DFT Study on Anatase TiO2 Nanowires: Structure and Electronic Properties As Functions of Size, Surface Termination, and Morphology

View Author Information
Dipartimento di Fisica “E. Amaldi”, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy, CNISM, U. di R. Università degli Studi di Napoli “Federico II”, Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy, CNR-SPIN and Università degli Studi di Napoli “Federico II”, Dipartimento di Scienze Fisiche, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy, and Scuola Normale Superiore di Pisa, Piazza dei Cavalieri 7, 56126, Pisa, Italy
* To whom correspondence should be addressed: E-mail: [email protected]
†Università degli Studi Roma Tre.
‡CNISM.
∥CNR-SPIN and Università degli Studi di Napoli “Federico II”.
§Scuola Normale Superiore di Pisa.
¶Current address: Universidad del País Vasco, San Sebastián, Spain.
Cite this: J. Phys. Chem. C 2010, 114, 29, 12389–12400
Publication Date (Web):June 10, 2010
https://doi.org/10.1021/jp9090987
Copyright © 2010 American Chemical Society
Article Views
2220
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (5 MB)
Supporting Info (1)»

Abstract

We have performed first-principles calculations on anatase TiO2 nanowires (NWs) to investigate the dependence of their structural and electronic properties on the size, the surface coverage, and the morphology. We have found that the overall crystallinity of the NWs increases on increasing the diameter size or equivalently upon surface coverage with simple water-derived adsorbates. The NWs grown along the [010] direction are found to be more ordered with respect to the NWs in the [001] direction of the same size, thus highlighting the dependence of the crystallinity on the choice of the morphology. The bare and hydrated NWs do show the band gap blue shift due to the size confinement, but deviations from an ideal trend with the size are found and ascribed to the morphology and the crystallinity. Through the analysis of the valence band maximum and conduction band minimum energies we found that the electrochemical potential variations of the TiO2 NWs profit from the confined size, for example, by favoring the water splitting process. Moreover, the availability of internal channels for an efficient charge transport can be tuned by the surface coverage. The terminal hydroxyl groups of the hydrated NWs cannot be considered as deep hole traps since their related electronic states have binding energies in the same range of the NW oxygen states. The hydrogenated NWs grown along the [001] direction show occupied states at the bottom of the conduction bands, thus we expect that TiO2 NWs can be used as efficient hydrogen sensors. Finally, the surface hydration leads to the most stable NWs among the considered surface configurations with formation energies that are even close to the bulk limit.

Supporting Information

ARTICLE SECTIONS
Jump To

We provide the reader with further figures to complete the results shown in this article. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 46 publications.

  1. Ping-Ping Sun, Devesh R. Kripalani, Lichun Bai, Weijie Chi, Kun Zhou. Pentadiamond: A Highly Efficient Electron Transport Layer for Perovskite Solar Cells. The Journal of Physical Chemistry C 2021, 125 (9) , 5372-5379. https://doi.org/10.1021/acs.jpcc.0c11446
  2. Tisita Das, Sudip Chakraborty, Rajeev Ahuja, Gour P. Das. Functionalization and Defect-Driven Water Splitting Mechanism on a Quasi-Two-Dimensional TiO2 Hexagonal Nanosheet. ACS Applied Energy Materials 2019, 2 (7) , 5074-5082. https://doi.org/10.1021/acsaem.9b00745
  3. Shuping Huang Yuruo Hua Dimitri S. Kilin . Electronic Structure and Excited State Dynamics of TiO2 Nanowires. 2019,,, 23-46. https://doi.org/10.1021/bk-2019-1331.ch002
  4. Fengshuang Han, Zhaohui Zhou, Zhenxiong Huang, Mingtao Li, Liejin Guo. Effect of Water Adsorption on the Interfacial Structure and Band Edge Alignment of Anatase TiO2(001)/Water by First-Principles Molecular Dynamics. The Journal of Physical Chemistry C 2018, 122 (47) , 26965-26973. https://doi.org/10.1021/acs.jpcc.8b09191
  5. Luciana Fernández-Werner, Estela A. González, Ricardo Faccio, and Álvaro W. Mombrú . TiO2(B) and Anatase Angstrom-Scale Wires: A Theoretical Study. The Journal of Physical Chemistry C 2018, 122 (6) , 3363-3370. https://doi.org/10.1021/acs.jpcc.7b10418
  6. Payman Nayebi, Mohsen Emami-Razavi, and Esmaeil Zaminpayma . Study of Electronic and Optical Properties of CuInSe2 Nanowires. The Journal of Physical Chemistry C 2016, 120 (8) , 4589-4595. https://doi.org/10.1021/acs.jpcc.5b10749
  7. Daoyu Zhang, Minnan Yang, and Shuai Dong . Hydroxylation of the Rutile TiO2(110) Surface Enhancing Its Reducing Power for Photocatalysis. The Journal of Physical Chemistry C 2015, 119 (3) , 1451-1456. https://doi.org/10.1021/jp510427v
  8. Hatice Ünal, Deniz Gunceler, Oğuz Gülseren, Şinasi Ellialtıoğlu, and Ersen Mete . Range-Separated Hybrid Density Functional Study of Organic Dye Sensitizers on Anatase TiO2 Nanowires. The Journal of Physical Chemistry C 2014, 118 (42) , 24776-24783. https://doi.org/10.1021/jp507899c
  9. Xudong Wang, Zhaodong Li, Jian Shi, and Yanhao Yu . One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews 2014, 114 (19) , 9346-9384. https://doi.org/10.1021/cr400633s
  10. M. A. Gialampouki and Ch. E. Lekka . Early Stages of Ti–O Cluster Growth on Carbon Nanotubes by ab Initio Calculations. The Journal of Physical Chemistry A 2013, 117 (40) , 10397-10406. https://doi.org/10.1021/jp401913d
  11. Nunzio Roberto D’Amico, Giovanni Cantele, and Domenico Ninno . First-Principles Calculations of Clean and Defected ZnO Surfaces. The Journal of Physical Chemistry C 2012, 116 (40) , 21391-21400. https://doi.org/10.1021/jp306785z
  12. R. A. Evarestov, D. B. Migas, and Yu. F. Zhukovskii . Symmetry and Stability of the Rutile-Based TiO2 Nanowires: Models and Comparative LCAO-Plane Wave DFT Calculations. The Journal of Physical Chemistry C 2012, 116 (24) , 13395-13402. https://doi.org/10.1021/jp3018887
  13. Bálint Aradi, Peter Deák, Huynh Anh Huy, Andreas Rosenauer, and Thomas Frauenheim . Role of Symmetry in the Stability and Electronic Structure of Titanium Dioxide Nanowires. The Journal of Physical Chemistry C 2011, 115 (38) , 18494-18499. https://doi.org/10.1021/jp206183x
  14. T. He, Z. S. Hu, J. L. Li, and G. W. Yang . Surface Effect and Band-Gap Oscillation of TiO2 Nanowires and Nanotubes. The Journal of Physical Chemistry C 2011, 115 (28) , 13837-13843. https://doi.org/10.1021/jp203843j
  15. Huayang Zhang, Wenjie Tian, Shaobin Wang. Photocatalytic Oxygen Evolution. 2021,,, 129-162. https://doi.org/10.1002/9783527825073.ch6
  16. R. A. Evarestov. Binary Oxides of Transition Metals: ZnO, TiO$$_2$$, ZrO$$_2$$, HfO$$_2$$. 2020,,, 255-451. https://doi.org/10.1007/978-3-030-42994-2_5
  17. A Angeline Dorothy, Puspamitra Panigrahi. Tuning optical properties of TiO 2 by dimension reduction: from 3D bulk to 2D sheets along {001} and {101} plane. Materials Research Express 2019, 6 (12) , 1250f1. https://doi.org/10.1088/2053-1591/ab6651
  18. Baohuan Wei, Frederik Tielens, Monica Calatayud. Understanding the Role of Rutile TiO2 Surface Orientation on Molecular Hydrogen Activation. Nanomaterials 2019, 9 (9) , 1199. https://doi.org/10.3390/nano9091199
  19. Slimane Haffad, Kiptiemoi Korir Kiprono. Interfacial structure and electronic properties of TiO2/ZnO/TiO2 for photocatalytic and photovoltaic applications: A theoretical study. Surface Science 2019, 686 , 10-16. https://doi.org/10.1016/j.susc.2019.03.006
  20. Yuhan Yao, Ju Rong, Jing Feng, Yannan Zhang, Xiao Wang, Xiaohua Yu, Zhaolin Zhan. High stability and conductivity of TiO2/CuO composite nanofibers controlled by structuring and synergistic effects. Ceramics International 2019, 45 (8) , 10845-10851. https://doi.org/10.1016/j.ceramint.2019.02.161
  21. Daoyu Zhang, Shuai Dong. Challenges in band alignment between semiconducting materials: A case of rutile and anatase TiO2. Progress in Natural Science: Materials International 2019, 29 (3) , 277-284. https://doi.org/10.1016/j.pnsc.2019.03.012
  22. S. Kenmoe, O. Lisovski, S. Piskunov, Y. F. Zhukovskii, E. Spohr. Electronic and optical properties of pristine, N- and S-doped water-covered TiO 2 nanotube surfaces. The Journal of Chemical Physics 2019, 150 (4) , 041714. https://doi.org/10.1063/1.5050090
  23. Rima Trofimovaite, Christopher M.A. Parlett, Santosh Kumar, Lucia Frattini, Mark A. Isaacs, Karen Wilson, Luca Olivi, Ben Coulson, Joyashish Debgupta, Richard E. Douthwaite, Adam F. Lee. Single atom Cu(I) promoted mesoporous titanias for photocatalytic Methyl Orange depollution and H2 production. Applied Catalysis B: Environmental 2018, 232 , 501-511. https://doi.org/10.1016/j.apcatb.2018.03.078
  24. Daipayan Roy, Gergely F. Samu, Mohammad Kabir Hossain, Csaba Janáky, Krishnan Rajeshwar. On the measured optical bandgap values of inorganic oxide semiconductors for solar fuels generation. Catalysis Today 2018, 300 , 136-144. https://doi.org/10.1016/j.cattod.2017.03.016
  25. Huimin Gao, Daoyu Zhang, Minnan Yang, Shuai Dong. Photocatalytic Behavior of Fluorinated Rutile TiO 2 (110) Surface: Understanding from the Band Model. Solar RRL 2017, 1 (12) , 1700183. https://doi.org/10.1002/solr.201700183
  26. Tanveer Hussain, Thanayut Kaewmaraya, Mehwish Khan, Sudip Chakraborty, Muhammad Shafiq Islam, Vittaya Amornkitbamrung, Rajeev Ahuja. Improved sensing characteristics of methane over ZnO nano sheets upon implanting defects and foreign atoms substitution. Nanotechnology 2017, 28 (41) , 415502. https://doi.org/10.1088/1361-6528/aa8395
  27. Shuping Huang, Choumini Balasanthiran, Sergei Tretiak, James D. Hoefelmeyer, Svetlana V. Kilina, Dmitri S. Kilin. Dynamics of charge at water-to-semiconductor interface: Case study of wet [0 0 1] anatase TiO2 nanowire. Chemical Physics 2016, 481 , 184-190. https://doi.org/10.1016/j.chemphys.2016.08.002
  28. Yanqing Wang, Yunchong Fu, Chuanxin Hou, Yanjie Zhai, Feng Dang, Hong Lin, Yuqi Fan. Characteristics of two-dimensional millimetric microarrays of TiO 2 nanowires and their photocatalytic properties. RSC Advances 2016, 6 (68) , 64079-64086. https://doi.org/10.1039/C6RA04979F
  29. Hatice Ünal, Deniz Gunceler, Oğuz Gülseren, Şinasi Ellialtιoğlu, Ersen Mete. Anatase TiO 2 nanowires functionalized by organic sensitizers for solar cells: A screened Coulomb hybrid density functional study. Journal of Applied Physics 2015, 118 (19) , 194301. https://doi.org/10.1063/1.4935523
  30. Hatice Ünal, Deniz Gunceler, Oğuz Gülseren, Şinasi Ellialtıoğlu, Ersen Mete. Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates. Applied Surface Science 2015, 354 , 437-442. https://doi.org/10.1016/j.apsusc.2015.04.086
  31. Ling-ju Guo, Zhi Zeng, Tao He. From 1D chain to 3D network: A theoretical study on TiO 2 low dimensional structures. The Journal of Chemical Physics 2015, 142 (22) , 224305. https://doi.org/10.1063/1.4922217
  32. R. A. Evarestov. Binary Oxides of Transition Metals. 2015,,, 429-543. https://doi.org/10.1007/978-3-662-44581-5_7
  33. Daoyu Zhang, Minnan Yang, Shuai Dong. Improving the photocatalytic activity of TiO 2 through reduction. RSC Advances 2015, 5 (45) , 35661-35666. https://doi.org/10.1039/C5RA05200A
  34. Linda Hung, Kopinjol Baishya, Serdar Öğüt. First-principles real-space study of electronic and optical excitations in rutile TiO 2 nanocrystals. Physical Review B 2014, 90 (16) https://doi.org/10.1103/PhysRevB.90.165424
  35. Payman Nayebi, Kavoos Mirabbaszadeh, Mahnaz Shamshirsaz. Structural and electronic properties of CuInS2 nanowire: A study of density functional theory. Computational Materials Science 2014, 89 , 198-204. https://doi.org/10.1016/j.commatsci.2014.03.060
  36. Hatice Ünal, Oğuz Gülseren, Şinasi Ellialtıoğlu, Ersen Mete. Electronic structures and optical spectra of thin anatase TiO 2 nanowires through hybrid density functional and quasiparticle calculations. Physical Review B 2014, 89 (20) https://doi.org/10.1103/PhysRevB.89.205127
  37. Dmitri B. Migas, Andrew B. Filonov, Victor E. Borisenko, Natalia V. Skorodumova. Orientation effects in morphology and electronic properties of anatase TiO2 one-dimensional nanostructures. I. Nanowires. Physical Chemistry Chemical Physics 2014, 16 (20) , 9479. https://doi.org/10.1039/c3cp54988g
  38. Daoyu Zhang, Minnan Yang. Band structure engineering of TiO2 nanowires by n–p codoping for enhanced visible-light photoelectrochemical water-splitting. Physical Chemistry Chemical Physics 2013, 15 (42) , 18523. https://doi.org/10.1039/c3cp51044a
  39. Nunzio Roberto D'Amico, Giovanni Cantele, Domenico Ninno. First principles calculations of the band offset at SrTiO 3 −TiO 2 interfaces. Applied Physics Letters 2012, 101 (14) , 141606. https://doi.org/10.1063/1.4757281
  40. Yu F Zhukovskii, R A Evarestov. Ab initio simulations on rutile-based titania nanowires. IOP Conference Series: Materials Science and Engineering 2012, 38 , 012005. https://doi.org/10.1088/1757-899X/38/1/012005
  41. Zhongchang Wang, Rong Sun, Chunlin Chen, Mitsuhiro Saito, Susumu Tsukimoto, Yuichi Ikuhara. Structural and electronic impact of SrTiO3 substrate on TiO2 thin films. Journal of Materials Science 2012, 47 (13) , 5148-5157. https://doi.org/10.1007/s10853-012-6392-4
  42. Abraham Hmiel, Yongqiang Xue. Quantum confinement and surface relaxation effects in rutile TiO 2 nanowires. Physical Review B 2012, 85 (23) https://doi.org/10.1103/PhysRevB.85.235461
  43. Dick Hartmann Douma, Ralph Gebauer. Optical properties of dye sensitized TiO 2 nanowires from time-dependent density functional theory. physica status solidi (RRL) - Rapid Research Letters 2011, 5 (8) , 259-261. https://doi.org/10.1002/pssr.201105241
  44. Mohammed Ashraf Gondal, Xiaofeng Chang, Mohammad Ashraf Ali, Zain Hassan Yamani, Qin Zhou, Guangbin Ji. Adsorption and degradation performance of Rhodamine B over BiOBr under monochromatic 532nm pulsed laser exposure. Applied Catalysis A: General 2011, 397 (1-2) , 192-200. https://doi.org/10.1016/j.apcata.2011.02.033
  45. D. Pukazhselvan, M. Sterlin Leo Hudson, A.S.K. Sinha, O.N. Srivastava. Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride. Energy 2010, 35 (12) , 5037-5042. https://doi.org/10.1016/j.energy.2010.08.015
  46. Zhongchang Wang, Wen Zeng, Lin Gu, Mitsuhiro Saito, Susumu Tsukimoto, Yuichi Ikuhara. Atomic-scale structure and electronic property of the LaAlO3/TiO2 interface. Journal of Applied Physics 2010, 108 (11) , 113701. https://doi.org/10.1063/1.3516496