RETURN TO ISSUEPREVEnergy Conversion an...Energy Conversion and StorageNEXT

Direct-Coupling O2 Bond Forming a Pathway in Cobalt Oxide Water Oxidation Catalysts

View Author Information
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
Cite this: J. Phys. Chem. Lett. 2011, 2, 17, 2200–2204
Publication Date (Web):August 17, 2011
https://doi.org/10.1021/jz201021n
Copyright © 2011 American Chemical Society
Article Views
2998
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

We report a catalytic mechanism for water oxidation in a cobalt oxide cubane model compound, in which the crucial O–O bond formation step takes place by direct coupling between two CoIV(O) metal oxo groups. Our results are based upon density functional theory (DFT) calculations and are consistent with experimental studies of the CoPi water oxidation catalyst. The computation of energetics and barriers for the steps leading up to and including the O–O bond formation uses an explicit solvent model within a hybrid quantum mechanics/molecular mechanics (QM/MM) framework, and captures the essential hydrogen-bonding effects and dynamical flexibility of this system.

Supporting Information

ARTICLE SECTIONS
Jump To

Methodology for DFT and QM/MM simulations, geometry of model catalyst, orbital diagram for O–O bond formation, MM-derived figure showing conformational flexibility of catalyst and explicit solvent, spin density plot of 3, and XYZ coordinates of intermediates and transition states. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 148 publications.

  1. Kentaro Suzuki, Xiaowei Li, Takahiro Toda, Fumika Nagasawa, Kei Murakoshi. Plasmon-Accelerated Water Oxidation at Ni-Modified Au Nanodimers on TiO2 Single Crystals. ACS Energy Letters 2021, Article ASAP.
  2. Ludwig Schwiedrzik, Vera Brieskorn, Leticia González. Flexibility Enhances Reactivity: Redox Isomerism and Jahn–Teller Effects in a Bioinspired Mn4O4 Cubane Water Oxidation Catalyst. ACS Catalysis 2021, 11 (21) , 13320-13329. https://doi.org/10.1021/acscatal.1c03566
  3. Giulia Righi, Stefano Fabris, Simone Piccinin. Oxygen Evolution Reaction on the Fe3O4(001) Surface: Theoretical Insights into the Role of Terminal and Bridging Oxygen Atoms. The Journal of Physical Chemistry C 2021, 125 (34) , 18752-18761. https://doi.org/10.1021/acs.jpcc.1c05804
  4. Hongmin Seo, Sunghak Park, Kang Hee Cho, Seungwoo Choi, Changwan Ko, Hyacinthe Randriamahazaka, Ki Tae Nam. Complex Impedance Analysis on Charge Accumulation Step of Mn3O4 Nanoparticles during Water Oxidation. ACS Omega 2021, 6 (28) , 18404-18413. https://doi.org/10.1021/acsomega.1c02397
  5. Ruoyu Zhang, Gerben van Straaten, Valerio di Palma, Georgios Zafeiropoulos, Mauritius C.M. van de Sanden, Wilhelmus M.M. Kessels, Mihalis N. Tsampas, Mariadriana Creatore. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catalysis 2021, 11 (5) , 2774-2785. https://doi.org/10.1021/acscatal.0c04933
  6. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society 2020, 142 (45) , 19198-19208. https://doi.org/10.1021/jacs.0c08882
  7. Aliki Moysiadou, Seunghwa Lee, Chia-Shuo Hsu, Hao Ming Chen, Xile Hu. Mechanism of Oxygen Evolution Catalyzed by Cobalt Oxyhydroxide: Cobalt Superoxide Species as a Key Intermediate and Dioxygen Release as a Rate-Determining Step. Journal of the American Chemical Society 2020, 142 (27) , 11901-11914. https://doi.org/10.1021/jacs.0c04867
  8. Mahesh Datt Bhatt, Jin Yong Lee. Advancement of Platinum (Pt)-Free (Non-Pt Precious Metals) and/or Metal-Free (Non-Precious-Metals) Electrocatalysts in Energy Applications: A Review and Perspectives. Energy & Fuels 2020, 34 (6) , 6634-6695. https://doi.org/10.1021/acs.energyfuels.0c00953
  9. Nataliia Vereshchuk, Roc Matheu, Jordi Benet-Buchholz, Muriel Pipelier, Jacques Lebreton, Didier Dubreuil, Arnaud Tessier, Carolina Gimbert-Suriñach, Mehmed Z. Ertem, Antoni Llobet. Second Coordination Sphere Effects in an Evolved Ru Complex Based on Highly Adaptable Ligand Results in Rapid Water Oxidation Catalysis. Journal of the American Chemical Society 2020, 142 (11) , 5068-5077. https://doi.org/10.1021/jacs.9b11935
  10. Hongfei Liu, Heinz Frei. Observation of O–O Bond Forming Step of Molecular Co4O4 Cubane Catalyst for Water Oxidation by Rapid-Scan FT-IR Spectroscopy. ACS Catalysis 2020, 10 (3) , 2138-2147. https://doi.org/10.1021/acscatal.9b03281
  11. Chaoyue Gu, Xin Nie, Jiezhang Jiang, Zifei Chen, Yifan Dong, Xin Zhang, Junjie Liu, Zhengyou Yu, Zhiwei Zhu, Jian Liu, Xiaoyun Liu, Yuanhua Shao. Mechanistic Study of Oxygen Reduction at Liquid/Liquid Interfaces by Hybrid Ultramicroelectrodes and Mass Spectrometry. Journal of the American Chemical Society 2019, 141 (33) , 13212-13221. https://doi.org/10.1021/jacs.9b06299
  12. Mingyuan Zhu, Shangjia Yu, Riyue Ge, Lingyan Feng, Youxing Yu, Ying Li, Wenxian Li. Cobalt Oxide Supported on Phosphorus-Doped g-C3N4 as an Efficient Electrocatalyst for Oxygen Evolution Reaction. ACS Applied Energy Materials 2019, 2 (7) , 4718-4729. https://doi.org/10.1021/acsaem.9b00273
  13. Hongmin Seo, Kyoungsuk Jin, Sunghak Park, Kang Hee Cho, Heonjin Ha, Kang-Gyu Lee, Yoon Ho Lee, Dang Thanh Nguyen, Hyacinthe Randriamahazaka, Jong-Sook Lee, Ki Tae Nam. Mechanistic Investigation with Kinetic Parameters on Water Oxidation Catalyzed by Manganese Oxide Nanoparticle Film. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10595-10604. https://doi.org/10.1021/acssuschemeng.9b01159
  14. Fang Song, Michael M. Busch, Benedikt Lassalle-Kaiser, Chia-Shuo Hsu, Elitsa Petkucheva, Michaël Bensimon, Hao Ming Chen, Clemence Corminboeuf, Xile Hu. An Unconventional Iron Nickel Catalyst for the Oxygen Evolution Reaction. ACS Central Science 2019, 5 (3) , 558-568. https://doi.org/10.1021/acscentsci.9b00053
  15. Chiara Pasquini, Ivelina Zaharieva, Diego González-Flores, Petko Chernev, Mohammad Reza Mohammadi, Leonardo Guidoni, Rodney D. L. Smith, Holger Dau. H/D Isotope Effects Reveal Factors Controlling Catalytic Activity in Co-Based Oxides for Water Oxidation. Journal of the American Chemical Society 2019, 141 (7) , 2938-2948. https://doi.org/10.1021/jacs.8b10002
  16. Xueqiang Zhang, Yong-Siou Chen, Prashant V. Kamat, Sylwia Ptasinska. Probing Interfacial Electrochemistry on a Co3O4 Water Oxidation Catalyst Using Lab-Based Ambient Pressure X-ray Photoelectron Spectroscopy. The Journal of Physical Chemistry C 2018, 122 (25) , 13894-13901. https://doi.org/10.1021/acs.jpcc.8b01012
  17. Yuchao Zhang, Hongna Zhang, Anan Liu, Chuncheng Chen, Wenjing Song, Jincai Zhao. Rate-Limiting O–O Bond Formation Pathways for Water Oxidation on Hematite Photoanode. Journal of the American Chemical Society 2018, 140 (9) , 3264-3269. https://doi.org/10.1021/jacs.7b10979
  18. Lisa Olshansky, Raúl Huerta-Lavorie, Andy I. Nguyen, Jaicy Vallapurackal, Ariel Furst, T. Don Tilley, and A. S. Borovik . Artificial Metalloproteins Containing Co4O4 Cubane Active Sites. Journal of the American Chemical Society 2018, 140 (8) , 2739-2742. https://doi.org/10.1021/jacs.7b13052
  19. Fangyuan Song, René Moré, Mauro Schilling, Grigory Smolentsev, Nicolo Azzaroli, Thomas Fox, Sandra Luber, and Greta R. Patzke . {Co4O4} and {CoxNi4–xO4} Cubane Water Oxidation Catalysts as Surface Cut-Outs of Cobalt Oxides. Journal of the American Chemical Society 2017, 139 (40) , 14198-14208. https://doi.org/10.1021/jacs.7b07361
  20. Michael G. Mavros, James J. Shepherd, Takashi Tsuchimochi, Alexandra R. McIsaac, and Troy Van Voorhis . Computational Design Principles of Two-Center First-Row Transition Metal Oxide Oxygen Evolution Catalysts. The Journal of Physical Chemistry C 2017, 121 (29) , 15665-15674. https://doi.org/10.1021/acs.jpcc.7b02424
  21. Lidong Wang, Dariusz Mitoraj, Stuart Turner, Oleksiy V. Khavryuchenko, Timo Jacob, Rosalie K. Hocking, and Radim Beranek . Ultrasmall CoO(OH)x Nanoparticles As a Highly Efficient “True” Cocatalyst in Porous Photoanodes for Water Splitting. ACS Catalysis 2017, 7 (7) , 4759-4767. https://doi.org/10.1021/acscatal.7b01466
  22. Jie Dai, Yinlong Zhu, Yubo Chen, Wei Zhou, and Zongping Shao . Na0.86Co0.95Fe0.05O2 Layered Oxide As Highly Efficient Water Oxidation Electrocatalyst in Alkaline Media. ACS Applied Materials & Interfaces 2017, 9 (26) , 21587-21592. https://doi.org/10.1021/acsami.7b06004
  23. Georgia Zahariou . Characterization of the High-Spin Co(II) Intermediate Species of the O2-Evolving Co4O4 Cubic Molecules. Inorganic Chemistry 2017, 56 (11) , 6105-6113. https://doi.org/10.1021/acs.inorgchem.7b00079
  24. Florian H. Hodel and Sandra Luber . Dehydrogenation Free Energy of Co2+(aq) from Density Functional Theory-Based Molecular Dynamics. Journal of Chemical Theory and Computation 2017, 13 (3) , 974-981. https://doi.org/10.1021/acs.jctc.6b01077
  25. Kyoungsuk Jin, Hongmin Seo, Toru Hayashi, Mani Balamurugan, Donghyuk Jeong, Yoo Kyung Go, Jung Sug Hong, Kang Hee Cho, Hirotaka Kakizaki, Nadège Bonnet-Mercier, Min Gyu Kim, Sun Hee Kim, Ryuhei Nakamura, and Ki Tae Nam . Mechanistic Investigation of Water Oxidation Catalyzed by Uniform, Assembled MnO Nanoparticles. Journal of the American Chemical Society 2017, 139 (6) , 2277-2285. https://doi.org/10.1021/jacs.6b10657
  26. Sengeni Anantharaj, Pula Nagesh Reddy, and Subrata Kundu . Core-Oxidized Amorphous Cobalt Phosphide Nanostructures: An Advanced and Highly Efficient Oxygen Evolution Catalyst. Inorganic Chemistry 2017, 56 (3) , 1742-1756. https://doi.org/10.1021/acs.inorgchem.6b02929
  27. Penglin Xu, Ting Zhou, Nadia N. Intan, Shaojin Hu, Xiao Zheng. Rational Ligand Design for an Efficient Biomimetic Water Splitting Complex. The Journal of Physical Chemistry A 2016, 120 (50) , 10033-10042. https://doi.org/10.1021/acs.jpca.6b10154
  28. Troy A. Stich, J. Gregory McAlpin, Ryan M. Wall, Matthew L. Rigsby, and R. David Britt . Electron Paramagnetic Resonance Characterization of Dioxygen-Bridged Cobalt Dimers with Relevance to Water Oxidation. Inorganic Chemistry 2016, 55 (24) , 12728-12736. https://doi.org/10.1021/acs.inorgchem.6b01954
  29. Shibing Chu, Emanuele Coccia, Matteo Barborini, and Leonardo Guidoni . Role of Electron Correlation along the Water Splitting Reaction. Journal of Chemical Theory and Computation 2016, 12 (12) , 5803-5810. https://doi.org/10.1021/acs.jctc.6b00632
  30. Sengeni Anantharaj, Sivasankara Rao Ede, Kuppan Sakthikumar, Kannimuthu Karthick, Soumyaranjan Mishra, and Subrata Kundu . Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12) , 8069-8097. https://doi.org/10.1021/acscatal.6b02479
  31. Bryan M. Hunter, Harry B. Gray, and Astrid M. Müller . Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22) , 14120-14136. https://doi.org/10.1021/acs.chemrev.6b00398
  32. Amendra Fernando and Christine M. Aikens . Theoretical Investigation of Water Oxidation Catalysis by a Model Manganese Cubane Complex. The Journal of Physical Chemistry C 2016, 120 (38) , 21148-21161. https://doi.org/10.1021/acs.jpcc.6b03029
  33. Ankita Das, Prabir Ghosh, José Luis Priego, Reyes Jiménez-Aparicio, and Goutam Kumar Lahiri . Unsymmetric (μ-oxido)/(μ-pyrazolato) and Symmetric (μ-pyrazolato)2 Bridged Diosmium Frameworks: Electronic Structure and Magnetic Properties. Inorganic Chemistry 2016, 55 (17) , 8396-8406. https://doi.org/10.1021/acs.inorgchem.6b00898
  34. Ryan G. Hadt, Dugan Hayes, Casey N. Brodsky, Andrew M. Ullman, Diego M. Casa, Mary H. Upton, Daniel G. Nocera, and Lin X. Chen . X-ray Spectroscopic Characterization of Co(IV) and Metal–Metal Interactions in Co4O4: Electronic Structure Contributions to the Formation of High-Valent States Relevant to the Oxygen Evolution Reaction. Journal of the American Chemical Society 2016, 138 (34) , 11017-11030. https://doi.org/10.1021/jacs.6b04663
  35. Hieu H. Pham, Mu-Jeng Cheng, Heinz Frei, and Lin-Wang Wang . Surface Proton Hopping and Fast-Kinetics Pathway of Water Oxidation on Co3O4 (001) Surface. ACS Catalysis 2016, 6 (8) , 5610-5617. https://doi.org/10.1021/acscatal.6b00713
  36. Mauro Schilling, Greta R. Patzke, Jürg Hutter, and Sandra Luber . Computational Investigation and Design of Cobalt Aqua Complexes for Homogeneous Water Oxidation. The Journal of Physical Chemistry C 2016, 120 (15) , 7966-7975. https://doi.org/10.1021/acs.jpcc.6b00712
  37. Andrew M. Ullman, Casey N. Brodsky, Nancy Li, Shao-Liang Zheng, and Daniel G. Nocera . Probing Edge Site Reactivity of Oxidic Cobalt Water Oxidation Catalysts. Journal of the American Chemical Society 2016, 138 (12) , 4229-4236. https://doi.org/10.1021/jacs.6b00762
  38. Florian H. Hodel and Sandra Luber . What Influences the Water Oxidation Activity of a Bioinspired Molecular CoII4O4 Cubane? An In-Depth Exploration of Catalytic Pathways. ACS Catalysis 2016, 6 (3) , 1505-1517. https://doi.org/10.1021/acscatal.5b02507
  39. Paul F. Smith, Liam Hunt, Anders B. Laursen, Viral Sagar, Shivam Kaushik, Karin U. D. Calvinho, Gabriele Marotta, Edoardo Mosconi, Filippo De Angelis, and G. Charles Dismukes . Water Oxidation by the [Co4O4(OAc)4(py)4]+ Cubium is Initiated by OH– Addition. Journal of the American Chemical Society 2015, 137 (49) , 15460-15468. https://doi.org/10.1021/jacs.5b09152
  40. Craig P. Plaisance and Rutger A. van Santen . Structure Sensitivity of the Oxygen Evolution Reaction Catalyzed by Cobalt(II,III) Oxide. Journal of the American Chemical Society 2015, 137 (46) , 14660-14672. https://doi.org/10.1021/jacs.5b07779
  41. Andy I. Nguyen, Micah S. Ziegler, Pascual Oña-Burgos, Manuel Sturzbecher-Hohne, Wooyul Kim, Donatela E. Bellone, and T. Don Tilley . Mechanistic Investigations of Water Oxidation by a Molecular Cobalt Oxide Analogue: Evidence for a Highly Oxidized Intermediate and Exclusive Terminal Oxo Participation. Journal of the American Chemical Society 2015, 137 (40) , 12865-12872. https://doi.org/10.1021/jacs.5b08396
  42. Fabio Evangelisti, René Moré, Florian Hodel, Sandra Luber, and Greta Ricarda Patzke . 3d–4f {CoII3Ln(OR)4} Cubanes as Bio-Inspired Water Oxidation Catalysts. Journal of the American Chemical Society 2015, 137 (34) , 11076-11084. https://doi.org/10.1021/jacs.5b05831
  43. Giuseppe Mattioli, Ivelina Zaharieva, Holger Dau, and Leonardo Guidoni . Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy. Journal of the American Chemical Society 2015, 137 (32) , 10254-10267. https://doi.org/10.1021/jacs.5b05174
  44. Amendra Fernando, K. L. Dimuthu M. Weerawardene, Natalia V. Karimova, and Christine M. Aikens . Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chemical Reviews 2015, 115 (12) , 6112-6216. https://doi.org/10.1021/cr500506r
  45. Clyde W. Cady, Graeme Gardner, Zachary O. Maron, Maria Retuerto, Yong Bok Go, Shreeda Segan, Martha Greenblatt, and G. Charles Dismukes . Tuning the Electrocatalytic Water Oxidation Properties of AB2O4 Spinel Nanocrystals: A (Li, Mg, Zn) and B (Mn, Co) Site Variants of LiMn2O4. ACS Catalysis 2015, 5 (6) , 3403-3410. https://doi.org/10.1021/acscatal.5b00265
  46. Amendra Fernando and Christine M. Aikens . Reaction Pathways for Water Oxidation to Molecular Oxygen Mediated by Model Cobalt Oxide Dimer and Cubane Catalysts. The Journal of Physical Chemistry C 2015, 119 (20) , 11072-11085. https://doi.org/10.1021/jp511805x
  47. Abu Md Asaduzzaman, Derek Wasylenko, Curtis P. Berlinguette, and Georg Schreckenbach . Substitution Effects on the Water Oxidation of Ruthenium Catalysts: A Quantum-Chemical Look. The Journal of Physical Chemistry C 2015, 119 (1) , 242-250. https://doi.org/10.1021/jp5075847
  48. Markus D. Kärkäs, Oscar Verho, Eric V. Johnston, and Björn Åkermark . Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24) , 11863-12001. https://doi.org/10.1021/cr400572f
  49. Sijie Luo, Collin J. Dibble, Michael A. Duncan, and Donald. G. Truhlar . Ligand-Mediated Ring → Cube Transformation in a Catalytic Subnanocluster: Co4O4(MeCN)n with n = 1–6. The Journal of Physical Chemistry Letters 2014, 5 (15) , 2528-2532. https://doi.org/10.1021/jz501167s
  50. Michael G. Mavros, Takashi Tsuchimochi, Tim Kowalczyk, Alexandra McIsaac, Lee-Ping Wang, and Troy Van Voorhis . What Can Density Functional Theory Tell Us about Artificial Catalytic Water Splitting?. Inorganic Chemistry 2014, 53 (13) , 6386-6397. https://doi.org/10.1021/ic5002557
  51. Michael Huynh, D. Kwabena Bediako, and Daniel G. Nocera . A Functionally Stable Manganese Oxide Oxygen Evolution Catalyst in Acid. Journal of the American Chemical Society 2014, 136 (16) , 6002-6010. https://doi.org/10.1021/ja413147e
  52. Ethan L. Demeter, Shayna L. Hilburg, Newell R. Washburn, Terrence J. Collins, and John R. Kitchin . Electrocatalytic Oxygen Evolution with an Immobilized TAML Activator. Journal of the American Chemical Society 2014, 136 (15) , 5603-5606. https://doi.org/10.1021/ja5015986
  53. Paul F. Smith, Christopher Kaplan, John E. Sheats, David M. Robinson, Nicholas S. McCool, Nicholas Mezle, and G. Charles Dismukes . What Determines Catalyst Functionality in Molecular Water Oxidation? Dependence on Ligands and Metal Nuclearity in Cobalt Clusters. Inorganic Chemistry 2014, 53 (4) , 2113-2121. https://doi.org/10.1021/ic402720p
  54. Delina Barats-Damatov, Linda J. W. Shimon, Lev Weiner, Roy E. Schreiber, Pablo Jiménez-Lozano, Josep M. Poblet, Coen de Graaf, and Ronny Neumann . Dicobalt-μ-oxo Polyoxometalate Compound, [(α2-P2W17O61Co)2O]14–: A Potent Species for Water Oxidation, C–H Bond Activation, and Oxygen Transfer. Inorganic Chemistry 2014, 53 (3) , 1779-1787. https://doi.org/10.1021/ic402962c
  55. Karolina Kwapien, Simone Piccinin, and Stefano Fabris . Energetics of Water Oxidation Catalyzed by Cobalt Oxide Nanoparticles: Assessing the Accuracy of DFT and DFT+U Approaches against Coupled Cluster Methods. The Journal of Physical Chemistry Letters 2013, 4 (24) , 4223-4230. https://doi.org/10.1021/jz402263d
  56. Fabio Evangelisti, Robin Güttinger, René Moré, Sandra Luber, and Greta R. Patzke . Closer to Photosystem II: A Co4O4 Cubane Catalyst with Flexible Ligand Architecture. Journal of the American Chemical Society 2013, 135 (50) , 18734-18737. https://doi.org/10.1021/ja4098302
  57. Giuseppe Mattioli, Paolo Giannozzi, Aldo Amore Bonapasta, and Leonardo Guidoni . Reaction Pathways for Oxygen Evolution Promoted by Cobalt Catalyst. Journal of the American Chemical Society 2013, 135 (41) , 15353-15363. https://doi.org/10.1021/ja401797v
  58. Xichen Li and Per E. M. Siegbahn . Water Oxidation Mechanism for Synthetic Co–Oxides with Small Nuclearity. Journal of the American Chemical Society 2013, 135 (37) , 13804-13813. https://doi.org/10.1021/ja4053448
  59. Masanari Hirahara, Mehmed Z. Ertem, Manabu Komi, Hirosato Yamazaki, Christopher J. Cramer, and Masayuki Yagi . Mechanisms of Photoisomerization and Water-Oxidation Catalysis of Mononuclear Ruthenium(II) Monoaquo Complexes. Inorganic Chemistry 2013, 52 (11) , 6354-6364. https://doi.org/10.1021/ic400054k
  60. D. Kwabena Bediako, Yogesh Surendranath, and Daniel G. Nocera . Mechanistic Studies of the Oxygen Evolution Reaction Mediated by a Nickel–Borate Thin Film Electrocatalyst. Journal of the American Chemical Society 2013, 135 (9) , 3662-3674. https://doi.org/10.1021/ja3126432
  61. Xiao Liang Hu, Simone Piccinin, Alessandro Laio, and Stefano Fabris . Atomistic Structure of Cobalt-Phosphate Nanoparticles for Catalytic Water Oxidation. ACS Nano 2012, 6 (12) , 10497-10504. https://doi.org/10.1021/nn3044325
  62. Rupam Sarma, Alfredo M. Angeles-Boza, David W. Brinkley, and Justine P. Roth . Studies of the Di-iron(VI) Intermediate in Ferrate-Dependent Oxygen Evolution from Water. Journal of the American Chemical Society 2012, 134 (37) , 15371-15386. https://doi.org/10.1021/ja304786s
  63. Jamal Abdul Nasir, Akhtar Munir, Naveed Ahmad, Tanveer ul Haq, Zaibunisa Khan, Ziaur Rehman. Photocatalytic Z‐Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. Advanced Materials 2021, 5 , 2105195. https://doi.org/10.1002/adma.202105195
  64. KrishnaRao Eswar Neerugatti, Sangeeta Adhikari, Do-Heyoung Kim, Jaeyeong Heo. Eventual loss of phosphate and compensated passivation observed in CoPi thin films for efficient water oxidation in alkaline solutions. Applied Catalysis B: Environmental 2021, 292 , 120192. https://doi.org/10.1016/j.apcatb.2021.120192
  65. Xiaobin Liao, Ruihu Lu, Lixue Xia, Qian Liu, Huan Wang, Kristin Zhao, Zhaoyang Wang, Yan Zhao. Density Functional Theory for Electrocatalysis. ENERGY & ENVIRONMENTAL MATERIALS 2021, 488 https://doi.org/10.1002/eem2.12204
  66. Chaochao Lang, Jingyi Li, Ke R. Yang, Yuanxing Wang, Da He, James E. Thorne, Seth Croslow, Qi Dong, Yanyan Zhao, Gabriela Prostko, Gary W. Brudvig, Victor S. Batista, Matthias M. Waegele, Dunwei Wang. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. Chem 2021, 7 (8) , 2101-2117. https://doi.org/10.1016/j.chempr.2021.03.015
  67. Md. Mahedi Hasan, Tamanna Islam, Zubair Ahmed Ratan, M. Nasiruzzaman Shaikh, Mohammad Rezaul Karim, Mohammad Mominur Rahman, Hamad F. Alharbi, Jamal Uddin, Md. Abdul Aziz, A. J. Saleh Ahammad. Ni and Co oxide water oxidation electrocatalysts: Effect of thermal treatment on catalytic activity and surface morphology. Renewable and Sustainable Energy Reviews 2021, 145 , 111097. https://doi.org/10.1016/j.rser.2021.111097
  68. Roman Ezhov, Alireza Karbakhsh Ravari, Gabriel Bury, Paul F. Smith, Yulia Pushkar. Do multinuclear 3d metal catalysts achieve O–O bond formation via radical coupling or via water nucleophilic attack? WNA leads the way in [Co4O4]n+. Chem Catalysis 2021, 1 (2) , 407-422. https://doi.org/10.1016/j.checat.2021.03.013
  69. Aleksandr A. Shubin, Viktor Yu. Kovalskii, Sergey Ph. Ruzankin, Igor L. Zilberberg, Valentin N. Parmon, Felix N. Tomilin, Pavel V. Avramov. The Fe IV  O • oxyl unit as a key intermediate in water oxidation on the Fe III  hydroxide: DFT predictions. International Journal of Quantum Chemistry 2021, 121 (10) https://doi.org/10.1002/qua.26610
  70. Danilo González, Javier Heras-Domingo, Mariona Sodupe, Luis Rodríguez-Santiago, Xavier Solans-Monfort. Importance of the oxyl character on the IrO2 surface dependent catalytic activity for the oxygen evolution reaction. Journal of Catalysis 2021, 396 , 192-201. https://doi.org/10.1016/j.jcat.2021.02.026
  71. Huayang Zhang, Wenjie Tian, Shaobin Wang. Photocatalytic Oxygen Evolution. 2021,,, 129-162. https://doi.org/10.1002/9783527825073.ch6
  72. Robin Güttinger, Giann Wiprächtiger, Olivier Blacque, Greta R. Patzke. Co/Ni-polyoxotungstate photocatalysts as precursor materials for electrocatalytic water oxidation. RSC Advances 2021, 11 (19) , 11425-11436. https://doi.org/10.1039/D0RA10792A
  73. Lichen Bai, Seunghwa Lee, Xile Hu. Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**. Angewandte Chemie 2021, 133 (6) , 3132-3140. https://doi.org/10.1002/ange.202011388
  74. Lichen Bai, Seunghwa Lee, Xile Hu. Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction**. Angewandte Chemie International Edition 2021, 60 (6) , 3095-3103. https://doi.org/10.1002/anie.202011388
  75. Mai-Anh Ha, Ross E. Larsen. Multiple Reaction Pathways for the Oxygen Evolution Reaction May Contribute to IrO 2 (110)’s High Activity. Journal of The Electrochemical Society 2021, 168 (2) , 024506. https://doi.org/10.1149/1945-7111/abdeea
  76. Jacob Schneidewind, Miguel A. Argüello Cordero, Henrik Junge, Stefan Lochbrunner, Matthias Beller. Two-photon, visible light water splitting at a molecular ruthenium complex. Energy & Environmental Science 2021, 11 https://doi.org/10.1039/D1EE01053K
  77. Wenlong Zhen, Xu Yuan, Xiangyan Shi, Can Xue. Grafting Molecular Cobalt‐oxo Cubane Catalyst on Polymeric Carbon Nitride for Efficient Photocatalytic Water Oxidation. Chemistry – An Asian Journal 2020, 15 (16) , 2480-2486. https://doi.org/10.1002/asia.202000583
  78. Ruocheng Han, Sandra Luber. Complete active space analysis of a reaction pathway: Investigation of the oxygen–oxygen bond formation. Journal of Computational Chemistry 2020, 41 (17) , 1586-1597. https://doi.org/10.1002/jcc.26201
  79. Jiajia Song, Chao Wei, Zhen-Feng Huang, Chuntai Liu, Lin Zeng, Xin Wang, Zhichuan J. Xu. A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews 2020, 49 (7) , 2196-2214. https://doi.org/10.1039/C9CS00607A
  80. Rong Chen, Zhi‐Hao Yan, Xiang‐Jian Kong. Recent Advances in First‐Row Transition Metal Clusters for Photocatalytic Water Splitting. ChemPhotoChem 2020, 4 (3) , 157-167. https://doi.org/10.1002/cptc.201900237
  81. Arindam Indra, Prashanth W. Menezes. Bifunctional nanocatalysts for water splitting and its challenges. 2020,,, 59-95. https://doi.org/10.1016/B978-0-12-819355-6.00004-2
  82. Hong-Tao Zhang, Ming-Tian Zhang. The Application of Pincer Ligand in Catalytic Water Splitting. 2020,,, 379-449. https://doi.org/10.1007/3418_2020_71
  83. Yang Liu, Nicholas Marcella, Janis Timoshenko, Avik Halder, Bing Yang, Lakshmi Kolipaka, Michael. J. Pellin, Soenke Seifert, Stefan Vajda, Ping Liu, Anatoly I. Frenkel. Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. The Journal of Chemical Physics 2019, 151 (16) , 164201. https://doi.org/10.1063/1.5126597
  84. Yue Shao, Xue Xiao, Yun‐Pei Zhu, Tian‐Yi Ma. Single‐Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie International Edition 2019, 58 (41) , 14599-14604. https://doi.org/10.1002/anie.201909326
  85. Yue Shao, Xue Xiao, Yun‐Pei Zhu, Tian‐Yi Ma. Single‐Crystal Cobalt Phosphate Nanosheets for Biomimetic Oxygen Evolution in Neutral Electrolytes. Angewandte Chemie 2019, 131 (41) , 14741-14746. https://doi.org/10.1002/ange.201909326
  86. Ye Zhou, Shengnan Sun, Chao Wei, Yuanmiao Sun, Pinxian Xi, Zhenxing Feng, Zhichuan J. Xu. Significance of Engineering the Octahedral Units to Promote the Oxygen Evolution Reaction of Spinel Oxides. Advanced Materials 2019, 31 (41) , 1902509. https://doi.org/10.1002/adma.201902509
  87. Andy I. Nguyen, Kurt M. Van Allsburg, Maxwell W. Terban, Michal Bajdich, Julia Oktawiec, Jaruwan Amtawong, Micah S. Ziegler, James P. Dombrowski, K. V. Lakshmi, Walter S. Drisdell, Junko Yano, Simon J. L. Billinge, T. Don Tilley. Stabilization of reactive Co 4 O 4 cubane oxygen-evolution catalysts within porous frameworks. Proceedings of the National Academy of Sciences 2019, 20 , 201815013. https://doi.org/10.1073/pnas.1815013116
  88. Yan Duan, Shengnan Sun, Yuanmiao Sun, Shibo Xi, Xiao Chi, Qinghua Zhang, Xiao Ren, Jingxian Wang, Samuel Jun Hoong Ong, Yonghua Du, Lin Gu, Alexis Grimaud, Zhichuan J. Xu. Mastering Surface Reconstruction of Metastable Spinel Oxides for Better Water Oxidation. Advanced Materials 2019, 31 (12) , 1807898. https://doi.org/10.1002/adma.201807898
  89. Rahul Sakla, Rahul Kaushik, Vijay Kumar, D. Amilan Jose, Amrita Ghosh, C. R. Mariappan. Light-induced water oxidation by polymorphs of the Zn–Co–Ni oxide spinel catalyst: a comparative study. Sustainable Energy & Fuels 2019, 3 (3) , 786-792. https://doi.org/10.1039/C8SE00536B
  90. Mauro Schilling, Sandra Luber. Insights into artificial water oxidation—A computational perspective. 2019,,, 61-114. https://doi.org/10.1016/bs.adioch.2019.03.001
  91. Atif Ali, Waseem Akram, Hai-Yang Liu. Reactive Cobalt–Oxo Complexes of Tetrapyrrolic Macrocycles and N-based Ligand in Oxidative Transformation Reactions. Molecules 2019, 24 (1) , 78. https://doi.org/10.3390/molecules24010078
  92. Xichen Zhou, Zhen Liu, Yifan Wang, Yong Ding. Facet effect of Co3O4 nanocrystals on visible-light driven water oxidation. Applied Catalysis B: Environmental 2018, 237 , 74-84. https://doi.org/10.1016/j.apcatb.2018.05.067
  93. Jingqi Guan, Zhiyao Duan, Fuxiang Zhang, Shelly D. Kelly, Rui Si, Michel Dupuis, Qinge Huang, John Qianjun Chen, Chunhua Tang, Can Li. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nature Catalysis 2018, 1 (11) , 870-877. https://doi.org/10.1038/s41929-018-0158-6
  94. Mohamad S. Kodaimati, Shichen Lian, George C. Schatz, Emily A. Weiss. Energy transfer-enhanced photocatalytic reduction of protons within quantum dot light-harvesting–catalyst assemblies. Proceedings of the National Academy of Sciences 2018, 115 (33) , 8290-8295. https://doi.org/10.1073/pnas.1805625115
  95. Zamyla Morgan Chan, Daniil A. Kitchaev, Johanna Nelson Weker, Christoph Schnedermann, Kipil Lim, Gerbrand Ceder, William Tumas, Michael F. Toney, Daniel G. Nocera. Electrochemical trapping of metastable Mn 3+ ions for activation of MnO 2 oxygen evolution catalysts. Proceedings of the National Academy of Sciences 2018, 115 (23) , E5261-E5268. https://doi.org/10.1073/pnas.1722235115
  96. Shuai Zhao, Litao Yan, Hongmei Luo, William Mustain, Hui Xu. Recent progress and perspectives of bifunctional oxygen reduction/evolution catalyst development for regenerative anion exchange membrane fuel cells. Nano Energy 2018, 47 , 172-198. https://doi.org/10.1016/j.nanoen.2018.02.015
  97. Mauro Schilling, Sandra Luber. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges. Frontiers in Chemistry 2018, 6 https://doi.org/10.3389/fchem.2018.00100
  98. Ju Seong Kim, Byunghoon Kim, Hyunah Kim, Kisuk Kang. Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials 2018, 8 (11) , 1702774. https://doi.org/10.1002/aenm.201702774
  99. Penglin Xu, Shaojin Hu, Hou-Dao Zhang, Xiao Zheng. Theoretical insights into the reactivity of Fe-based catalysts for water oxidation: the role of electron-withdrawing groups. Physical Chemistry Chemical Physics 2018, 20 (21) , 14919-14926. https://doi.org/10.1039/C8CP00687C
  100. Shigeto Hirai, Kazuki Morita, Kenji Yasuoka, Taizo Shibuya, Yujiro Tojo, Yoichi Kamihara, Akira Miura, Hisao Suzuki, Tomoya Ohno, Takeshi Matsuda, Shunsuke Yagi. Oxygen vacancy-originated highly active electrocatalysts for the oxygen evolution reaction. Journal of Materials Chemistry A 2018, 6 (31) , 15102-15109. https://doi.org/10.1039/C8TA04697B
Load all citations