Photo-Electro-Oxidation of Alcohols on Titanium Dioxide Thin Film Electrodes

View Author Information
INQUIMAE-DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina, and Unidad de Actividad Química, Comisión Nacional de Energía Atómica, Avenida del Libertador 8250, 1429 Buenos Aires, Argentina
Cite this: J. Phys. Chem. B 1999, 103, 26, 5505–5511
Publication Date (Web):June 11, 1999
https://doi.org/10.1021/jp984812h
Copyright © 1999 American Chemical Society
Article Views
865
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (115 KB)

Abstract

The photo-electro-oxidation on titanium dioxide film electrodes of methanol, 2-propanol, and tert-butyl alcohol has been studied by measuring the transient photocurrents observed during the early stages of illumination. Transients and steady-state photocurrents, measured at different applied potentials and methanol concentrations, were compared with model predictions. The numerical solution of the differential equations corresponding to methanol photo-electro-oxidation, as well as the advanced experimental evidence, supports the hypothesis that surface hole trapping as −OH mediates the charge transfer to methanol. Formation of −OH accounts for the high initial photocurrents, its rapid decay being due to recombination. The rate of oxidation of methanol is then determined by the rate of reaction between −OH and CH3OH located in the interfacial region. The oxidation of CH2OH to CH2O, through the injection of an electron into the conduction band (current doubling), gives rise to an increase in photocurrent; steady state values are later attained. As a consequence, a minimum transient is observed. The minimum is marginally observable in tert-butyl alcohol solutions, in line with the properties of the respective radicals.

 Universidad de Buenos Aires.

 E-mail:  [email protected]

*

 Corresponding authors.

§

 Comisión Nacional de Energía Atomica.

 E-mail:  [email protected]

 E-mail:  [email protected]

#

 E-mail:  [email protected]

Cited By


This article is cited by 77 publications.

  1. T. T. Isimjan, P. Maity, T. Ahmed, O. F. Mohammed, H. Idriss. Relationship between the Photocatalytic Hydrogen Ion Reduction and Charge Carrier Dynamics of Pt/Cd1–xNixS Catalysts. The Journal of Physical Chemistry C 2019, 123 (39) , 24051-24061. https://doi.org/10.1021/acs.jpcc.9b05987
  2. Prashant V. Kamat, (Editor-in-Chief), Song Jin (Senior Editor). Semiconductor Photocatalysis: “Tell Us the Complete Story!”. ACS Energy Letters 2018, 3 (3) , 622-623. https://doi.org/10.1021/acsenergylett.8b00196
  3. Mouhamad Ali Ahmad, Benedicte Prelot, Fabien Dufour, Olivier Durupthy, Angelina Razafitianamaharavo, Jean Marc Douillard, Corinne Chaneac, Frédéric Villiéras, and Jerzy Zajac . Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO2 Studied by Adsorption Techniques. 2. Solid–Liquid Interface. The Journal of Physical Chemistry C 2013, 117 (9) , 4459-4469. https://doi.org/10.1021/jp3077084
  4. Xiang Li and Wenhua Leng . Regenerated Dye-Sensitized Photocatalytic Oxidation of Arsenite over Nanostructured TiO2 Films under Visible Light in Normal Aqueous Solutions: An Insight into the Mechanism by Simultaneous (Photo)electrochemical Measurements. The Journal of Physical Chemistry C 2013, 117 (2) , 750-762. https://doi.org/10.1021/jp308920u
  5. Mouhamad Ali Ahmad, Benedicte Prelot, Angelina Razafitianamaharavo, Jean Marc Douillard, Jerzy Zajac, Fabien Dufour, Olivier Durupthy, Corinne Chaneac, and Frédéric Villiéras . Influence of Morphology and Crystallinity on Surface Reactivity of Nanosized Anatase TiO2 Studied by Adsorption Techniques. 1. The Use of Gaseous Molecular Probes. The Journal of Physical Chemistry C 2012, 116 (46) , 24596-24606. https://doi.org/10.1021/jp307707h
  6. Prashant V. Kamat . Boosting the Efficiency of Quantum Dot Sensitized Solar Cells through Modulation of Interfacial Charge Transfer. Accounts of Chemical Research 2012, 45 (11) , 1906-1915. https://doi.org/10.1021/ar200315d
  7. Hui Fei, Wenhua Leng, Xiang Li, Xiaofang Cheng, Yiming Xu, Jianqing Zhang, and Chunan Cao . Photocatalytic Oxidation of Arsenite over TiO2: Is Superoxide the Main Oxidant in Normal Air-Saturated Aqueous Solutions?. Environmental Science & Technology 2011, 45 (10) , 4532-4539. https://doi.org/10.1021/es200574h
  8. Robert E. Rettew, Nageh K. Allam, and Faisal M. Alamgir . Interface Architecture Determined Electrocatalytic Activity of Pt on Vertically Oriented TiO2 Nanotubes. ACS Applied Materials & Interfaces 2011, 3 (2) , 147-151. https://doi.org/10.1021/am1012563
  9. Zhixia Sun, Lin Xu, Weihua Guo, Bingbing Xu, Shuping Liu and Fengyan Li. Enhanced Photoelectrochemical Performance of Nanocomposite Film Fabricated by Self-Assembly of Titanium Dioxide and Polyoxometalates. The Journal of Physical Chemistry C 2010, 114 (11) , 5211-5216. https://doi.org/10.1021/jp910665b
  10. Mirela L. MaximNing Sun Richard P. Swatloski Mustafizur RahmanAdam G. Harland Anwarul HaqueScott K. Spear Daniel T. DalyRobin D. Rogers. Properties of Cellulose/TiO2 Fibers Processed from Ionic Liquids. 2010,,, 261-274. https://doi.org/10.1021/bk-2010-1033.ch014
  11. Brian Seger and Prashant V. Kamat. Fuel Cell Geared in Reverse: Photocatalytic Hydrogen Production Using a TiO2/Nafion/Pt Membrane Assembly with No Applied Bias. The Journal of Physical Chemistry C 2009, 113 (43) , 18946-18952. https://doi.org/10.1021/jp907367k
  12. Paula E. Colavita, Bin Sun, Xiaoyu Wang and Robert J. Hamers. Influence of Surface Termination and Electronic Structure on the Photochemical Grafting of Alkenes to Carbon Surfaces. The Journal of Physical Chemistry C 2009, 113 (4) , 1526-1535. https://doi.org/10.1021/jp805933h
  13. Haimei Liu,, Akihito Imanishi, and, Yoshihiro Nakato. Mechanisms for Photooxidation Reactions of Water and Organic Compounds on Carbon-Doped Titanium Dioxide, as Studied by Photocurrent Measurements. The Journal of Physical Chemistry C 2007, 111 (24) , 8603-8610. https://doi.org/10.1021/jp070771q
  14. W. H. Leng,, Z. Zhang,, J. Q. Zhang, and, C. N. Cao. Investigation of the Kinetics of a TiO2 Photoelectrocatalytic Reaction Involving Charge Transfer and Recombination through Surface States by Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry B 2005, 109 (31) , 15008-15023. https://doi.org/10.1021/jp051821z
  15. Wei Wang,, Baohua Gu,, Liyuan Liang,, William A. Hamilton, and, David J. Wesolowski. Synthesis of Rutile (α-TiO2) Nanocrystals with Controlled Size and Shape by Low-Temperature Hydrolysis:  Effects of Solvent Composition. The Journal of Physical Chemistry B 2004, 108 (39) , 14789-14792. https://doi.org/10.1021/jp0470952
  16. T. Lana Villarreal,, R. Gómez,, M. Neumann-Spallart,, N. Alonso-Vante, and, P. Salvador. Semiconductor Photooxidation of Pollutants Dissolved in Water:  A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. The Journal of Physical Chemistry B 2004, 108 (39) , 15172-15181. https://doi.org/10.1021/jp049447a
  17. Dianlu Jiang,, Huijun Zhao,, Shanqing Zhang, and, Richard John. Characterization of Photoelectrocatalytic Processes at Nanoporous TiO2 Film Electrodes:  Photocatalytic Oxidation of Glucose. The Journal of Physical Chemistry B 2003, 107 (46) , 12774-12780. https://doi.org/10.1021/jp0307349
  18. Wenjian Sun,, C. R. Chenthamarakshan, and, Krishnan Rajeshwar. Chronopotentiometry of Titania Film Electrodes in Aqueous Media. The Journal of Physical Chemistry B 2002, 106 (44) , 11531-11538. https://doi.org/10.1021/jp020935x
  19. Takayoshi Sasaki,, Yasuo Ebina,, Katsutoshi Fukuda,, Tomohiro Tanaka,, Masaru Harada, and, Mamoru Watanabe. Titania Nanostructured Films Derived from a Titania Nanosheet/Polycation Multilayer Assembly via Heat Treatment and UV Irradiation. Chemistry of Materials 2002, 14 (8) , 3524-3530. https://doi.org/10.1021/cm0202456
  20. Mauricio E. Calvo,, Roberto J. Candal, and, Sara A. Bilmes. Photooxidation of Organic Mixtures on Biased TiO2 Films. Environmental Science & Technology 2001, 35 (20) , 4132-4138. https://doi.org/10.1021/es010613r
  21. S. A. Bilmes and, P. Mandelbaum, , F. Alvarez and, N. M. Victoria. Surface and Electronic Structure of Titanium Dioxide Photocatalysts. The Journal of Physical Chemistry B 2000, 104 (42) , 9851-9858. https://doi.org/10.1021/jp0010132
  22. Paulina Alulema-Pullupaxi, Patricio J. Espinoza-Montero, Carol Sigcha-Pallo, Ronald Vargas, Lenys Fernández, Juan M. Peralta-Hernández, J.L. Paz. Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. Chemosphere 2021, 281 , 130821. https://doi.org/10.1016/j.chemosphere.2021.130821
  23. Jing Liu, Chaohua Fan, Xingming Xie, Luhua Jiang. Recent Progress on Photo‐Promoted Alcohol Electrooxidation for Fuel Cells. Energy Technology 2021, 9 (1) , 2000842. https://doi.org/10.1002/ente.202000842
  24. Hiren K. Patel, Mehul K. Khimani, Rishee K. Kalaria, Rohit L. Vekariya. Degradation of organic dyes using novel photocatalytic techniques. 2021,,, 745-763. https://doi.org/10.1016/B978-0-12-823876-9.00029-9
  25. Ronald Vargas, David Carvajal, Lorean Madriz, Benjamín R. Scharifker. Chemical kinetics in solar to chemical energy conversion: The photoelectrochemical oxygen transfer reaction. Energy Reports 2020, 6 , 2-12. https://doi.org/10.1016/j.egyr.2019.10.004
  26. Ronald Vargas, David Carvajal, Brunella Galavis, Alberto Maimone, Lorean Madriz, Benjamín R. Scharifker. High-Field Growth of Semiconducting Anodic Oxide Films on Metal Surfaces for Photocatalytic Application. International Journal of Photoenergy 2019, 2019 , 1-15. https://doi.org/10.1155/2019/2571906
  27. Ahmad Nawaz, Aneek Kuila, Ankita Rani, Nirmalendu Sekhar Mishra, Lan Ching Sim, Kah Hon Leong, Pichiah Saravanan. Industrial application of light-driven nanomaterial. 2019,,, 151-179. https://doi.org/10.1016/B978-0-12-815749-7.00006-2
  28. Jiang Wang, Chengyu Mao, Pingyun Feng, Nan Zheng. Visible‐Light‐Mediated [4+2] Annulation of N ‐Cyclobutylanilines with Alkynes Catalyzed by Self‐Doped Ti 3+ @TiO 2. Chemistry – A European Journal 2017, 23 (61) , 15396-15403. https://doi.org/10.1002/chem.201701587
  29. Guiying Li, Huijun Zhao, Taicheng An. Photocatalytic and Photoelectrocatalytic Inactivation Mechanism of Biohazards. 2017,,, 221-237. https://doi.org/10.1007/978-3-662-53496-0_10
  30. Zainab Hussain, Gamal A. El-Hiti, Ahmed Ahmed, Nadia Altaee, Emad Yousif. Photocatalytic degradation of polyhydroxybutyrate films using titanium dioxide nanoparticles as a photocatalyst. Russian Journal of Applied Chemistry 2016, 89 (9) , 1536-1543. https://doi.org/10.1134/S1070427216090238
  31. Yi-Han Hsu, An T. Nguyen, Yi-Hsuan Chiu, Jing- Mei Li, Yung-Jung Hsu. Au-decorated GaOOH nanorods enhanced the performance of direct methanol fuel cells under light illumination. Applied Catalysis B: Environmental 2016, 185 , 133-140. https://doi.org/10.1016/j.apcatb.2015.11.049
  32. Yahui Liu, Dawei Shao, Weijing Wang, Lingyun Yi, Desheng Chen, Hongxin Zhao, Jingyi Wu, Tao Qi, Chengbo Cao. Preparation of rutile TiO 2 by hydrolysis of TiOCl 2 solution: experiment and theory. RSC Advances 2016, 6 (64) , 59541-59549. https://doi.org/10.1039/C6RA04386K
  33. Chenyan Hu, Denis Kelm, Manuel Schreiner, Tobias Wollborn, Lutz Mädler, Wey Yang Teoh. Designing Photoelectrodes for Photocatalytic Fuel Cells and Elucidating the Effects of Organic Substrates. ChemSusChem 2015, 8 (23) , 4005-4015. https://doi.org/10.1002/cssc.201500793
  34. Guiying Li, Xiaolu Liu, Taicheng An, Hai Yang, Shanqing Zhang, Huijun Zhao. Photocatalytic and photoelectrocatalytic degradation of small biological compounds at TiO2 photoanode: A case study of nucleotide bases. Catalysis Today 2015, 242 , 363-371. https://doi.org/10.1016/j.cattod.2014.04.029
  35. J. Krýsa, M. Baudys, A. Mills. Quantum yield measurements for the photocatalytic oxidation of Acid Orange 7 (AO7) and reduction of 2,6-dichlorindophenol (DCIP) on transparent TiO2 films of various thickness. Catalysis Today 2015, 240 , 132-137. https://doi.org/10.1016/j.cattod.2014.04.019
  36. Lihao Wang, Lin Xu, Ya Wang, Zhongmin Su, Ran Liu. Photoelectrochemical enhancement of ternary nanocomposite electrode polyoxometalate/copper quantum dots/TiO2 with electrocatalytic performance of formic acid oxidation. Electrochimica Acta 2015, 155 , 1-7. https://doi.org/10.1016/j.electacta.2014.11.114
  37. Amira Y. Ahmed, Tarek A. Kandiel, Irina Ivanova, Detlef Bahnemann. Photocatalytic and photoelectrochemical oxidation mechanisms of methanol on TiO2 in aqueous solution. Applied Surface Science 2014, 319 , 44-49. https://doi.org/10.1016/j.apsusc.2014.07.134
  38. Guiying Li, Xiaolu Liu, Haimin Zhang, Po-Keung Wong, Taicheng An, Wenqu Zhou, Bing Li, Huijun Zhao. Adenovirus inactivation by in situ photocatalytically and photoelectrocatalytically generated halogen viricides. Chemical Engineering Journal 2014, 253 , 538-543. https://doi.org/10.1016/j.cej.2014.05.059
  39. Zhonghua Zhang, Jie Liu, Junjie Gu, Liang Su, Lifeng Cheng. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7 (8) , 2535-2558. https://doi.org/10.1039/C3EE43886D
  40. Andrea Maldotti, Rossano Amadelli, Alessandra Molinari. Heterogeneous Photocatalysis for Selective Oxidations with Molecular Oxygen. 2013,,, 411-450. https://doi.org/10.1002/9781118356760.ch9
  41. Guiying Li, Yulong Zhang, Hongwei Sun, Jinbin An, Xin Nie, Huijun Zhao, Po-Keung Wong, Taicheng An. Photocatalytic and photoelectrocatalytic degradation of small biological compounds: A case study of uridine. Catalysis Today 2013, 201 , 167-174. https://doi.org/10.1016/j.cattod.2012.03.024
  42. Lihao Wang, Lin Xu, Zhixia Sun, Zhongcheng Mu. Improving TiO2 photoanodes through silver–polyoxotungstate nanohybrids: toward photovoltaic and photoelectrocatalytic application. RSC Advances 2013, 3 (44) , 21811. https://doi.org/10.1039/c3ra43541e
  43. Xiaolu Liu, Yanhe Han, Guiying Li, Haimin Zhang, Huijun Zhao. Instant inactivation and rapid decomposition of Escherichia coli using a high efficiency TiO2 nanotube array photoelectrode. RSC Advances 2013, 3 (43) , 20824. https://doi.org/10.1039/c3ra43708f
  44. Shi Yan Han, Zhi Ming Liu, Di Wang, Ming Hua Zhu, Yan Li Ma, Yan Yan Zao. Preparation and Catalytic Activity Analysis of TiO2. Advanced Materials Research 2012, 569 , 19-22. https://doi.org/10.4028/www.scientific.net/AMR.569.19
  45. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073
  46. Masayoshi Fuji, Minoru Takahashi, Nanami Maruzuka, Takashi Takei, Masatoshi Chikazawa. Characterization of a Photocatalyst Prepared by a New Method to Introduce Ti Sites on the Surface of Silica. 2012,,, 153-162. https://doi.org/10.1002/9781118406038.ch19
  47. Sammy W. Verbruggen, Kasper Masschaele, Elke Moortgat, Tamas E. Korany, Birger Hauchecorne, Johan A. Martens, Silvia Lenaerts. Factors driving the activity of commercial titanium dioxide powders towards gas phase photocatalytic oxidation of acetaldehyde. Catalysis Science & Technology 2012, 2 (11) , 2311. https://doi.org/10.1039/c2cy20123b
  48. Wenbing Li, Tingying Zeng, . Preparation of TiO2 Anatase Nanocrystals by TiCl4 Hydrolysis with Additive H2SO4. PLoS ONE 2011, 6 (6) , e21082. https://doi.org/10.1371/journal.pone.0021082
  49. A. M. Deegan, B. Shaik, K. Nolan, K. Urell, M. Oelgemöller, J. Tobin, A. Morrissey. Treatment options for wastewater effluents from pharmaceutical companies. International Journal of Environmental Science & Technology 2011, 8 (3) , 649-666. https://doi.org/10.1007/BF03326250
  50. Min Cho, Ezra L. Cates, Jae-Hong Kim. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Research 2011, 45 (5) , 2104-2110. https://doi.org/10.1016/j.watres.2010.12.017
  51. Andrea Maldotti, Alessandra Molinari. Design of Heterogeneous Photocatalysts Based on Metal Oxides to Control the Selectivity of Chemical Reactions. 2011,,, 185-216. https://doi.org/10.1007/128_2011_140
  52. Panagiotis Lianos. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell. Journal of Hazardous Materials 2011, 185 (2-3) , 575-590. https://doi.org/10.1016/j.jhazmat.2010.10.083
  53. Erick Cardenas, James R. Cole, James M. Tiedje, Joon-Hong Park. Microbial Community Analysis using RDP II (Ribosomal Database Project II):Methods, Tools and New Advances. Environmental Engineering Research 2009, 14 (1) , 3-9. https://doi.org/10.4491/eer.2009.14.1.003
  54. Feng-Jun Zhang, Ming-Liang Chen, Won-Chun Oh. Characterization of CNT/TiO 2 Electrode Prepared Through Impregnation with TNB and Their Photoelectrocatalytic Properties. Environmental Engineering Research 2009, 14 (1) , 32-40. https://doi.org/10.4491/eer.2009.14.1.032
  55. Alessandra Molinari, Marco Montoncello, Houria Rezala, Andrea Maldotti. Partial oxidation of allylic and primary alcohols with O2 by photoexcited TiO2. Photochemical & Photobiological Sciences 2009, 8 (5) , 613. https://doi.org/10.1039/b817147e
  56. Feng-Jun Zhang, Ming-Liang Chen, Won-Chun Oh. Synthesis and Characterization of CNT / TiO 2 Photoelectrocatalytic Electrodes for Methlene Blue Degradation. Korean Journal of Materials Research 2008, 18 (11) , 583-591. https://doi.org/10.3740/MRSK.2008.18.11.583
  57. Chien-Tsung Wang, Hsin-Hsien Huang. Photo-chargeable titanium/vanadium oxide composites. Journal of Non-Crystalline Solids 2008, 354 (28) , 3336-3342. https://doi.org/10.1016/j.jnoncrysol.2008.02.005
  58. W. H. Leng, X. F. Cheng, J. Q. Zhang, C. N. Cao. Comment on “Photocatalytic Oxidation of Arsenite on TiO 2 :  Understanding the Controversial Oxidation Mechanism Involving Superoxides and the Effect of Alternative Electron Acceptors”. Environmental Science & Technology 2007, 41 (17) , 6311-6312. https://doi.org/10.1021/es070349n
  59. Sophie Cassaignon, Magali Koelsch, Jean-Pierre Jolivet. From TiCl3 to TiO2 nanoparticles (anatase, brookite and rutile): Thermohydrolysis and oxidation in aqueous medium. Journal of Physics and Chemistry of Solids 2007, 68 (5-6) , 695-700. https://doi.org/10.1016/j.jpcs.2007.02.020
  60. Omatoyo K Dalrymple, Daniel H Yeh, Maya A Trotz. Removing pharmaceuticals and endocrine-disrupting compounds from wastewater by photocatalysis. Journal of Chemical Technology & Biotechnology 2007, 82 (2) , 121-134. https://doi.org/10.1002/jctb.1657
  61. Georg Waldner, Roberto Gómez, Michael Neumann-Spallart. Using photoelectrochemical measurements for distinguishing between direct and indirect hole transfer processes on anatase: Case of oxalic acid. Electrochimica Acta 2007, 52 (7) , 2634-2639. https://doi.org/10.1016/j.electacta.2006.09.019
  62. Damián Monllor-Satoca, Luis Borja, Antonio Rodes, Roberto Gómez, Pedro Salvador. Photoelectrochemical Behavior of Nanostructured WO3 Thin-Film Electrodes: The Oxidation of Formic Acid. ChemPhysChem 2006, 7 (12) , 2540-2551. https://doi.org/10.1002/cphc.200600379
  63. Jinping Zhou, Shilin Liu, Jianing Qi, Lina Zhang. Structure and properties of composite films prepared from cellulose and nanocrystalline titanium dioxide particles. Journal of Applied Polymer Science 2006, 101 (6) , 3600-3608. https://doi.org/10.1002/app.22650
  64. Jiang Lin Cao, Zu Cheng Wu, Jian Qing Zhang. Photostability study of nanoporous TiO2 film electrodes in different pH solutions. Journal of Electroanalytical Chemistry 2006, 595 (1) , 71-77. https://doi.org/10.1016/j.jelechem.2006.06.009
  65. Andrew Mills, Jishun Wang, Mark McGrady. Method of Rapid Assessment of Photocatalytic Activities of Self-Cleaning Films. The Journal of Physical Chemistry B 2006, 110 (37) , 18324-18331. https://doi.org/10.1021/jp063577x
  66. G. R. Dey, K. K. Pushpa. Methane generated during photocatalytic redox reaction of alcohols on TiO2 suspension in aqueous solutions. Research on Chemical Intermediates 2006, 32 (8) , 725-736. https://doi.org/10.1163/156856706778606462
  67. Dianlu Jiang, Huijun Zhao, Shanqing Zhang, Richard John. Comparison of photocatalytic degradation kinetic characteristics of different organic compounds at anatase TiO2 nanoporous film electrodes. Journal of Photochemistry and Photobiology A: Chemistry 2006, 177 (2-3) , 253-260. https://doi.org/10.1016/j.jphotochem.2005.06.004
  68. Paula Z. Araujo, Cecilia B. Mendive, Luis A. García Rodenas, Pedro J. Morando, Alberto E. Regazzoni, Miguel A. Blesa, Detlef Bahnemann. FT-IR–ATR as a tool to probe photocatalytic interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2005, 265 (1-3) , 73-80. https://doi.org/10.1016/j.colsurfa.2004.10.137
  69. Megan A. Ferguson, Michael R. Hoffmann, Janet G. Hering. TiO 2 -Photocatalyzed As(III) Oxidation in Aqueous Suspensions:  Reaction Kinetics and Effects of Adsorption. Environmental Science & Technology 2005, 39 (6) , 1880-1886. https://doi.org/10.1021/es048795n
  70. Hugo de Lasa, Benito Serrano, Miguel Salaices. Photocatalysts, Radiation Sources and Auxiliary Equipment for Photocatalysis. 2005,,, 49-62. https://doi.org/10.1007/0-387-27591-6_3
  71. Shanqing Zhang, Huijun Zhao, Dianlu Jiang, Richard John. Photoelectrochemical determination of chemical oxygen demand based on an exhaustive degradation model in a thin-layer cell. Analytica Chimica Acta 2004, 514 (1) , 89-97. https://doi.org/10.1016/j.aca.2004.03.043
  72. Renhe Chu, Jichang Yan, Suoyuan Lian, Yuehong Wang, Fucheng Yan, Dawei Chen. Shape-controlled synthesis of nanocrystalline titania at low temperature. Solid State Communications 2004, 130 (12) , 789-792. https://doi.org/10.1016/j.ssc.2004.04.013
  73. Miguel A. Blesa, Roberto J. Candal, Sara A. Bilmes. Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water. 2004,,, 83-111. https://doi.org/10.1007/978-1-4419-9122-5_3
  74. A.D. Weisz, L. Garcı́a Rodenas, P.J. Morando, A.E. Regazzoni, M.A. Blesa. FTIR study of the adsorption of single pollutants and mixtures of pollutants onto titanium dioxide in water: oxalic and salicylic acids. Catalysis Today 2002, 76 (2-4) , 103-112. https://doi.org/10.1016/S0920-5861(02)00210-9
  75. Mauricio E Calvo, Roberto J Candal, Sara A Bilmes. Enhancement of salicylate photodegradation under bias in binary mixtures. Catalysis Today 2002, 76 (2-4) , 133-139. https://doi.org/10.1016/S0920-5861(02)00213-4
  76. Roberto Palombari, Michele Ranchella, Cesare Rol, Giovanni V. Sebastiani. Oxidative photoelectrochemical technology with Ti/TiO2 anodes. Solar Energy Materials and Solar Cells 2002, 71 (3) , 359-368. https://doi.org/10.1016/S0927-0248(01)00093-9
  77. Satoshi Horikoshi, Youko Satou, Hisao Hidaka, Nick Serpone. Enhanced photocurrent generation and photooxidation of benzene sulfonate in a continuous flow reactor using hybrid TiO2 thin films immobilized on OTE electrodes. Journal of Photochemistry and Photobiology A: Chemistry 2001, 146 (1-2) , 109-119. https://doi.org/10.1016/S1010-6030(01)00595-0