Isothermal Reduction Kinetics of Titanium Dioxide-Based Materials

View Author Information
Center for Catalytic Science and Technology, Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716
Cite this: J. Phys. Chem. B 1997, 101, 7, 1113–1124
Publication Date (Web):February 13, 1997
https://doi.org/10.1021/jp9620025
Copyright © 1997 American Chemical Society
Article Views
610
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (338 KB)

Abstract

As metal oxide reduction may be a limiting or otherwise important step in a reaction cycle, a complete description of the kinetics of the reduction can be critical to the successful choice of catalytic material. Unfortunately, such information is often lacking. Such is the case in our attempts to develop a catalytic cycle from the stoichiometric reductive carbonyl coupling reaction on reduced TiO2 surfaces. To provide the necessary reduction kinetics, reaction of the anatase and rutile forms of TiO2 with H2 has been studied from 573 to 773 K. A novel flow-through microreactor which provides time-resolved catalyst mass measurements to ±1 μg while maintaining a conventional, tubular reactor, gas−solid contacting pattern has been employed. A shift in the kinetic order with respect to H2 with increasing temperature occurs, from one-half order at 573 K to zero order at 673 K and above. A discontinuity was also observed within this same temperature range in Arrhenius plots of the reduction rates of both anatase and rutile TiO2; apparent activation energies determined were approximately 12 kcal mol-1 above and 29 kcal mol-1 below 623 K. Modification of the surface of anatase TiO2 with a sufficient loading of group VIII metals removes the Arrhenius plot discontinuity, increasing the rate of reduction and decreasing the apparent activation energy at low temperatures. A change in rate-determining step is indicated by these observations, and a mechanistic scheme which combines the current and previous observations within a single framework is proposed.

*

 To whom correspondence should be addressed. E-mail [email protected] che.udel.edu; fax 301-831-2085.

 Abstract published in Advance ACS Abstracts, February 1, 1997.

Cited By


This article is cited by 68 publications.

  1. Manuel Antonio Díaz-Pérez, Javier Moya, Juan Carlos Serrano-Ruiz, Jimmy Faria. Interplay of Support Chemistry and Reaction Conditions on Copper Catalyzed Methanol Steam Reforming. Industrial & Engineering Chemistry Research 2018, 57 (45) , 15268-15279. https://doi.org/10.1021/acs.iecr.8b02488
  2. Ryan C. Nelson, Byeongjin Baek, Pamela Ruiz, Ben Goundie, Ashley Brooks, M. Clayton Wheeler, Brian G. Frederick, Lars C. Grabow, and Rachel Narehood Austin . Experimental and Theoretical Insights into the Hydrogen-Efficient Direct Hydrodeoxygenation Mechanism of Phenol over Ru/TiO2. ACS Catalysis 2015, 5 (11) , 6509-6523. https://doi.org/10.1021/acscatal.5b01554
  3. Lei Liu and Xiaobo Chen . Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews 2014, 114 (19) , 9890-9918. https://doi.org/10.1021/cr400624r
  4. Kiyoung Lee, Anca Mazare, and Patrik Schmuki . One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews 2014, 114 (19) , 9385-9454. https://doi.org/10.1021/cr500061m
  5. Ning Liu, Christopher Schneider, Detlef Freitag, Martin Hartmann, Umamaheswari Venkatesan, Julian Müller, Erdmann Spiecker, and Patrik Schmuki . Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters 2014, 14 (6) , 3309-3313. https://doi.org/10.1021/nl500710j
  6. Caterina Barzan, Elena Groppo, Silvia Bordiga, and Adriano Zecchina . Defect Sites in H2-Reduced TiO2 Convert Ethylene to High Density Polyethylene without Activator. ACS Catalysis 2014, 4 (3) , 986-989. https://doi.org/10.1021/cs500057s
  7. In Sun Cho, Manca Logar, Chi Hwan Lee, Lili Cai, Fritz B. Prinz, and Xiaolin Zheng . Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting. Nano Letters 2014, 14 (1) , 24-31. https://doi.org/10.1021/nl4026902
  8. Alexey S. Andreev, Vyacheslav N. Kuznetsov, and Yuri V. Chizhov . Atomic Hydrogen Activated TiO2 Nanocluster: DFT Calculations. The Journal of Physical Chemistry C 2012, 116 (34) , 18139-18145. https://doi.org/10.1021/jp3009805
  9. Katsuro Hayashi . Kinetics of Electron Decay in Hydride Ion-Doped Mayenite. The Journal of Physical Chemistry C 2011, 115 (22) , 11003-11009. https://doi.org/10.1021/jp202428s
  10. James E. Rekoske and Mark A. Barteau. Kinetics, Selectivity, and Deactivation in the Aldol Condensation of Acetaldehyde on Anatase Titanium Dioxide. Industrial & Engineering Chemistry Research 2011, 50 (1) , 41-51. https://doi.org/10.1021/ie100394v
  11. D. Chen,, H. P. Rebo,, K. Moljord, and, A. Holmen. Methanol Conversion to Light Olefins over SAPO-34. Sorption, Diffusion, and Catalytic Reactions. Industrial & Engineering Chemistry Research 1999, 38 (11) , 4241-4249. https://doi.org/10.1021/ie9807046
  12. James E. Rekoske and, Mark A. Barteau. Competition between Acetaldehyde and Crotonaldehyde during Adsorption and Reaction on Anatase and Rutile Titanium Dioxide. Langmuir 1999, 15 (6) , 2061-2070. https://doi.org/10.1021/la9805140
  13. S. Mahata, S. S. Mahato. First-Principle Molecular Dynamics Simulation of Terahertz Absorptive Hydrogenated TiO2 Nanoparticles. 2021,,, 103-140. https://doi.org/10.1007/978-981-33-4489-1_8
  14. P. Anil Kumar Reddy, P. Venkata Laxma Reddy, S. V. Prabhakar Vattikuti. Black TiO2: An Emerging Photocatalyst and Its Applications. 2021,,, 267-297. https://doi.org/10.1007/978-3-030-72076-6_11
  15. Jong-Won Yun, Tri Khoa Nguyen, Sunghan Lee, Sungdo Kim, Yong Soo Kim, Tri Khoa Nguyen, Cao Khang Nguyen, Yang Ha. Enhanced Plasmonic Electron Transfer from Gold Nanoparticles to TiO2 Nanorods via Electrochemical Surface Reduction. Journal of the Korean Physical Society 2020, 77 (10) , 853-860. https://doi.org/10.3938/jkps.77.853
  16. T.S. Rajaraman, Sachin P. Parikh, Vimal G. Gandhi. Black TiO2: A review of its properties and conflicting trends. Chemical Engineering Journal 2020, 389 , 123918. https://doi.org/10.1016/j.cej.2019.123918
  17. Juan Zhao, Renhui Zhang. Microstructure and optical properties of black TiO2 nanorods. Physica B: Condensed Matter 2019, 574 , 411670. https://doi.org/10.1016/j.physb.2019.411670
  18. Taiwo Omotoso, Leidy V. Herrera, Tyler Vann, Nicholas M. Briggs, Laura A. Gomez, Lawrence Barrett, Donald Jones, Tram Pham, Bin Wang, Steven P. Crossley. Stabilization of furanics to cyclic ketone building blocks in the vapor phase. Applied Catalysis B: Environmental 2019, 254 , 491-499. https://doi.org/10.1016/j.apcatb.2019.04.079
  19. Haiyang Hu, Yan Lin, Yun Hang Hu. Phase role of white TiO2 precursor in its reduction to black TiO2. Physics Letters A 2019, 383 (24) , 2978-2982. https://doi.org/10.1016/j.physleta.2019.06.025
  20. Yaozu Wang, Jianliang Zhang, Zhengjian Liu. Mineralogical Characteristics and Isothermal Oxidation Kinetics of Ironsand Pellets. Metals 2019, 9 (2) , 265. https://doi.org/10.3390/met9020265
  21. Anderson de Farias Pereira, Sidnei Paciornik, Dilson Silva dos Santos, Paula Mendes Jardim. Characterization of TiO2 Nanoparticle’s Morphology and its Influence on the Hydrogen Sorption Kinetics of MgH2. Materials Research 2019, 22 (suppl 1) https://doi.org/10.1590/1980-5373-mr-2018-0821
  22. Nicholas M. Briggs, Lawrence Barrett, Evan C. Wegener, Leidy V. Herrera, Laura A. Gomez, Jeffrey T. Miller, Steven P. Crossley. Identification of active sites on supported metal catalysts with carbon nanotube hydrogen highways. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06100-9
  23. Pierre Bräuer, Carmine D’Agostino. Base adsorption mechanism over zeolite catalysts at different Al contents probed by the tapered element oscillating microbalance (TEOM). Physical Chemistry Chemical Physics 2018, 20 (39) , 25357-25364. https://doi.org/10.1039/C8CP05001E
  24. Taiwo O. Omotoso, Byeongjin Baek, Lars C. Grabow, Steven P. Crossley. Experimental and First‐Principles Evidence for Interfacial Activity of Ru/TiO 2 for the Direct Conversion of m ‐Cresol to Toluene. ChemCatChem 2017, 9 (14) , 2642-2651. https://doi.org/10.1002/cctc.201700157
  25. Nicolás Aranda-Pérez, M. Pilar Ruiz, Javier Echave, Jimmy Faria. Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization. Applied Catalysis A: General 2017, 531 , 106-118. https://doi.org/10.1016/j.apcata.2016.10.025
  26. Fozia Z. Haque, Ruchi Nandanwar, Purnima Singh. Evaluating photodegradation properties of anatase and rutile TiO2 nanoparticles for organic compounds. Optik 2017, 128 , 191-200. https://doi.org/10.1016/j.ijleo.2016.10.025
  27. Jong-Won Yun, Ki Yeon Ryu, Tri Khoa Nguyen, Farman Ullah, Yun Chang Park, Yong Soo Kim. Tuning optical band gap by electrochemical reduction in TiO 2 nanorods for improving photocatalytic activities. RSC Advances 2017, 7 (11) , 6202-6208. https://doi.org/10.1039/C6RA25274E
  28. Pavel Moravec, Jaroslav Schwarz, Petr Vodička, Martin Koštejn. Study of TiO 2 nanoparticle generation for follow-up inhalation experiments with laboratory animals. Aerosol Science and Technology 2016, 50 (10) , 1068-1076. https://doi.org/10.1080/02786826.2016.1224803
  29. Xiaodong Yan, Lihong Tian, Xinyu Tan, Minjie Zhou, Lei Liu, Xiaobo Chen. Modifying oxide nanomaterials’ properties by hydrogenation. MRS Communications 2016, 6 (3) , 192-203. https://doi.org/10.1557/mrc.2016.33
  30. J M Gómez de Salazar, C Nutescu Duduman, M Juárez Gonzalez, I Palamarciuc, M I Barrena Pérez, I Carcea. Research of obtaining TiO 2 by sol-gel method using titanium isopropoxide TIP and tetra-n-butyl orthotitanate TNB. IOP Conference Series: Materials Science and Engineering 2016, 145 (7) , 072011. https://doi.org/10.1088/1757-899X/145/7/072011
  31. Marija Prekajski, Aleksandra Zarubica, Biljana Babić, Bojan Jokić, Jelena Pantić, Jelena Luković, Branko Matović. Synthesis and characterization of Cr 3+ doped TiO 2 nanometric powders. Ceramics International 2016, 42 (1) , 1862-1869. https://doi.org/10.1016/j.ceramint.2015.09.151
  32. Lee Eng Oi, Min-Yee Choo, Hwei Voon Lee, Hwai Chyuan Ong, Sharifah Bee Abd Hamid, Joon Ching Juan. Recent advances of titanium dioxide (TiO 2 ) for green organic synthesis. RSC Advances 2016, 6 (110) , 108741-108754. https://doi.org/10.1039/C6RA22894A
  33. Xiaobo Chen, Lei Liu, Fuqiang Huang. Black titanium dioxide (TiO 2 ) nanomaterials. Chemical Society Reviews 2015, 44 (7) , 1861-1885. https://doi.org/10.1039/C4CS00330F
  34. Tu N. Pham, Dachuan Shi, Daniel E. Resasco. Kinetics and Mechanism of Ketonization of Acetic Acid on Ru/TiO2 Catalyst. Topics in Catalysis 2014, 57 (6-9) , 706-714. https://doi.org/10.1007/s11244-013-0227-7
  35. Taiwo Omotoso, Sunya Boonyasuwat, Steven P. Crossley. Understanding the role of TiO 2 crystal structure on the enhanced activity and stability of Ru/TiO 2 catalysts for the conversion of lignin-derived oxygenates. Green Chem. 2014, 16 (2) , 645-652. https://doi.org/10.1039/C3GC41377B
  36. Freddy E. Oropeza, Bastian Mei, Ilia Sinev, Ahmet E. Becerikli, Martin Muhler, Jennifer Strunk. Effect of Sn surface states on the photocatalytic activity of anatase TiO2. Applied Catalysis B: Environmental 2013, 140-141 , 51-59. https://doi.org/10.1016/j.apcatb.2013.03.043
  37. Germán A. Messina, Roberto A. Olsina, Patricia W. Stege. Integration of Nanomaterials in Capillary and Microchip Electrophoresis as a Flexible Tool. 2013,,, 327-357. https://doi.org/10.1002/9781118530009.ch19
  38. A. V. Emeline, V. N. Kuznetsov, V. K. Ryabchuk, N. Serpone. On the way to the creation of next generation photoactive materials. Environmental Science and Pollution Research 2012, 19 (9) , 3666-3675. https://doi.org/10.1007/s11356-011-0665-3
  39. Giuseppe Pezzotti, Andrea Leto, Simone Battiston, Marco Minella, Wenliang Zhu. Cathodoluminescence insights into the ionic disorder of photocatalytic anatase films. Journal of Applied Physics 2012, 111 (10) , 103720. https://doi.org/10.1063/1.4720466
  40. Walid Bahloul, Flavien Mélis, Véronique Bounor-Legaré, Philippe Cassagnau. Structural characterisation and antibacterial activity of PP/TiO2 nanocomposites prepared by an in situ sol–gel method. Materials Chemistry and Physics 2012, 134 (1) , 399-406. https://doi.org/10.1016/j.matchemphys.2012.03.008
  41. Víctor A. de la Peña O’Shea, M. Consuelo Álvarez Galván, Ana E. Platero Prats, Jose M. Campos-Martin, Jose L. G. Fierro. Direct evidence of the SMSI decoration effect: the case of Co/TiO2 catalyst. Chemical Communications 2011, 47 (25) , 7131. https://doi.org/10.1039/c1cc10318k
  42. Nan Bao, Guang-Bin Yin, Zhen-Tao Wei, Yuan Li, Zhi-Hui Ma. Preparation of TiO 2 Continuous Fibers with Oxygen Vacancies and Photocatalytic Activity. Integrated Ferroelectrics 2011, 127 (1) , 97-105. https://doi.org/10.1080/10584587.2011.575686
  43. D. Pukazhselvan, M. Sterlin Leo Hudson, A.S.K. Sinha, O.N. Srivastava. Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride. Energy 2010, 35 (12) , 5037-5042. https://doi.org/10.1016/j.energy.2010.08.015
  44. D.L. Croston, D.M. Grant, G.S. Walker. The catalytic effect of titanium oxide based additives on the dehydrogenation and hydrogenation of milled MgH2. Journal of Alloys and Compounds 2010, 492 (1-2) , 251-258. https://doi.org/10.1016/j.jallcom.2009.10.199
  45. Hai-xia TONG, Qi-yuan CHEN, Zhou-lan YIN, Hui-ping HU, Dao-xin WU, Ya-hui YANG. Preparation, characterization and photo-catalytic behavior of WO3-TiO2 catalysts with oxygen vacancies. Transactions of Nonferrous Metals Society of China 2009, 19 (6) , 1483-1488. https://doi.org/10.1016/S1003-6326(09)60056-X
  46. Alexandra Teleki, Sotiris E. Pratsinis. Blue nano titania made in diffusion flames. Physical Chemistry Chemical Physics 2009, 11 (19) , 3742. https://doi.org/10.1039/b821590a
  47. Sehoon Yoo, Sheikh A. Akbar. Gas-phase driven nano-machined TiO2 ceramics. Journal of Electroceramics 2008, 21 (1-4) , 103-109. https://doi.org/10.1007/s10832-007-9094-6
  48. D. GRANT. Magnesium hydride for hydrogen storage. 2008,,, 357-380. https://doi.org/10.1533/9781845694944.4.357
  49. D. Chen, E. Bjorgum, K.O. Christensen, A. Holmen, R. Lodeng. Characterization of Catalysts under Working Conditions with an Oscillating Microbalance Reactor. 2007,,, 351-382. https://doi.org/10.1016/S0360-0564(06)51007-7
  50. Sehoon Yoo, Suliman A. Dregia, Sheikh A. Akbar, Helene Rick, Kenneth H. Sandhage. Kinetic mechanism of TiO 2 nanocarving via reaction with hydrogen gas. Journal of Materials Research 2006, 21 (7) , 1822-1829. https://doi.org/10.1557/jmr.2006.0225
  51. , S. Mahshid. Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Semiconductor physics, quantum electronics and optoelectronics 2006, 9 (2) , 65-68. https://doi.org/10.15407/spqeo9.02.065
  52. Peng Xu, Lan Mi, Pei-Nan Wang. Improved optical response for N-doped anatase TiO2 films prepared by pulsed laser deposition in N2/NH3/O2 mixture. Journal of Crystal Growth 2006, 289 (2) , 433-439. https://doi.org/10.1016/j.jcrysgro.2005.11.099
  53. Wei Liu, AiPing Chen, JiaPing Lin, ZhiMing Dai, Wei Qiu, Wei Liu, MengQin Zhu, Shouji Usuda. Controllable Crystalline Nano-TiO2 by Homogeneous Hydrolysis with Toluene-p-Sulfonic Acid. Journal of the American Ceramic Society 2005, 88 (1) , 168-171. https://doi.org/10.1111/j.1551-2916.2004.00036.x
  54. Tony M. Thampan, Nikhil H. Jalani, Pyoungho Choi, Ravindra Datta. Systematic Approach to Design Higher Temperature Composite PEMs. Journal of The Electrochemical Society 2005, 152 (2) , A316. https://doi.org/10.1149/1.1843771
  55. Pyoungho Choi, Nikhil H. Jalani, Ravindra Datta. Thermodynamics and Proton Transport in Nafion. Journal of The Electrochemical Society 2005, 152 (3) , E84. https://doi.org/10.1149/1.1855872
  56. Angeliki A Lemonidou, Liza López, Leo E Manzer, Mark A Barteau. Dynamic microbalance studies of RbOx/SiO2 catalyst deactivation/regeneration for α-methylene γ-valerolactone synthesis. Applied Catalysis A: General 2004, 272 (1-2) , 241-248. https://doi.org/10.1016/j.apcata.2004.05.047
  57. Oliver Diwald, Tracy L. Thompson, Tykhon Zubkov, Ed. G. Goralski,, Scott D. Walck, John T. Yates. Photochemical Activity of Nitrogen-Doped Rutile TiO 2 (110) in Visible Light. The Journal of Physical Chemistry B 2004, 108 (19) , 6004-6008. https://doi.org/10.1021/jp031267y
  58. Chi Keng Lee, Sunil Ashtekar, Lynn F. Gladden, Patrick J. Barrie. Adsorption and desorption kinetics of hydrocarbons in FCC catalysts studied using a tapered element oscillating microbalance (TEOM). Part 1: experimental measurements. Chemical Engineering Science 2004, 59 (5) , 1131-1138. https://doi.org/10.1016/j.ces.2004.01.005
  59. Edward W. Bittner, Milton R. Smith, Bradley C. Bockrath. Characterization of the surfaces of single-walled carbon nanotubes using alcohols and hydrocarbons: a pulse adsorption technique. Carbon 2003, 41 (6) , 1231-1239. https://doi.org/10.1016/S0008-6223(03)00055-1
  60. H Liu, H.T Ma, X.Z Li, W.Z Li, M Wu, X.H Bao. The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 2003, 50 (1) , 39-46. https://doi.org/10.1016/S0045-6535(02)00486-1
  61. Arjan Giaya, Robert W. Thompson. Single-component gas phase adsorption and desorption studies using a tapered element oscillating microbalance. Microporous and Mesoporous Materials 2002, 55 (3) , 265-274. https://doi.org/10.1016/S1387-1811(02)00428-6
  62. M.C Román-Martı́nez, F Kapteijn, D Cazorla-Amorós, J Pérez-Ramı́rez, J.A Moulijn. A TEOM-MS study on the interaction of N2O with a hydrotalcite-derived multimetallic mixed oxide catalyst. Applied Catalysis A: General 2002, 225 (1-2) , 87-100. https://doi.org/10.1016/S0926-860X(01)00770-0
  63. W Zhu, F Kapteijn, J.A Moulijn. Diffusion of linear and branched C6 alkanes in silicalite-1 studied by the tapered element oscillating microbalance. Microporous and Mesoporous Materials 2001, 47 (2-3) , 157-171. https://doi.org/10.1016/S1387-1811(01)00372-9
  64. P.P Ahonen, U Tapper, E.I Kauppinen, J.-C Joubert, J.-L Deschanvres. Aerosol synthesis of Ti–O powders via in-droplet hydrolysis of titanium alkoxide. Materials Science and Engineering: A 2001, 315 (1-2) , 113-121. https://doi.org/10.1016/S0921-5093(01)01153-4
  65. Daxiang Wang, Mark A Barteau. Kinetics of Butane Oxidation by a Vanadyl Pyrophosphate Catalyst. Journal of Catalysis 2001, 197 (1) , 17-25. https://doi.org/10.1006/jcat.2000.3061
  66. W. Zhu, J. Zhang, F. Kapteijn, M. Makkee, J.A. Moulijn. Hydrodechlorination of 1,2-dichloropropane over Pt-Cu/C catalysts: Coke formation determined by a novel technique-TEOM. 2001,,, 21-28. https://doi.org/10.1016/S0167-2991(01)80176-2
  67. Daxiang Wang, Harold H Kung, Mark A Barteau. Identification of vanadium species involved in sequential redox operation of VPO catalysts. Applied Catalysis A: General 2000, 201 (2) , 203-213. https://doi.org/10.1016/S0926-860X(00)00439-7
  68. Mark A. Barteau. New catalysis from metal oxide surface science. 2000,,, 105-114. https://doi.org/10.1016/S0167-2991(00)80947-7