekantan, Lai Chin Wei, Zainovia Lockman. Extremely Fast Growth Rate of TiO2 Nanotube Arrays in Electrochemical Bath Containing H2O2. Journal of The Electrochemical Society 2011, 158 (12) , C397. https://doi.org/10.1149/2.020112jes
  44. Sven Rühle, Menny Shalom, Arie Zaban. Quantum-Dot-Sensitized Solar Cells. ChemPhysChem 2010, 11 (11) , 2290-2304. https://doi.org/10.1002/cphc.201000069