Quantum-Dot-Sensitized Solar Cells: Effect of Nanostructured TiO2 Morphologies on Photovoltaic Properties

View Author Information
Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
Cite this: J. Phys. Chem. Lett. 2012, 3, 14, 1885–1893
Publication Date (Web):June 28, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (1 MB)


There is a great deal of interest in dye-sensitized solar cells (DSCs) fabricated with nanostructured TiO2 electrodes. Many different dye molecules have been designed and synthesized to achieve high photovoltaic conversion efficiency. Recently, as an alternative to organic dyes, semiconductor quantum dots (QDs) have been studied for their light-harvesting capability compared with other sensitizers. Accordingly, an attractive configuration to exploit these fascinating properties of semiconductor QDs is the quantum-dot-sensitized solar cell (QDSC) due to their high photoactivity, process realization, and low cost of production. The morphology of TiO2 electrodes included with surface orientation is important for satisfactory assembly of QDSCs in order to improve the efficiency. Breakthroughs allowing an increase in efficiency will advance on two areas of electrode morphology control, namely, (A) TiO2 nanotube electrodes and (B) inverse opal TiO2 electrodes.

Cited By

This article is cited by 91 publications.

  1. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  2. Zhonglin Du, Feifei Yin, Dongni Han, Sui Mao, Jin Wang, Abdur Raheem Aleem, Zhenxiao Pan, Jianguo Tang. Plasmonic Effect with Tailored [email protected] Nanorods in Photoanode for Quantum Dot Sensitized Solar Cells. ACS Applied Energy Materials 2019, 2 (8) , 5917-5924. https://doi.org/10.1021/acsaem.9b01048
  3. Taro Toyoda, Qing Shen, Motoki Hironaka, Keita Kamiyama, Hisayoshi Kobayashi, Yasushi Hirose, Shuzi Hayase. Anisotropic Crystal Growth, Optical Absorption, and Ground-State Energy Level of CdSe Quantum Dots Adsorbed on the (001) and (102) Surfaces of Anatase-TiO2: Quantum Dot-Sensitization System. The Journal of Physical Chemistry C 2018, 122 (51) , 29200-29209. https://doi.org/10.1021/acs.jpcc.8b07378
  4. Taro Toyoda, Qing Shen, Kanae Hori, Naoki Nakazawa, Keita Kamiyama, Shuzi Hayase. Crystal Growth, Exponential Optical Absorption Edge, and Ground State Energy Level of PbS Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Rutile-TiO2. The Journal of Physical Chemistry C 2018, 122 (25) , 13590-13599. https://doi.org/10.1021/acs.jpcc.7b12675
  5. Yue-Ying Li, Jian-Gan Wang, Huan-Huan Sun, Bingqing Wei. Heterostructured TiO2/NiTiO3 Nanorod Arrays for Inorganic Sensitized Solar Cells with Significantly Enhanced Photovoltaic Performance and Stability. ACS Applied Materials & Interfaces 2018, 10 (14) , 11580-11586. https://doi.org/10.1021/acsami.7b17044
  6. Nicholas Tulsiram, Christopher Kerr, and Jennifer I. L. Chen . Photoinduced Charge Transfer in Poly(3-hexylthiophene)/TiO2 Hybrid Inverse Opals: Photonic vs Interfacial Effects. The Journal of Physical Chemistry C 2017, 121 (48) , 26987-26996. https://doi.org/10.1021/acs.jpcc.7b09113
  7. Taro Toyoda, Qing Shen, Keita Kamiyama, Kenji Katayama, and Shuzi Hayase . Dependences of the Optical Absorption, Ground State Energy Level, and Interfacial Electron Transfer Dynamics on the Size of CdSe Quantum Dots Adsorbed on the (001), (110), and (111) Surfaces of Single Crystal Rutile TiO2. The Journal of Physical Chemistry C 2017, 121 (45) , 25390-25401. https://doi.org/10.1021/acs.jpcc.7b09371
  8. Taro Toyoda, Witoon Yindeesuk, Keita Kamiyama, Shuzi Hayase, and Qing Shen . Adsorption and Electronic Structure of CdSe Quantum Dots on Single Crystal ZnO: A Basic Study of Quantum Dot-Sensitization System. The Journal of Physical Chemistry C 2016, 120 (30) , 16367-16376. https://doi.org/10.1021/acs.jpcc.6b04130
  9. Taro Toyoda, Witoon Yindeesuk, Keita Kamiyama, Kenji Katayama, Hisayoshi Kobayashi, Shuzi Hayase, and Qing Shen . The Electronic Structure and Photoinduced Electron Transfer Rate of CdSe Quantum Dots on Single Crystal Rutile TiO2: Dependence on the Crystal Orientation of the Substrate. The Journal of Physical Chemistry C 2016, 120 (4) , 2047-2057. https://doi.org/10.1021/acs.jpcc.5b09528
  10. Ke Zhao, Zhenxiao Pan, and Xinhua Zhong . Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (3) , 406-417. https://doi.org/10.1021/acs.jpclett.5b02153
  11. Yan Jiang, Bin-Bin Yu, Jie Liu, Zhi-Hua Li, Jian-Kun Sun, Xin-Hua Zhong, Jin-Song Hu, Wei-Guo Song, and Li-Jun Wan . Boosting the Open Circuit Voltage and Fill Factor of QDSSCs Using Hierarchically Assembled [email protected] Nanowire Array Counter Electrodes. Nano Letters 2015, 15 (5) , 3088-3095. https://doi.org/10.1021/acs.nanolett.5b00096
  12. Wenjie Li and Xinhua Zhong . Capping Ligand-Induced Self-Assembly for Quantum Dot Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (5) , 796-806. https://doi.org/10.1021/acs.jpclett.5b00001
  13. Yu Bai, Iván Mora-Seró, Filippo De Angelis, Juan Bisquert, and Peng Wang . Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews 2014, 114 (19) , 10095-10130. https://doi.org/10.1021/cr400606n
  14. Run Long, Niall J. English, and Oleg V. Prezhdo . Minimizing Electron–Hole Recombination on TiO2 Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis. The Journal of Physical Chemistry Letters 2014, 5 (17) , 2941-2946. https://doi.org/10.1021/jz5013627
  15. Taro Toyoda, Witoon Yindeesuk, Keita Kamiyama, Shuzi Hayase, and Qing Shen . Effect of TiO2 Crystal Orientation on the Adsorption of CdSe Quantum Dots for Photosensitization Studied by the Photoacoustic and Photoelectron Yield Methods. The Journal of Physical Chemistry C 2014, 118 (30) , 16680-16687. https://doi.org/10.1021/jp412657x
  16. Musashi Fujishima, Kentaro Tanaka, Naoki Sakami, Masataka Wada, Katsuyuki Morii, Takanori Hattori, Yasutaka Sumida, and Hiroaki Tada . Photocatalytic Current Doubling-Induced Generation of Uniform Selenium and Cadmium Selenide Quantum Dots on Titanium(IV) Oxide. The Journal of Physical Chemistry C 2014, 118 (17) , 8917-8924. https://doi.org/10.1021/jp410794j
  17. Matthew A. Becker, Emmy J. Radich, Bruce A. Bunker, Prashant V. Kamat. How Does a SILAR CdSe Film Grow? Tuning the Deposition Steps to Suppress Interfacial Charge Recombination in Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (9) , 1575-1582. https://doi.org/10.1021/jz500481v
  18. Junyan Xiao, Qingli Huang, Jing Xu, Chunhui Li, Guoping Chen, Yanhong Luo, Dongmei Li, and Qingbo Meng . CdS/CdSe Co-Sensitized Solar Cells Based on a New SnO2 Photoanode with a Three-Dimensionally Interconnected Ordered Porous Structure. The Journal of Physical Chemistry C 2014, 118 (8) , 4007-4015. https://doi.org/10.1021/jp411922e
  19. Hyunbong Choi, Emmy J. Radich, Prashant V. Kamat. Sequentially Layered CdSe/CdS Nanowire Architecture for Improved Nanowire Solar Cell Performance. The Journal of Physical Chemistry C 2014, 118 (1) , 206-213. https://doi.org/10.1021/jp410235s
  20. Roman Kubrin, Jefferson J. do Rosario, Hooi Sing Lee, Sweety Mohanty, Raman P. Subrahmanyam, Irina Smirnova, Alexey Petrov, Alexander Yu. Petrov, Manfred Eich, and Gerold A. Schneider . Vertical Convective Coassembly of Refractory YSZ Inverse Opals from Crystalline Nanoparticles. ACS Applied Materials & Interfaces 2013, 5 (24) , 13146-13152. https://doi.org/10.1021/am404180y
  21. Hyunbong Choi and Prashant V. Kamat . CdS Nanowire Solar Cells: Dual Role of Squaraine Dye as a Sensitizer and a Hole Transporter. The Journal of Physical Chemistry Letters 2013, 4 (22) , 3983-3991. https://doi.org/10.1021/jz402306j
  22. Run Long, Ying Dai, and Baibiao Huang . Fullerene Interfaced with a TiO2(110) Surface May Not Form an Efficient Photovoltaic Heterojunction: First-Principles Investigation of Electronic Structures. The Journal of Physical Chemistry Letters 2013, 4 (13) , 2223-2229. https://doi.org/10.1021/jz401124w
  23. Xing Zhang, Christopher W. Pinion, Joseph D. Christesen, Cory J. Flynn, Thomas A. Celano, and James F. Cahoon . Horizontal Silicon Nanowires with Radial p–n Junctions: A Platform for Unconventional Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (12) , 2002-2009. https://doi.org/10.1021/jz400533v
  24. Yong-Siou Chen, Hyunbong Choi, and Prashant V. Kamat . Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%. Journal of the American Chemical Society 2013, 135 (24) , 8822-8825. https://doi.org/10.1021/ja403807f
  25. Zonglong Zhu, Jianhang Qiu, Keyou Yan, and Shihe Yang . Building High-Efficiency CdS/CdSe-Sensitized Solar Cells with a Hierarchically Branched Double-Layer Architecture. ACS Applied Materials & Interfaces 2013, 5 (10) , 4000-4005. https://doi.org/10.1021/am400235g
  26. Seare A. Berhe, Soumya Nag, Zachary Molinets, and W. Justin Youngblood . Influence of Seeding and Bath Conditions in Hydrothermal Growth of Very Thin (∼20 nm) Single-Crystalline Rutile TiO2 Nanorod Films. ACS Applied Materials & Interfaces 2013, 5 (4) , 1181-1185. https://doi.org/10.1021/am302315q
  27. Maziar Marandi, Maedeh Nazari. Application of TiO2 hollow spheres and ZnS/SiO2 double-passivaiting layers in the photoanode of the CdS/CdSe QDs sensitized solar cells for the efficiency enhancement. Solar Energy 2021, 216 , 48-60. https://doi.org/10.1016/j.solener.2020.11.057
  28. Jingsha Jin, Lingran Zhao, Yuyu Liu, Shufang Gao, Xiangxiang Yu, Yan Xiong. Double-layer TiO2 inverse opal-based quantum dot-sensitized solar cells. Journal of Solid State Electrochemistry 2021, 25 (1) , 291-299. https://doi.org/10.1007/s10008-020-04806-9
  29. Yong Ding, In Seok Yang, Zhaoqian Li, Xin Xia, Wan In Lee, Songyuan Dai, Detlef W. Bahnemann, Jia Hong Pan. Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science 2020, 109 , 100620. https://doi.org/10.1016/j.pmatsci.2019.100620
  30. Han Song, Zhenxiao Pan, Huashang Rao, Xinhua Zhong. TiO2 hierarchical nanowire-P25 particulate composite photoanodes in combination with N-doped mesoporous carbon/Ti counter electrodes for high performance quantum dot-sensitized solar cells. Solar Energy 2019, 191 , 459-467. https://doi.org/10.1016/j.solener.2019.09.014
  31. A. Aissat, J. P. Vilcot. Improvement in carrier dynamics in InxGa1−xN/GaN multi-quantum well for solar cell applications. Journal of Optics 2019, 48 (3) , 324-331. https://doi.org/10.1007/s12596-019-00536-y
  32. Sourav Maiti, Farazuddin Azlan, Yogesh Jadhav, Jayanta Dana, Pranav Anand, Santosh K. Haram, G.R. Dey, Hirendra N. Ghosh. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells. Solar Energy 2019, 181 , 195-202. https://doi.org/10.1016/j.solener.2019.02.001
  33. Shixin Chen, Yinglin Wang, Shuang Lu, Yichun Liu, Xintong Zhang. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells. Physical Chemistry Chemical Physics 2019, 21 (7) , 3970-3975. https://doi.org/10.1039/C8CP06426A
  34. Zhonglin Du, Mikhail Artemyev, Jin Wang, Jianguo Tang. Performance improvement strategies for quantum dot-sensitized solar cells: a review. Journal of Materials Chemistry A 2019, 7 (6) , 2464-2489. https://doi.org/10.1039/C8TA11483H
  35. Andrés. F. Gualdrón-Reyes, Angel M. Meléndez, Juan Tirado, Mario Alejandro Mejia-Escobar, Franklin Jaramillo, Martha E. Niño-Gómez. Hidden energy levels? Carrier transport ability of CdS/CdS 1−x Se x quantum dot solar cells impacted by Cd–Cd level formation. Nanoscale 2019, 11 (2) , 762-774. https://doi.org/10.1039/C8NR07073C
  36. Lumei Peng, Houxun Hong, Yanli Shi, Xiaowen Zhou, Yuan Lin, Jianguang Jia. High performance CdSe quantum dot sensitized ZnO solar cell fabricated from ion exchange. Journal of Alloys and Compounds 2018, 765 , 355-361. https://doi.org/10.1016/j.jallcom.2018.06.095
  37. Xiaohui Song, Zinan Ma, Jianping Deng, Xueping Li, Li Wang, Yong Yan, Xiao Dong, Yongyong Wang, Congxin Xia. Fabrication of three-dimensionally ordered macroporous TiO 2 film and its application in quantum dots-sensitized solar cells. Optics Express 2018, 26 (18) , A855. https://doi.org/10.1364/OE.26.00A855
  38. Waleed M.A. El Rouby, Ahmed A. Farghali. Titania morphologies modified gold nanoparticles for highly catalytic photoelectrochemical water splitting. Journal of Photochemistry and Photobiology A: Chemistry 2018, 364 , 740-749. https://doi.org/10.1016/j.jphotochem.2018.07.011
  39. A. Aissat, F. Benyettou, I. Berbezier, J.P. Vilcot. Modeling and optimization of core (p-GaN)-multishell (i-InxGa1-xN/i-GaN/n-Al0.1Ga0.9N /n-GaN) nanowire for photovoltaic applications. Superlattices and Microstructures 2018, 120 , 209-216. https://doi.org/10.1016/j.spmi.2018.05.043
  40. K. Veerathangam, Muthu Senthil Pandian, P. Ramasamy. Influence of SILAR deposition cycles in CdS quantum dot-sensitized solar cells. Journal of Materials Science: Materials in Electronics 2018, 29 (9) , 7318-7324. https://doi.org/10.1007/s10854-018-8721-0
  41. Jianguang Jia, Lili Mu, Yuan Lin, Xiaowen Zhou. Rutile versus anatase for quantum dot sensitized solar cell. Electrochimica Acta 2018, 266 , 103-109. https://doi.org/10.1016/j.electacta.2018.01.186
  42. Jayanta Dana, Sourav Maiti, Vaidehi S. Tripathi, Hirendra N. Ghosh. Direct Correlation of Excitonics with Efficiency in a Core-Shell Quantum Dot Solar Cell. Chemistry - A European Journal 2018, 24 (10) , 2418-2425. https://doi.org/10.1002/chem.201705127
  43. Oleksandr Stroyuk. Semiconductor-Based Liquid-Junction Photoelectrochemical Solar Cells. 2018,,, 161-240. https://doi.org/10.1007/978-3-319-68879-4_4
  44. Jianguang Jia, Chunmei Liu, Yuan Lin, Xiaowen Zhou. Large enhancement in cell performance of CdSe-sensitized ZnO solar cell via ZnSe overcoating. Journal of Alloys and Compounds 2017, 727 , 80-85. https://doi.org/10.1016/j.jallcom.2017.08.097
  45. F. Benyettou, A. Aissat, I. Berbezier, J.P. Vilcot. Modeling and optimization of core/shell p-i-n Si/Si0.2Ge0.8 nanowire for photovoltaic. Optik 2017, 149 , 246-251. https://doi.org/10.1016/j.ijleo.2017.09.056
  46. A. V. Kozytskiy, O. L. Stroyuk, A. E. Raevskaya, S. Ya. Kuchmy. Photoelectrochemical Solar Cells with Semiconductor Nanoparticles and Liquid Electrolytes: a Review. Theoretical and Experimental Chemistry 2017, 53 (3) , 145-179. https://doi.org/10.1007/s11237-017-9512-z
  47. Rong Fan, Jiandi Wan. Electrode distance regulates the anodic growth of titanium dioxide (TiO 2 ) nanotubes. Nanotechnology 2017, 28 (25) , 25LT01. https://doi.org/10.1088/1361-6528/aa703d
  48. Jing Liu, Heng Zhao, Min Wu, Benoit Van der Schueren, Yu Li, Olivier Deparis, Jinhua Ye, Geoffrey A. Ozin, Tawfique Hasan, Bao-Lian Su. Slow Photons for Photocatalysis and Photovoltaics. Advanced Materials 2017, 29 (17) , 1605349. https://doi.org/10.1002/adma.201605349
  49. Jian-Kun Sun, Yan Jiang, Xinhua Zhong, Jin-Song Hu, Li-Jun Wan. Three-dimensional nanostructured electrodes for efficient quantum-dot-sensitized solar cells. Nano Energy 2017, 32 , 130-156. https://doi.org/10.1016/j.nanoen.2016.12.022
  50. Ankita Kolay, P. Naresh Kumar, Sarode Krishna Kumar, Melepurath Deepa. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells. Physical Chemistry Chemical Physics 2017, 19 (6) , 4607-4617. https://doi.org/10.1039/C6CP07364F
  51. Motoki Hironaka, Taro Toyoda, Kanae Hori, Yuhei Ogomi, Shuzi Hayase, Qing Sheng. Photovoltaic Properties of CdSe Quantum Dot Sensitized Inverse Opal TiO2 Solar Cells: The Effect of TiCl4 Post Treatment. Journal of Modern Physics 2017, 08 (04) , 522-530. https://doi.org/10.4236/jmp.2017.84034
  52. Mansoor Ani Najeeb, Shahino Mah Abdullah, Fakhra Aziz, Zubair Ahmad, R. A. Shakoor, A. M. A. Mohamed, Uzma Khalil, Wageh Swelm, Ahmed A. Al-Ghamdi, Khaulah Sulaiman. A comparative study on the performance of hybrid solar cells containing ZnSTe QDs in hole transporting layer and photoactive layer. Journal of Nanoparticle Research 2016, 18 (12) https://doi.org/10.1007/s11051-016-3694-5
  53. Ting Shen, Jianjun Tian, Bo Li, Guozhong Cao. Ultrathin ALD coating on TiO2 photoanodes with enhanced quantum dot loading and charge collection in quantum dots sensitized solar cells. Science China Materials 2016, 59 (10) , 833-841. https://doi.org/10.1007/s40843-016-5066-y
  54. Chang-Yeol Cho, Sujin Baek, Kiwon Kim, Jun Hyuk Moon. 3D bicontinuous SnO 2 /TiO 2 core/shell structures for highly efficient organic dye-sensitized solar cell electrodes. RSC Advances 2016, 6 (78) , 74003-74008. https://doi.org/10.1039/C6RA09810J
  55. Haitao Zhou, Lin Li, Dianli Jiang, Yingbing Lu, Kai Pan. Anatase TiO 2 nanosheets with exposed highly reactive (001) facets as an efficient photoanode for quantum dot-sensitized solar cells. RSC Advances 2016, 6 (72) , 67968-67975. https://doi.org/10.1039/C6RA10628E
  56. Mohammad Javad Fahimi, Davood Fathi, Mehdi Ansari-Rad. Accurate analysis of electron transfer from quantum dots to metal oxides in quantum dot sensitized solar cells. Physica E: Low-dimensional Systems and Nanostructures 2015, 73 , 148-155. https://doi.org/10.1016/j.physe.2015.05.030
  57. Masaya Akimoto, Taro Toyoda, Tsuyoshi Okuno, Shuji Hayase, Qing Shen. Effect of defects in TiO2 nanotube thin film on the photovoltaic properties of quantum dot-sensitized solar cells. Thin Solid Films 2015, 590 , 90-97. https://doi.org/10.1016/j.tsf.2015.07.038
  58. Rosalba Passalacqua, Siglinda Perathoner, Gabriele Centi. Use of modified anodization procedures to prepare advanced TiO2 nanostructured catalytic electrodes and thin film materials. Catalysis Today 2015, 251 , 121-131. https://doi.org/10.1016/j.cattod.2014.11.003
  59. Huiyun Wei, Guoshuai Wang, Yanhong Luo, Dongmei Li, Qingbo Meng. Investigation on Interfacial Charge Transfer Process in CdSe x Te 1-x Alloyed Quantum Dot Sensitized Solar Cells. Electrochimica Acta 2015, 173 , 156-163. https://doi.org/10.1016/j.electacta.2015.05.052
  60. Lina Xiao, Ding Yuan, Pei Li, Li Huang, Bing-Wei Mao, Dongping Zhan. Copper/cuprous sulfide electrode: preparation and performance. Science China Chemistry 2015, 58 (6) , 1039-1043. https://doi.org/10.1007/s11426-014-5228-2
  61. Dapeng Wu, Jinjin He, Shuo Zhang, Kun Cao, Zhiyong Gao, Fang Xu, Kai Jiang. Multi-dimensional titanium dioxide with desirable structural qualities for enhanced performance in quantum-dot sensitized solar cells. Journal of Power Sources 2015, 282 , 202-210. https://doi.org/10.1016/j.jpowsour.2015.02.062
  62. Soo-Kyoung Kim, Chandu V. V. M. Gopi, Jae-Cheol Lee, Hee-Je Kim. Enhanced performance of branched TiO 2 nanorod based Mn-doped CdS and Mn-doped CdSe quantum dot-sensitized solar cell. Journal of Applied Physics 2015, 117 (16) , 163104. https://doi.org/10.1063/1.4918913
  63. Zhen Li, Libo Yu, Yingbo Liu, Shuqing Sun. Arrays of ZnxCd1−xSe/TiO2 nanotubes: fabrication by ion-exchange and photovoltaic applications. Journal of Materials Science: Materials in Electronics 2015, 26 (3) , 1625-1633. https://doi.org/10.1007/s10854-014-2586-7
  64. Dapeng Wu, Shuo Zhang, Shiwei Jiang, Jinjin He, Kai Jiang. Anatase TiO2 hierarchical structures composed of ultra-thin nano-sheets exposing high percentage {001} facets and their application in quantum-dot sensitized solar cells. Journal of Alloys and Compounds 2015, 624 , 94-99. https://doi.org/10.1016/j.jallcom.2014.11.087
  65. Waheed A. Badawy. A review on solar cells from Si-single crystals to porous materials and quantum dots. Journal of Advanced Research 2015, 6 (2) , 123-132. https://doi.org/10.1016/j.jare.2013.10.001
  66. Hui Dong, Dapeng Wu, Feng Zhu, Feifan Wang, Shengfa Zhu, Qi Li, Dongsheng Xu. Synthesis of multilayered TiO2 “donuts” for improved quantum-dot sensitized solar cells. Solar Energy Materials and Solar Cells 2015, 133 , 201-207. https://doi.org/10.1016/j.solmat.2014.10.047
  67. Zhen Li, Libo Yu, Yingbo Liu, Shuqing Sun. Efficient quantum dot-sensitized solar cell based on CdSxSe1-x/Mn-CdS/TiO2 nanotube array electrode. Electrochimica Acta 2015, 153 , 200-209. https://doi.org/10.1016/j.electacta.2014.11.197
  68. Taro Toyoda, Witoon Yindeesuk, Tsuyoshi Okuno, Masaya Akimoto, Keita Kamiyama, Shuzi Hayase, Qing Shen. Electronic structures of two types of TiO 2 electrodes: inverse opal and nanoparticulate cases. RSC Advances 2015, 5 (61) , 49623-49632. https://doi.org/10.1039/C5RA07092A
  69. Ke Meng, Gang Chen, K. Ravindranathan Thampi. Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells: a perspective. Journal of Materials Chemistry A 2015, 3 (46) , 23074-23089. https://doi.org/10.1039/C5TA05071E
  70. Keyu Xie, Min Guo, Haitao Huang. Photonic crystals for sensitized solar cells: fabrication, properties, and applications. Journal of Materials Chemistry C 2015, 3 (41) , 10665-10686. https://doi.org/10.1039/C5TC02121A
  71. Toshia L. Wrenn, James R. McBride, Nathanael J. Smith, Sandra J. Rosenthal. Has the Sun Set on Quantum Dot-Sensitized Solar Cells?. Nanomaterials and Nanotechnology 2015, 5 , 16. https://doi.org/10.5772/60736
  72. Zhen Li, Libo Yu, Yingbo Liu, Shuqing Sun. CdS x Se1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film. Journal of Nanoparticle Research 2014, 16 (12) https://doi.org/10.1007/s11051-014-2779-2
  73. Masaya Akimoto, Qing Shen, Shuji Hayase, Taro Toyoda. Photoacoustic spectroscopy of TiO 2 nanotube electrode adsorbed with CdSe quantum dots and its photovoltaic properties. Japanese Journal of Applied Physics 2014, 53 (7S) , 07KB08. https://doi.org/10.7567/JJAP.53.07KB08
  74. Libo Yu, Zhen Li, Yingbo Liu, Fa Cheng, Shuqing Sun. Mn-doped CdS quantum dots sensitized hierarchical TiO2 flower-rod for solar cell application. Applied Surface Science 2014, 305 , 359-365. https://doi.org/10.1016/j.apsusc.2014.03.090
  75. T. Manovah David, P. Wilson, C. Ramesh, P. Sagayaraj. A comparative study on the morphological features of highly ordered titania nanotube arrays prepared via galvanostatic and potentiostatic modes. Current Applied Physics 2014, 14 (6) , 868-875. https://doi.org/10.1016/j.cap.2014.04.002
  76. P. Sudhagar, Emilio J. Juárez-Pérez, Yong Soo Kang, Iván Mora-Seró. Quantum Dot-Sensitized Solar Cells. 2014,,, 89-136. https://doi.org/10.1007/978-1-4471-6473-9_5
  77. Irene Barceló, Néstor Guijarro, Teresa Lana-Villarreal, Roberto Gómez. Recent Progress in Colloidal Quantum Dot-Sensitized Solar Cells. 2014,,, 1-38. https://doi.org/10.1007/978-1-4614-8148-5_1
  78. Xiaojia Zheng, Dongqi Yu, Feng-Qiang Xiong, Mingrun Li, Zhou Yang, Jian Zhu, Wen-Hua Zhang, Can Li. Controlled growth of semiconductor nanofilms within TiO2 nanotubes for nanofilm sensitized solar cells. Chemical Communications 2014, 50 (33) , 4364. https://doi.org/10.1039/c3cc49853k
  79. N. Osada, T. Oshima, S. Kuwahara, T. Toyoda, Q. Shen, K. Katayama. Photoexcited carrier dynamics of double-layered CdS/CdSe quantum dot sensitized solar cells measured by heterodyne transient grating and transient absorption methods. Physical Chemistry Chemical Physics 2014, 16 (12) , 5774. https://doi.org/10.1039/c3cp55177f
  80. Veerappan Ganapathy, Eui-Hyun Kong, Yoon-Cheol Park, Hyun Myung Jang, Shi-Woo Rhee. Cauliflower-like SnO2 hollow microspheres as anode and carbon fiber as cathode for high performance quantum dot and dye-sensitized solar cells. Nanoscale 2014, 6 (6) , 3296. https://doi.org/10.1039/c3nr05705d
  81. Benjamin Mandlmeier, Norma K. Minar, Johann M. Feckl, Dina Fattakhova-Rohlfing, Thomas Bein. Tuning the crystallinity parameters in macroporous titania films. Journal of Materials Chemistry A 2014, 2 (18) , 6504. https://doi.org/10.1039/c3ta13165c
  82. Witoon Yindeesuk, Qing Shen, Shuzi Hayase, Taro Toyoda. Optical absorption of CdSe quantum dots on electrodes with different morphology. AIP Advances 2013, 3 (10) , 102115. https://doi.org/10.1063/1.4825231
  83. Hui Huang, Lei Pan, Chiew Keat Lim, Hua Gong, Jun Guo, Man Siu Tse, Ooi Kiang Tan. Hydrothermal Growth of TiO 2 Nanorod Arrays and In Situ Conversion to Nanotube Arrays for Highly Efficient Quantum Dot-Sensitized Solar Cells. Small 2013, 9 (18) , 3153-3160. https://doi.org/10.1002/smll.201203205
  84. Atsunori Matsuda, Srimala Sreekantan, Warapong Krengvirat. Well-aligned TiO 2 nanotube arrays for energy-related applications under solar irradiation. Journal of Asian Ceramic Societies 2013, 1 (3) , 203-219. https://doi.org/10.1016/j.jascer.2013.07.001
  85. Suparna Sadhu, Amitava Patra. A Brief Overview of Some Physical Studies on the Relaxation Dynamics and Förster Resonance Energy Transfer of Semiconductor Quantum Dots. ChemPhysChem 2013, 14 (12) , 2641-2653. https://doi.org/10.1002/cphc.201201059
  86. Xingtian Yin, Wenxiu Que, Duan Fei, Haixia Xie, Zuoli He. Effect of TiO2 shell layer prepared by wet-chemical method on the photovoltaic performance of ZnO nanowires arrays-based quantum dot sensitized solar cells. Electrochimica Acta 2013, 99 , 204-210. https://doi.org/10.1016/j.electacta.2013.03.110
  87. Zhixia Sun, Fengyan Li, Mingliang Zhao, Lin Xu, Shuna Fang. A comparative study on photoelectrochemical performance of TiO2 photoanodes enhanced by different polyoxometalates. Electrochemistry Communications 2013, 30 , 38-41. https://doi.org/10.1016/j.elecom.2013.02.006
  88. Rachel S. Selinsky, Qi Ding, Matthew S. Faber, John C. Wright, Song Jin. Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 2013, 42 (7) , 2963-2985. https://doi.org/10.1039/C2CS35374A
  89. Chang-Yeol Cho, Hye-Na Kim, Jun Hyuk Moon. Characterization of charge transport properties of a 3D electrode for dye-sensitized solar cells. Physical Chemistry Chemical Physics 2013, 15 (26) , 10835. https://doi.org/10.1039/c3cp50214g
  90. Naotaka Maeda, Hiroaki Hata, Naoya Osada, Qing Shen, Taro Toyoda, Shota Kuwahara, Kenji Katayama. Carrier dynamics in quantum-dot sensitized solar cells measured by transient grating and transient absorption methods. Physical Chemistry Chemical Physics 2013, 15 (26) , 11006. https://doi.org/10.1039/c3cp51542g
  91. Weiwei Dong, Shimao Wang, Zanhong Deng, Jingzhen Shao, Linhua Hu, Jun Zhu, Xiaodong Fang. TiO2 nanostructure photoanodes for quantum-dot sensitized solar cells. 2013,,, ASa3A.36. https://doi.org/10.1364/AOEE.2013.ASa3A.36