Electrochemical Impedance Spectroscopy of Porous TiO2 for Photocatalytic Applications

View Author Information
Department of Materials Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
* To whom correspondence should be addressed. E-mail: [email protected]
Cite this: J. Phys. Chem. C 2010, 114, 21, 9781–9790
Publication Date (Web):May 11, 2010
Copyright © 2010 American Chemical Society
Article Views
Read OnlinePDF (2 MB)


High surface area immobilized TiO2 were grown via several electrochemical anodization methods for photocatalytic applications. Mesoporous TiO2 was grown in a molten salts electrolyte and in a sulfuric acid solution above the micro sparking potential. On the contrary, nanotubular TiO2 was grown in a sodium sulfate solution with the addition of fluoride ions, leading to the formation of fine elongated nanotubes with high surface area. The different types of photocatalysts were characterized by SEM and XRD in addition to electrochemical studies which include linear sweep voltammetry and open circuit potential relaxation. Electrochemical Impedance Spectroscopy (EIS) was used to study the impedance and capacitance of the TiO2 in the dark and under UV illumination together with Mott−Schottky analysis. The results of the EIS were correlated with the microstructural characterization and the photocurrents measurements along with photocatalytic degradation of Methyl Orange (MeO). The combined results led us to a better understanding of the electronic properties of n-type TiO2 and the effect of the growing method on its properties such as the surface area, crystal structure, charge carrier concentration, and charge transfer rate. The nanotubular structure possesses the highest surface area and higher charge carrier concentration, albeit the charge transfer rate is slower. Nevertheless, it is the most efficient photocatalyst toward degradation of MeO. The use of the described combined methods is a powerful tool toward predicting and understanding the ideal anode for photocatalytic process.

Cited By

This article is cited by 80 publications.

  1. Yufeng Cao, Deyu Liu, Xin Ni, Xiangrui Meng, Yang Zhou, Zhenfan Sun, Yongbo Kuang. Better Charge Separation in CuO Nanowire Array Photocathodes: Micro-/Nanostructure Regulation for Photoelectrochemical Reaction. ACS Applied Energy Materials 2020, 3 (7) , 6334-6343. https://doi.org/10.1021/acsaem.0c00554
  2. Dingze Lu, Huiqing Fan, Kiran Kumar Kondamareddy, Huawa Yu, Anxiang Wang, Hongjuan Hao, Min Li, Junwei Shen. Highly Efficient Visible-Light-Induced Photocatalytic Production of Hydrogen for Magnetically Retrievable [email protected]@MoS2/g-C3N4 Hierarchical Microspheres. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 9903-9911. https://doi.org/10.1021/acssuschemeng.8b01118
  3. Pawan Pathak, Mateusz Podzorski, Detlef Bahnemann, Vaidyanathan Ravi Subramanian. One-Pot Fabrication of High Coverage PbS Quantum Dot Nanocrystal-Sensitized Titania Nanotubes for Photoelectrochemical Processes. The Journal of Physical Chemistry C 2018, 122 (25) , 13659-13668. https://doi.org/10.1021/acs.jpcc.8b00120
  4. Kamala K. Nanda, Smrutirekha Swain, Biswarup Satpati, Laxmidhar Besra, Biswajit Mishra, and Yatendra S. Chaudhary . Enhanced Photocatalytic Activity and Charge Carrier Dynamics of Hetero-Structured Organic–Inorganic Nano-Photocatalysts. ACS Applied Materials & Interfaces 2015, 7 (15) , 7970-7978. https://doi.org/10.1021/acsami.5b00022
  5. Marketa Zukalova, Milan Bousa, Zdenek Bastl, Ivan Jirka, and Ladislav Kavan . Electrochemical Doping of Compact TiO2 Thin Layers. The Journal of Physical Chemistry C 2014, 118 (45) , 25970-25977. https://doi.org/10.1021/jp504457v
  6. Ladislav Kavan, Nicolas Tétreault, Thomas Moehl, and Michael Grätzel . Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16408-16418. https://doi.org/10.1021/jp4103614
  7. Bo Chen, Junbo Hou, and Kathy Lu . Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors. Langmuir 2013, 29 (19) , 5911-5919. https://doi.org/10.1021/la400586r
  8. Lixia Sang, Huanyue Tan, Xiaomin Zhang, Yuting Wu, Chongfang Ma, and Clemens Burda . Effect of Quantum Dot Deposition on the Interfacial Flatband Potential, Depletion Layer in TiO2 Nanotube Electrodes, and Resulting H2 Generation Rates. The Journal of Physical Chemistry C 2012, 116 (35) , 18633-18640. https://doi.org/10.1021/jp305388c
  9. Tladi Gideon Mofokeng, Mpho Phillip Motloung, Onoyivwe Monday Ama, Suprakas Sinha Ray. Electrochemical Characterization of Nanomaterials. 2022,,, 11-24. https://doi.org/10.1007/978-3-030-85555-0_2
  10. ELSAYED T HELMY, AHMED EL NEMR, ESAM ARAFA, SHADY ELDAFRAWY, MAHMOUD MOUSA. Photocatalytic degradation of textile dyeing wastewater under visible light irradiation using green synthesized mesoporous non-metal-doped TiO2. Bulletin of Materials Science 2021, 44 (1) https://doi.org/10.1007/s12034-020-02322-0
  11. Dilek Korcoban, Ahmad E. Kandjani, Victoria E. Coyle, Ebtsam K. Alenezy, Suresh K. Bhargava, Ylias M. Sabri. Recyclable SERS substrate: Optimised by reducing masking effect through colloidal lithography. Applied Surface Science 2021, 2 , 151852. https://doi.org/10.1016/j.apsusc.2021.151852
  12. Peng Wang, Cong Xie, Tong Song, Ping Yang. Amorphous SnO2/TiO2 heterostructures with enhanced interfacial electron coupling for enhanced photoreduction of Cr(VI). Journal of Electroanalytical Chemistry 2021, 897 , 115618. https://doi.org/10.1016/j.jelechem.2021.115618
  13. Maryam Karimi-Shamsabadi, Mohsen Behpour. Comparing photocatalytic activity consisting of Sb2S3 and Ag2S on the TiO2–SiO2/TiO2 nanotube arrays-support for improved visible-light-induced photocatalytic degradation of a binary mixture of basic blue 41 and basic red 46 dyes. International Journal of Hydrogen Energy 2021, 46 (53) , 26989-27013. https://doi.org/10.1016/j.ijhydene.2021.05.199
  14. Kangwang Wang, Sheng Zhan, Danyang Zhang, Hui Sun, Xiaodong Jin, Juan Wang. In situ grown monolayer N–Doped graphene and ZnO on ZnFe2O4 hollow spheres for efficient photocatalytic tetracycline degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 618 , 126362. https://doi.org/10.1016/j.colsurfa.2021.126362
  15. Aditi Sharma, Upasana Bhardwaj, H.S. Kushwaha. Efficacious visible-light photocatalytic degradation of toxics by using Sr2TiMnO6-rGO composite for the wastewater treatment. Cleaner Engineering and Technology 2021, 2 , 100087. https://doi.org/10.1016/j.clet.2021.100087
  16. Waseem Raza, Imgon Hwang, Nikita Denisov, Patrik Schmuki. Thermal Ramping Rate during Annealing of TiO 2 Nanotubes Greatly Affects Performance of Photoanodes. physica status solidi (a) 2021, 388 , 2100040. https://doi.org/10.1002/pssa.202100040
  17. Maryam Mokhtarifar, Duc Trung Nguyen, Mohan Sakar, MariaPia Pedeferri, Marco Asa, Reyhaneh Kaveh, Maria Vittoria Diamanti, Trong-On Do. Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO2/WO3 photocatalyst for the round-the-clock decomposition of methanol. Materials Research Bulletin 2021, 137 , 111203. https://doi.org/10.1016/j.materresbull.2020.111203
  18. Chengsi Pan, Zhenlin Wang, Yang Lou, Ying Zhang, Yuming Dong, Yongfa Zhu. The construction of a wide-spectrum-responsive and high-activity photocatalyst, Bi 25 CoO 40 , via the creation of large external dipoles. Journal of Materials Chemistry A 2021, 9 (6) , 3616-3627. https://doi.org/10.1039/D0TA11549E
  19. Ke Guo, Xiaoli Zhu, Lianlian Peng, Yanghe Fu, Rui Ma, Xinqing Lu, Fumin Zhang, Weidong Zhu, Maohong Fan. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chemical Engineering Journal 2021, 405 , 127011. https://doi.org/10.1016/j.cej.2020.127011
  20. Maryam Mokhtarifar, Duc Trung Nguyen, Maria Vittoria Diamanti, Reyhaneh Kaveh, Marco Asa, Mohan Sakar, MariaPia Pedeferri, Trong-On Do. Fabrication of dual-phase TiO 2 /WO 3 with post-illumination photocatalytic memory. New Journal of Chemistry 2020, 44 (46) , 20375-20386. https://doi.org/10.1039/D0NJ04694A
  21. Pradipkumar Leuaa, Divya Priyadarshani, Debittree Choudhury, Rajan Maurya, Manoj Neergat. Resolving charge-transfer and mass-transfer processes of VO 2+ /VO 2 + redox species across the electrode/electrolyte interface using electrochemical impedance spectroscopy for vanadium redox flow battery. RSC Advances 2020, 10 (51) , 30887-30895. https://doi.org/10.1039/D0RA05224H
  22. Xiaofeng Zhou, Fei Yan, Shuanghao Wu, Bo Shen, Huarong Zeng, Jiwei Zhai. Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO 3 (X = Cl, Br, Cl 0.166 Br 0.834 ) Piezoelectric Composites. Small 2020, 16 (26) , 2001573. https://doi.org/10.1002/smll.202001573
  23. Ji Wang, Jikai Yang, Yiming Zhao, Guozheng Wang. Photoelectrochemical Properties of Porous Si/TiO 2 Nanowire Heterojunction Structure. Journal of Nanomaterials 2020, 2020 , 1-7. https://doi.org/10.1155/2020/9629807
  24. Yajun Wang, Wencan Zhang, Mengmeng Liu, Zhouliang Geng, Yan Li, Luhao Feng, Guiyuan Jiang, Yuming Li, Wenqing Yao, Yanyan Zhu. Enhanced removal of pollutant in a BiPO4–SiO2 hybrid hydrogel via an adsorption–enrichment and in situ photocatalysis synergy. Journal of Materials Science 2020, 55 (17) , 7441-7452. https://doi.org/10.1007/s10853-020-04529-2
  25. K.M.S.D.B. Kulathunga, Chang-Feng Yan, Jayasundera Bandara. Photocatalytic removal of airborne indoor pollutants by IR illuminated silver coated TiO2 catalyst: Advantage of one-dimensional TiO2 nanostructures in IR active photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 590 , 124509. https://doi.org/10.1016/j.colsurfa.2020.124509
  26. J. Rajkumari, C. Maria Magdalane, B. Siddhardha, J. Madhavan, G. Ramalingam, Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu, A.K.M. Ghilan, V. Duraipandiayan, K. Kaviyarasu. Synthesis of titanium oxide nanoparticles using Aloe barbadensis mill and evaluation of its antibiofilm potential against Pseudomonas aeruginosa PAO1. Journal of Photochemistry and Photobiology B: Biology 2019, 201 , 111667. https://doi.org/10.1016/j.jphotobiol.2019.111667
  27. W.M.A. El Rouby, M. Antuch, S.-M. You, P. Beaunier, P. Millet. Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings. International Journal of Hydrogen Energy 2019, 44 (59) , 30949-30964. https://doi.org/10.1016/j.ijhydene.2019.08.220
  28. Ibrahim Khalifa Saleh, Yuchen Ding, Prashant Nagpal. Co-doping metal oxide nanotubes: superlinear photoresponse and multianalyte sensing. Materials Research Express 2019, 6 (11) , 1150b1. https://doi.org/10.1088/2053-1591/ab4d2d
  29. Nhat Truong Nguyen, Selda Ozkan, Seyedsina Hejazi, Nikita Denisov, Ondrej Tomanec, Radek Zboril, Patrik Schmuki. Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. International Journal of Hydrogen Energy 2019, 44 (41) , 22962-22971. https://doi.org/10.1016/j.ijhydene.2019.06.200
  30. Zhenbiao Dong, Dongyan Ding, Ting Li, Congqin Ning. High-efficiency photoelectrochemical water splitting with heterojunction photoanode of In2O3-x nanorods/black Ti–Si–O nanotubes. International Journal of Hydrogen Energy 2019, 44 (33) , 17611-17621. https://doi.org/10.1016/j.ijhydene.2019.05.165
  31. Mourad Frites, Shahed U.M. Khan. Nano-wall like visible-light active carbon modified n-TiO2 thin films for efficient photoelectrochemical oxygen separation from water. International Journal of Hydrogen Energy 2019, 44 (21) , 10519-10527. https://doi.org/10.1016/j.ijhydene.2019.02.145
  32. Shiva Mohajernia, Seyedsina Hejazi, Pavlina Andryskova, Giorgio Zoppellaro, Ondrej Tomanec, Radek Zboril, Patrik Schmuki. Conductive Cu‐Doped TiO 2 Nanotubes for Enhanced Photoelectrochemical Methanol Oxidation and Concomitant Hydrogen Generation. ChemElectroChem 2019, 6 (4) , 1244-1249. https://doi.org/10.1002/celc.201900076
  33. Ling Yuan, Shuangwei Lu, Feng Yang, Yushu Wang, Yongfang Jia, Mayameen S. Kadhim, Yanmei Yu, Yong Zhang, Yong Zhao. A facile room-temperature synthesis of three-dimensional coral-like Ag2S nanostructure with enhanced photocatalytic activity. Journal of Materials Science 2019, 54 (4) , 3174-3186. https://doi.org/10.1007/s10853-018-3051-4
  34. Kyana Mohammadi, Ahmad Moshaii, Maryam Azimzadehirani, Zahra-Sadat Pourbakhsh. Photoelectrochemical activity of Ag loaded TiO2 nanotube arrays produced by sequential chemical bath deposition for water splitting. Journal of Materials Science: Materials in Electronics 2019, 30 (2) , 1878-1884. https://doi.org/10.1007/s10854-018-0460-8
  35. Ahmet Kertmen, Enzo Barbé, Mariusz Szkoda, Katarzyna Siuzdak, Višnja Babačić, Pau Torruella, Igor Iatsunskyi, Michał Kotkowiak, Karol Rytel, Sònia Estradé, Francesca Peiró, Stefan Jurga, Yanguang Li, Emerson Coy. Photoelectrochemically Active N‐Adsorbing Ultrathin TiO 2 Layers for Water‐Splitting Applications Prepared by Pyrolysis of Oleic Acid on Iron Oxide Nanoparticle Surfaces under Nitrogen Environment. Advanced Materials Interfaces 2018, 61 , 1801286. https://doi.org/10.1002/admi.201801286
  36. Chaoqun Cheng, Guohua Liu, Kang Du, Gang Li, Wendong Zhang, Simone Sanna, Yunzhong Chen, Nini Pryds, Kaiying Wang. Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Applied Catalysis B: Environmental 2018, 237 , 416-423. https://doi.org/10.1016/j.apcatb.2018.06.012
  37. Christian Fleischer, Athanasios Chatzitakis, Truls Norby. Intrinsic photoelectrocatalytic activity in oriented, photonic TiO2 nanotubes. Materials Science in Semiconductor Processing 2018, 88 , 186-191. https://doi.org/10.1016/j.mssp.2018.08.009
  38. Mengke Yang, Yongteng Qian, Jimin Du, Sijie Yuan, Sijia Wang, Xinrui Zhu, Xialing Lin, Kaidi Li, Sujuan Li, Dae Joon Kang. Controlled synthesis of nanoplate, nanoprism and nanopyramid-shaped CdSe decorated on porous TiO2 photocatalysts for visible-light-driven hydrogen evolution. Ceramics International 2018, 44 (11) , 12555-12563. https://doi.org/10.1016/j.ceramint.2018.04.052
  39. Zhangxiaoxiong Chen, Jikai Yang, Xiaotian Yang, Yiming Zhao, Jiaqi Kang, Fuyu Yang, Yufei Zhang, Ming Cheng, Guozheng Wang, Qingduo Duanmu. Porous Si/TiO 2 nanowire photoanode for photoelectric catalysis under simulated solar light irradiation. Applied Organometallic Chemistry 2018, 32 (6) , e4356. https://doi.org/10.1002/aoc.4356
  40. Zhenbiao Dong, Dongyan Ding, Ting Li, Congqin Ning. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Applied Surface Science 2018, 436 , 125-133. https://doi.org/10.1016/j.apsusc.2017.12.030
  41. Gylen Odling, Aruna Ivaturi, Efthalia Chatzisymeon, Neil Robertson. Improving Carbon-Coated TiO 2 Films with a TiCl 4 Treatment for Photocatalytic Water Purification. ChemCatChem 2018, 10 (1) , 234-243. https://doi.org/10.1002/cctc.201700867
  42. Andreas I. Savva, Kassiopeia A. Smith, Matthew Lawson, Sterling R. Croft, Ariel E. Weltner, Chris D. Jones, Hailey Bull, Paul J. Simmonds, Lan Li, Hui Xiong. Defect generation in TiO 2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Physical Chemistry Chemical Physics 2018, 20 (35) , 22537-22546. https://doi.org/10.1039/C8CP04368J
  43. Le Shi, Sifei Zhuo, Mutalifu Abulikemu, Gangaiah Mettela, Thangavelu Palaniselvam, Shahid Rasul, Bo Tang, Buyi Yan, Navid B. Saleh, Peng Wang. Annealing temperature effects on photoelectrochemical performance of bismuth vanadate thin film photoelectrodes. RSC Advances 2018, 8 (51) , 29179-29188. https://doi.org/10.1039/C8RA04887H
  44. V. Silva-Castro, J.C. Durán-Álvarez, J. Mateos-Santiago, A.A. Flores-Caballero, L. Lartundo-Rojas, A. Manzo-Robledo. Photo-electrochemical and interfacial-process analysis of WO 3 nanostructures supported on TiO 2 : An approach to BPA oxidation. Materials Science in Semiconductor Processing 2017, 72 , 115-121. https://doi.org/10.1016/j.mssp.2017.09.014
  45. Qian Zhang, Yu Huang, Shiqi Peng, Yufei Zhang, Zhenxing Shen, Jun-ji Cao, Wingkei Ho, Shun Cheng Lee, David Y.H. Pui. Perovskite LaFeO3-SrTiO3 composite for synergistically enhanced NO removal under visible light excitation. Applied Catalysis B: Environmental 2017, 204 , 346-357. https://doi.org/10.1016/j.apcatb.2016.11.052
  46. Lu Wang, Wenzhong Wang. A New Strategy to Design Highly Sustainable Sulfide PhotoCatalyst for Hydrogen Production. Chinese Journal of Chemistry 2017, 35 (2) , 148-152. https://doi.org/10.1002/cjoc.201600668
  47. A. Chatzitakis, Α. Papaderakis, N. Karanasios, J. Georgieva, E. Pavlidou, G. Litsardakis, I. Poulios, S. Sotiropoulos. Comparison of the photoelectrochemical performance of particulate and nanotube TiO 2 photoanodes. Catalysis Today 2017, 280 , 14-20. https://doi.org/10.1016/j.cattod.2016.07.017
  48. Mingzheng Ge, Qingsong Li, Chunyan Cao, Jianying Huang, Shuhui Li, Songnan Zhang, Zhong Chen, Keqin Zhang, Salem S. Al-Deyab, Yuekun Lai. One-dimensional TiO 2 Nanotube Photocatalysts for Solar Water Splitting. Advanced Science 2017, 4 (1) , 1600152. https://doi.org/10.1002/advs.201600152
  49. Andreas Kafizas, Robert Godin, James R. Durrant. Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. 2017,,, 3-46. https://doi.org/10.1016/bs.semsem.2017.02.002
  50. Yuchen Ding, Prashant Nagpal. Titanium dioxide nanotube membranes for solar energy conversion: effect of deep and shallow dopants. Physical Chemistry Chemical Physics 2017, 19 (15) , 10042-10050. https://doi.org/10.1039/C7CP00774D
  51. Yajun Wang, Weikun Bai, Haiquan Wang, Yao Jiang, Shanlei Han, Huaqian Sun, Yuming Li, Guiyuan Jiang, Zhen Zhao, Qing Huan. Promoted photoelectrocatalytic hydrogen evolution of a type II structure via an Al 2 O 3 recombination barrier layer deposited using atomic layer deposition. Dalton Transactions 2017, 46 (32) , 10734-10741. https://doi.org/10.1039/C7DT00970D
  52. Mahdi Babaei, Changiz Dehghanian, Peyman Taheri, Masoud Babaei. Effect of duty cycle and electrolyte additive on photocatalytic performance of TiO2-ZrO2 composite layers prepared on CP Ti by micro arc oxidation method. Surface and Coatings Technology 2016, 307 , 554-564. https://doi.org/10.1016/j.surfcoat.2016.09.050
  53. Joana Ângelo, Pedro Magalhães, Luísa Andrade, Adélio Mendes. Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Applied Surface Science 2016, 387 , 183-189. https://doi.org/10.1016/j.apsusc.2016.06.101
  54. Gang-Ling He, Yan-Hao Zhong, Ming-Jie Chen, Xin Li, Yue-Ping Fang, Yue-Hua Xu. One-pot hydrothermal synthesis of SrTiO3-reduced graphene oxide composites with enhanced photocatalytic activity for hydrogen production. Journal of Molecular Catalysis A: Chemical 2016, 423 , 70-76. https://doi.org/10.1016/j.molcata.2016.05.025
  55. Meng Sun, Huijuan Liu, Jiuhui Qu, Jinghong Li. Earth-Rich Transition Metal Phosphide for Energy Conversion and Storage. Advanced Energy Materials 2016, 6 (13) , 1600087. https://doi.org/10.1002/aenm.201600087
  56. Yang Zhang, Dan Wang, Xintong Zhang, Ying Chen, Lina Kong, Peng Chen, Yinglin Wang, Changhua Wang, Lingling Wang, Yichun Liu. Enhanced photoelectrochemical performance of nanoporous BiVO 4 photoanode by combining surface deposited cobalt-phosphate with hydrogenation treatment. Electrochimica Acta 2016, 195 , 51-58. https://doi.org/10.1016/j.electacta.2016.02.137
  57. L. Giorgi, E. Salernitano, Th. Dikonimos Makris, R. Giorgi, E. Leoni, M.L. Grilli, N. Lisi. Titania nanotubes self-assembled by electrochemical anodization: Semiconducting and electrochemical properties. Thin Solid Films 2016, 601 , 28-34. https://doi.org/10.1016/j.tsf.2015.11.078
  58. Lixia Sang, Yudong Zhang, Jun Wang, Yangbo Zhao, Yi-tung Chen. Correlation of the depletion layer with the Helmholtz layer in the anatase TiO 2 –H 2 O interface via molecular dynamics simulations. Physical Chemistry Chemical Physics 2016, 18 (22) , 15427-15435. https://doi.org/10.1039/C6CP01990K
  59. Yuchen Ding, Prashant Nagpal. Standalone anion- and co-doped titanium dioxide nanotubes for photocatalytic and photoelectrochemical solar-to-fuel conversion. Nanoscale 2016, 8 (40) , 17496-17505. https://doi.org/10.1039/C6NR05742J
  60. Diana Hidalgo, Riccardo Messina, Adriano Sacco, Diego Manfredi, Svetoslava Vankova, Edoardo Garrone, Guido Saracco, Simelys Hernández. Thick mesoporous TiO 2 films through a sol–gel method involving a non-ionic surfactant: Characterization and enhanced performance for water photo-electrolysis. International Journal of Hydrogen Energy 2014, 39 (36) , 21512-21522. https://doi.org/10.1016/j.ijhydene.2014.02.163
  61. Guido Mula, Lucy Loddo, Elisa Pinna, Maria V Tiddia, Michele Mascia, Simonetta Palmas, Roberta Ruffilli, Andrea Falqui. Controlling the Er content of porous silicon using the doping current intensity. Nanoscale Research Letters 2014, 9 (1) https://doi.org/10.1186/1556-276X-9-332
  62. E. T. Deva Kumar, V. Ganesh. Immobilization of Horseradish Peroxidase Enzyme on Nanoporous Titanium Dioxide Electrodes and Its Structural and Electrochemical Characterizations. Applied Biochemistry and Biotechnology 2014, 174 (3) , 1043-1058. https://doi.org/10.1007/s12010-014-0999-7
  63. Yean Ling Pang, Steven Lim, Hwai Chyuan Ong, Wen Tong Chong. A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts. Applied Catalysis A: General 2014, 481 , 127-142. https://doi.org/10.1016/j.apcata.2014.05.007
  64. Simelys Hernández, Mauro Tortello, Adriano Sacco, Marzia Quaglio, Toby Meyer, Stefano Bianco, Guido Saracco, C. Fabrizio Pirri, Elena Tresso. New Transparent Laser-Drilled Fluorine-doped Tin Oxide covered Quartz Electrodes for Photo-Electrochemical Water Splitting. Electrochimica Acta 2014, 131 , 184-194. https://doi.org/10.1016/j.electacta.2014.01.037
  65. Ladislav Kavan, Marketa Zukalova, Ondrej Vik, David Havlicek. Sol-Gel Titanium Dioxide Blocking Layers for Dye-Sensitized Solar Cells: Electrochemical Characterization. ChemPhysChem 2014, 15 (6) , 1056-1061. https://doi.org/10.1002/cphc.201400026
  66. E. T. Deva Kumar, V. Ganesh. Hierarchically Ordered Tubular Titanium Dioxide Electrodes: Preparation, Electrochemical Characterization, and Application as a Bifunctional Catalyst. ChemElectroChem 2014, 1 (3) , 590-600. https://doi.org/10.1002/celc.201300132
  67. Lok-kun Tsui, Giovanni Zangari. Water content in the anodization electrolyte affects the electrochemical and electronic transport properties of TiO2 nanotubes: a study by electrochemical impedance spectroscopy. Electrochimica Acta 2014, 121 , 203-209. https://doi.org/10.1016/j.electacta.2013.12.163
  68. Weirong Zhao, Jing Zhang, Xi Zhu, Meng Zhang, Jing Tang, Min Tan, Yan Wang. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Applied Catalysis B: Environmental 2014, 144 , 468-477. https://doi.org/10.1016/j.apcatb.2013.07.047
  69. Jin Zhang, Weiwei Zhao, You Xu, Haolan Xu, Bin Zhang. In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy 2014, 39 (2) , 702-710. https://doi.org/10.1016/j.ijhydene.2013.10.118
  70. Jonathan W. Lekse, Barry J. Haycock, James P. Lewis, Douglas R. Kauffman, Christopher Matranga. The effect of electronic structure changes in NaInO 2 and NaIn 0.9 Fe 0.1 O 2 on the photoreduction of methylene blue. J. Mater. Chem. A 2014, 2 (24) , 9331-9337. https://doi.org/10.1039/C4TA00906A
  71. MingYan Wang, JunRao Huang, ZhiWei Tong, WeiHua Li, Jun Chen. Reduced graphene oxide–cuprous oxide composite via facial deposition for photocatalytic dye-degradation. Journal of Alloys and Compounds 2013, 568 , 26-35. https://doi.org/10.1016/j.jallcom.2013.03.019
  72. York Smith, Rupashree Ray, Krista Carlson, Biplab Sarma, Mano Misra. Self-Ordered Titanium Dioxide Nanotube Arrays: Anodic Synthesis and Their Photo/Electro-Catalytic Applications. Materials 2013, 6 (7) , 2892-2957. https://doi.org/10.3390/ma6072892
  73. Miguel A. Pacha-Olivenza, Amparo M. Gallardo-Moreno, Virginia Vadillo-Rodríguez, M. Luisa González-Martín, Ciro Pérez-Giraldo, Juan C. Galván. Electrochemical analysis of the UV treated bactericidal Ti6Al4V surfaces. Materials Science and Engineering: C 2013, 33 (3) , 1789-1794. https://doi.org/10.1016/j.msec.2012.12.079
  74. Svava Daviðsdóttir, Stela Canulescu, Kai Dirscherl, Jørgen Schou, Rajan Ambat. Investigation of photocatalytic activity of titanium dioxide deposited on metallic substrates by DC magnetron sputtering. Surface and Coatings Technology 2013, 216 , 35-45. https://doi.org/10.1016/j.surfcoat.2012.11.015
  75. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073
  76. Huichao He, Peng Xiao, Yunhuai Zhang, Yichao Jia, Yannan Yang, Zhengyang Qiao. Effect of Zn nanoparticles morphology on the photoelectrochemical properties of Zn/TiO2NTs nanocomposites. Journal of Alloys and Compounds 2012, 522 , 63-68. https://doi.org/10.1016/j.jallcom.2012.01.077
  77. Danhong Li, Shiwei Lin, Shipu Li, Xiang Huang, Xiankun Cao, Jianbao Li. Effects of geometric and crystal structures on the photoelectrical properties of highly ordered TiO 2 nanotube arrays. Journal of Materials Research 2012, 27 (7) , 1029-1036. https://doi.org/10.1557/jmr.2012.38
  78. Le Yu, Zhuyi Wang, Liyi Shi, Shuai Yuan, Yin Zhao, Jianhui Fang, Wei Deng. Photoelectrocatalytic performance of TiO2 nanoparticles incorporated TiO2 nanotube arrays. Applied Catalysis B: Environmental 2012, 113-114 , 318-325. https://doi.org/10.1016/j.apcatb.2011.12.004
  79. Nir Baram, David Starosvetsky, Jeana Starosvetsky, Marina Epshtein, Robert Armon, Yair Ein-Eli. Photocatalytic inactivation of microorganisms using nanotubular TiO2. Applied Catalysis B: Environmental 2011, 101 (3-4) , 212-219. https://doi.org/10.1016/j.apcatb.2010.09.024
  80. Jhon Alexander Peñafiel Castro, Rafael Quintero-Torres, Norma R. de Tacconi, Krishnan Rajeshwar, Wilaiwan Chanmanee. Anodic Growth of Titania Nanotube Array on Titanium Substrate: A Study by Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society 2011, 158 (2) , D84. https://doi.org/10.1149/1.3521318