RETURN TO ISSUEPREVEnergy Conversion an...Energy Conversion and Storage; Energy and Charge TransportNEXT

Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells

View Author Information
Clarendon Laboratory, University of Oxford, Parks Road, OX1 3PU, Oxford, United Kingdom
Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom
Cite this: J. Phys. Chem. Lett. 2013, 4, 5, 698–703
Publication Date (Web):January 30, 2013
https://doi.org/10.1021/jz400084n
Copyright © 2013 American Chemical Society
Article Views
2309
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Solid-state dye-sensitized solar cells offer the possibility of high-power conversion efficiencies due to theoretically lower fundamental losses in dye regeneration. Despite continuous progress, limitations in charge diffusion through the mesoporous photoanode still constrain the device thickness and hence result in reduced light absorption with the most common sensitizers. Here we examine block copolymer-assembled photoanodes with similar surface area and morphology but a large variation in crystal size. We observe that the crystal size has a profound effect on the electron transport, which is not explicable by considering solely the ratio between free and trapped electrons. Our results are consistent with the long-range mobility of conduction band electrons being strongly influenced by grain boundaries. Therefore, maximizing the crystal size while maintaining high enough surface area will be an important route forward.

Supporting Information

ARTICLE SECTIONS
Jump To

Detailed description of the experimental procedure and the photovoltage and photocurrent decay technique is included. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 100 publications.

  1. Wessel van den Bergh, Eric R. Williams, Natalie Alicia Vest, Pei-Hua Chiang, Morgan Stefik. Mesoporous TiO2 Microparticles with Tailored Surfaces, Pores, Walls, and Particle Dimensions Using Persistent Micelle Templates. Langmuir 2021, 37 (44) , 12874-12886. https://doi.org/10.1021/acs.langmuir.1c01865
  2. Sami Rtimi, Stephanos Konstantinidis, Nikolay Britun, Victor Nadtochenko, Inessa Khmel, John Kiwi. New Evidence for Ag-Sputtered Materials Inactivating Bacteria by Surface Contact without the Release of Ag Ions: End of a Long Controversy?. ACS Applied Materials & Interfaces 2020, 12 (4) , 4998-5007. https://doi.org/10.1021/acsami.9b15859
  3. Dongting Wang, Haizhou Yang, Xue Bai, Yaru Xing, Xin Hu, Jiaqi Su, Ziqiong Xu, Xinyan Ye, Shiqing Bi, Xianxi Zhang, Yuzhen Fang, Jinsheng Zhao. Highly Crystallized C-Doped Nickel Oxide Nanoparticles for p-Type Dye-Sensitized Solar Cells with Record Open-Circuit Voltage Breaking 0.5 V. Industrial & Engineering Chemistry Research 2020, 59 (1) , 175-182. https://doi.org/10.1021/acs.iecr.9b05135
  4. Arthur Graf, Jake Finkel, Adrien A. P. Chauvet, Sami Rtimi. Deciphering the Mechanisms of Bacterial Inactivation on HiPIMS Sputtered CuxO-FeOx-PET Surfaces: From Light Absorption to Catalytic Bacterial Death. ACS Applied Materials & Interfaces 2019, 11 (48) , 45319-45329. https://doi.org/10.1021/acsami.9b17380
  5. María José Torralvo-Fernández, Eduardo Enciso, Sandra Martínez, Isabel Sobrados, Jesús Sanz, Dino Tonti, Javier Soria, Sedat Yurdakal, Giovanni Palmisano, Vincenzo Augugliaro. Influence of the Preparation Temperature on the Photocatalytic Activity of 3D-Ordered Macroporous Anatase Formed with an Opal Polymer Template. ACS Applied Nano Materials 2018, 1 (6) , 2567-2578. https://doi.org/10.1021/acsanm.8b00253
  6. Meltem F. Aygüler, Alexander G. Hufnagel, Philipp Rieder, Michael Wussler, Wolfram Jaegermann, Thomas Bein, Vladimir Dyakonov, Michiel L. Petrus, Andreas Baumann, Pablo Docampo. Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (14) , 11414-11419. https://doi.org/10.1021/acsami.8b00990
  7. Hammad Cheema and Jared H. Delcamp . Harnessing Photovoltage: Effects of Film Thickness, TiO2 Nanoparticle Size, MgO and Surface Capping with DSCs. ACS Applied Materials & Interfaces 2017, 9 (3) , 3050-3059. https://doi.org/10.1021/acsami.6b11456
  8. Sami Rtimi, Rosendo Sanjines, Cesar Pulgarin, and John Kiwi . Microstructure of Cu–Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties. ACS Applied Materials & Interfaces 2016, 8 (1) , 56-63. https://doi.org/10.1021/acsami.5b09738
  9. Zhao-Qian Li, Yong Ding, Li-E Mo, Lin-Hua Hu, Ji-Huai Wu, and Song-Yuan Dai . Fine Tuning of Nanocrystal and Pore Sizes of TiO2 Submicrospheres toward High Performance Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (40) , 22277-22283. https://doi.org/10.1021/acsami.5b06556
  10. Zhao-Qian Li, Ya-Ping Que, Li-E Mo, Wang-Chao Chen, Yong Ding, Yan-Mei Ma, Ling Jiang, Lin-Hua Hu, and Song-Yuan Dai . One-Pot Synthesis of Mesoporous TiO2 Micropheres and Its Application for High-Efficiency Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (20) , 10928-10934. https://doi.org/10.1021/acsami.5b02195
  11. Vincenzo Augugliaro, Giovanni Camera-Roda, Vittorio Loddo, Giovanni Palmisano, Leonardo Palmisano, Javier Soria, and Sedat Yurdakal . Heterogeneous Photocatalysis and Photoelectrocatalysis: From Unselective Abatement of Noxious Species to Selective Production of High-Value Chemicals. The Journal of Physical Chemistry Letters 2015, 6 (10) , 1968-1981. https://doi.org/10.1021/acs.jpclett.5b00294
  12. Ana Stevanovic, Shiliang Ma, and John T. Yates, Jr. . Photoexcited Electron Hopping between TiO2 Particles: Effect of Single-Walled Carbon Nanotubes. The Journal of Physical Chemistry C 2014, 118 (41) , 23614-23620. https://doi.org/10.1021/jp508061w
  13. Maria Konstantakou, Thomas Stergiopoulos, Vlassis Likodimos, Georgios C. Vougioukalakis, Lamprini Sygellou, Athanassios G. Kontos, Angeliki Tserepi, and Polycarpos Falaras . Influence of Fluorine Plasma Treatment of TiO2 Films on the Behavior of Dye Solar Cells Employing the Co(II)/(III) Redox Couple. The Journal of Physical Chemistry C 2014, 118 (30) , 16760-16775. https://doi.org/10.1021/jp412766f
  14. Sai Santosh Kumar Raavi, Pablo Docampo, Christian Wehrenfennig, Marcelo J. P. Alcocer, Golnaz Sadoughi, Laura M. Herz, Henry J. Snaith, and Annamaria Petrozza . Impact of Molecular Charge-Transfer States on Photocurrent Generation in Solid State Dye-Sensitized Solar Cells Employing Low-Band-Gap Dyes. The Journal of Physical Chemistry C 2014, 118 (30) , 16825-16830. https://doi.org/10.1021/jp5000667
  15. Tomas Leijtens, Beat Lauber, Giles E. Eperon, Samuel D. Stranks, and Henry J. Snaith . The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2-Based Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (7) , 1096-1102. https://doi.org/10.1021/jz500209g
  16. Francesca Nunzi, Loriano Storchi, Michele Manca, Roberto Giannuzzi, Giuseppe Gigli, and Filippo De Angelis . Shape and Morphology Effects on the Electronic Structure of TiO2 Nanostructures: From Nanocrystals to Nanorods. ACS Applied Materials & Interfaces 2014, 6 (4) , 2471-2478. https://doi.org/10.1021/am404293x
  17. Yongfu Zhu, Ning Zhao, Jianshe Lian, and Qing Jiang . Toward Tandem Photovoltaic Devices Employing Nanoarray Graphene-Based Sheets. The Journal of Physical Chemistry C 2014, 118 (5) , 2385-2390. https://doi.org/10.1021/jp412257g
  18. Luca Passoni, Farbod Ghods, Pablo Docampo, Agnese Abrusci, Javier Martí-Rujas, Matteo Ghidelli, Giorgio Divitini, Caterina Ducati, Maddalena Binda, Simone Guarnera, Andrea Li Bassi, Carlo Spartaco Casari, Henry J. Snaith, Annamaria Petrozza, and Fabio Di Fonzo . Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells. ACS Nano 2013, 7 (11) , 10023-10031. https://doi.org/10.1021/nn403979h
  19. Xiaoli Zheng, Qin Kuang, Keyou Yan, Yongcai Qiu, Jianhang Qiu, and Shihe Yang . Mesoporous TiO2 Single Crystals: Facile Shape-, Size-, and Phase-Controlled Growth and Efficient Photocatalytic Performance. ACS Applied Materials & Interfaces 2013, 5 (21) , 11249-11257. https://doi.org/10.1021/am403482g
  20. Jihwan An, Ai Leen Koh, Joong Sun Park, Robert Sinclair, Turgut M. Gür, and Fritz B. Prinz . Aberration-Corrected TEM Imaging of Oxygen Occupancy in YSZ. The Journal of Physical Chemistry Letters 2013, 4 (7) , 1156-1160. https://doi.org/10.1021/jz4002423
  21. Jinlin Wang, Xiaojun Zhou, Jian Ni, Jiayi Guan, Minghao Hu, Rufeng Wang, Yaofang Zhang, Juan Li, Hongkun Cai, Jianjun Zhang. High-performance perovskite solar cell based on mesoporous TiO2 electron transport layer enabled by composite treatment strategy. Journal of Materials Science: Materials in Electronics 2021, 32 (24) , 28417-28425. https://doi.org/10.1007/s10854-021-07221-6
  22. Teera Butburee, Yang Bai, Lianzhou Wang. Unveiling general rules governing the dimensional evolution of branched TiO 2 and impacts on photoelectrochemical behaviors. Journal of Materials Chemistry A 2021, 9 (41) , 23313-23322. https://doi.org/10.1039/D1TA05218G
  23. Manuel Hoffmann, Stefan Wackerow, Amin Abdolvand, Svetlana A. Zolotovskaya. High performance SERS platforms via parametric optimization of the laser-assisted photodeposition of silver and gold nanoparticles. Optical Materials Express 2021, 11 (9) , 3079. https://doi.org/10.1364/OME.437900
  24. A. Miquelot, L. Youssef, C. Villeneuve-Faure, N. Prud’homme, N. Dragoe, A. Nada, V. Rouessac, S. Roualdes, J. Bassil, M. Zakhour, M. Nakhl, C. Vahlas. In- and out-plane transport properties of chemical vapor deposited TiO2 anatase films. Journal of Materials Science 2021, 56 (17) , 10458-10476. https://doi.org/10.1007/s10853-021-05955-6
  25. Bin Gao, Tao Wang, Hairong Xue, Cheng Jiang, Lei Sheng, Xianli Huang, Jianping He. A nano-surface monocrystalline BiVO 4 nanoplate photoanode for enhanced photoelectrochemical performance. New Journal of Chemistry 2021, 45 (16) , 7069-7073. https://doi.org/10.1039/D1NJ00658D
  26. Huimin Li, Tuo Wang, Shanshan Liu, Zhibin Luo, Lulu Li, Huaiyuan Wang, Zhi‐Jian Zhao, Jinlong Gong. Controllable Distribution of Oxygen Vacancies in Grain Boundaries of p‐Si/TiO 2 Heterojunction Photocathodes for Solar Water Splitting. Angewandte Chemie International Edition 2021, 60 (8) , 4034-4037. https://doi.org/10.1002/anie.202014538
  27. Huimin Li, Tuo Wang, Shanshan Liu, Zhibin Luo, Lulu Li, Huaiyuan Wang, Zhi‐Jian Zhao, Jinlong Gong. Controllable Distribution of Oxygen Vacancies in Grain Boundaries of p‐Si/TiO 2 Heterojunction Photocathodes for Solar Water Splitting. Angewandte Chemie 2021, 133 (8) , 4080-4083. https://doi.org/10.1002/ange.202014538
  28. John Kiwi, Sami Rtimi. Insight into the interaction of magnetic photocatalysts with the incoming light accelerating bacterial inactivation and environmental cleaning. Applied Catalysis B: Environmental 2021, 281 , 119420. https://doi.org/10.1016/j.apcatb.2020.119420
  29. Xiaojun Zhou, Jian Ni, Jiayi Guan, Yue Liu, Junyang Yin, Jinlin Wang, Yaofang Zhang, Juan Li, Hongkun Cai, Jianjun Zhang. Enhanced photovoltaic performance of perovskite solar cells based on sufficient pore-filling in the mesoporous TiO2 electron transport layer. Journal of Materials Science: Materials in Electronics 2020, 31 (24) , 22844-22855. https://doi.org/10.1007/s10854-020-04811-8
  30. Mingjie Sun, Haobo Liu, Ziqi Sun, Wenxian Li. Donor-acceptor codoping effects on tuned visible light response of TiO2. Journal of Environmental Chemical Engineering 2020, 8 (5) , 104168. https://doi.org/10.1016/j.jece.2020.104168
  31. Ri Xu, Ying Li, Shuang Feng, Jun Wang, Jiejing Zhang, Xinxin Zhang, Chang Bian, Wuyou Fu, Zhihui Li, Haibin Yang. Enhanced performance of planar perovskite solar cells using Ce-doped TiO2 as electron transport layer. Journal of Materials Science 2020, 55 (14) , 5681-5689. https://doi.org/10.1007/s10853-020-04409-9
  32. Yong Ding, In Seok Yang, Zhaoqian Li, Xin Xia, Wan In Lee, Songyuan Dai, Detlef W. Bahnemann, Jia Hong Pan. Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications. Progress in Materials Science 2020, 109 , 100620. https://doi.org/10.1016/j.pmatsci.2019.100620
  33. Minoo Karbasi, Fathallah Karimzadeh, Keyvan Raeissi, Sami Rtimi, John Kiwi, Stefanos Giannakis, Cesar Pulgarin. Insights into the Photocatalytic Bacterial Inactivation by Flower-Like Bi2WO6 under Solar or Visible Light, Through in Situ Monitoring and Determination of Reactive Oxygen Species (ROS). Water 2020, 12 (4) , 1099. https://doi.org/10.3390/w12041099
  34. Yubao Zhao, Qifeng Chen, Feng Pan, Hui Li, Guo Qin Xu, Wei Chen. Uniform Mesoporous Anatase Hollow Spheres: An Unexpectedly Efficient Fabrication Process and Enhanced Performance in Photocatalytic Hydrogen Evolution. Chemistry – A European Journal 2019, 25 (46) , 10965-10970. https://doi.org/10.1002/chem.201400120
  35. K. Aijo John, Johns Naduvath, Stephen K. Remillard, Sadasivan Shaji, Paul A. DeYoung, Zachary T. Kellner, Sudhanshu Mallick, Manju Thankamoniamma, Gunadhor S. Okram, Rachel Reena Philip. A simple method to fabricate metal doped TiO2 nanotubes. Chemical Physics 2019, 523 , 198-204. https://doi.org/10.1016/j.chemphys.2019.04.028
  36. Dapeng Wu, Yixin Wang, Nana Ma, Kun Cao, Wenchao Zhang, Junliang Chen, Danqi Wang, Zhiyong Gao, Fang Xu, Kai Jiang. Single-crystal-like ZnO mesoporous spheres derived from metal organic framework delivering high electron mobility for enhanced energy conversion and storage performances. Electrochimica Acta 2019, 305 , 474-483. https://doi.org/10.1016/j.electacta.2019.03.077
  37. Teera Butburee, Papasara Kotchasarn, Pussana Hirunsit, Zhuxing Sun, Qijun Tang, Pongthanawat Khemthong, Weradesh Sangkhun, Wiradej Thongsuwan, Pisist Kumnorkaew, Haiqiang Wang, Kajornsak Faungnawakij. New understanding of crystal control and facet selectivity of titanium dioxide ruling photocatalytic performance. Journal of Materials Chemistry A 2019, 7 (14) , 8156-8166. https://doi.org/10.1039/C8TA11475G
  38. Joaquín Calbo. Dye-Sensitized Solar Cells: Past, Present and Future. 2019,,, 49-119. https://doi.org/10.1002/9781119580546.ch2
  39. Shih-Hsuan Chen, Shun-Hsiang Chan, Yen-Tung Lin, Ming-Chung Wu. Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Applied Surface Science 2019, 469 , 18-26. https://doi.org/10.1016/j.apsusc.2018.10.256
  40. Hichem Zeghioud, Aymen Assadi, Nabila Khellaf, Hayet Djelal, Abdeltif Amrane, Sami Rtimi. Photocatalytic Performance of CuxO/TiO2 Deposited by HiPIMS on Polyester under Visible Light LEDs: Oxidants, Ions Effect, and Reactive Oxygen Species Investigation. Materials 2019, 12 (3) , 412. https://doi.org/10.3390/ma12030412
  41. Vincenzo Augugliaro, Giovanni Palmisano, Leonardo Palmisano, Javier Soria. Heterogeneous Photocatalysis and Catalysis. 2019,,, 1-24. https://doi.org/10.1016/B978-0-444-64015-4.00001-8
  42. Sami Rtimi, Dionysios D. Dionysiou, Suresh C. Pillai, John Kiwi. Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental 2019, 240 , 291-318. https://doi.org/10.1016/j.apcatb.2018.07.025
  43. S. Rtimi, S. Konstantinidis, N. Britun, M. Bensimon, I. Khmel, V. Nadtochenko. Extracellular bacterial inactivation proceeding without Cu-ion release: Drastic effects of the applied plasma energy on the performance of the Cu-polyester (PES) samples. Applied Catalysis B: Environmental 2018, 239 , 245-253. https://doi.org/10.1016/j.apcatb.2018.08.024
  44. John Kiwi, Sami Rtimi. Mechanisms of the Antibacterial Effects of TiO2–FeOx under Solar or Visible Light: Schottky Barriers versus Surface Plasmon Resonance. Coatings 2018, 8 (11) , 391. https://doi.org/10.3390/coatings8110391
  45. Teera Butburee, Yang Bai, Huanjun Wang, Hongjun Chen, Zhiliang Wang, Gang Liu, Jin Zou, Pongtanawat Khemthong, Gao Qing Max Lu, Lianzhou Wang. 2D Porous TiO 2 Single‐Crystalline Nanostructure Demonstrating High Photo‐Electrochemical Water Splitting Performance. Advanced Materials 2018, 30 (21) , 1705666. https://doi.org/10.1002/adma.201705666
  46. Rajamanickam Govindaraj, Narendiran Santhosh, Muthu Senthil Pandian, Perumalsamy Ramasamy, Mukhopadhyay Sumita. Fabrication of stable dye-sensitized solar cell with hydrothermally synthesized titanium dioxide nanorods as a photoanode material. Journal of Materials Science: Materials in Electronics 2018, 29 (5) , 3736-3743. https://doi.org/10.1007/s10854-017-8307-2
  47. M.J. Torralvo, J. Sanz, I. Sobrados, J. Soria, C. Garlisi, G. Palmisano, S. Çetinkaya, S. Yurdakal, V. Augugliaro. Anatase photocatalyst with supported low crystalline TiO2: The influence of amorphous phase on the activity. Applied Catalysis B: Environmental 2018, 221 , 140-151. https://doi.org/10.1016/j.apcatb.2017.08.089
  48. Ke Li, Jie Liu, Xia Sheng, Liping Chen, Tao Xu, Kai Zhu, Xinjian Feng. 100-Fold Enhancement of Charge Transport in Uniaxially Oriented Mesoporous Anatase TiO 2 Films. Chemistry - A European Journal 2018, 24 (1) , 89-92. https://doi.org/10.1002/chem.201704944
  49. Jinbao Zhang, Marina Freitag, Anders Hagfeldt, Gerrit Boschloo. Solid-State Dye-Sensitized Solar Cells. 2018,,, 151-185. https://doi.org/10.1007/978-981-10-5924-7_4
  50. Ming-Chung Wu, Shun-Hsiang Chan, Kun-Mu Lee, Shih-Hsuan Chen, Meng-Huan Jao, Yang-Fang Chen, Wei-Fang Su. Enhancing the efficiency of perovskite solar cells using mesoscopic zinc-doped TiO 2 as the electron extraction layer through band alignment. Journal of Materials Chemistry A 2018, 6 (35) , 16920-16931. https://doi.org/10.1039/C8TA05291C
  51. Alberto Casu, Andrea Lamberti, Stefano Stassi, Andrea Falqui. Crystallization of TiO2 Nanotubes by In Situ Heating TEM. Nanomaterials 2018, 8 (1) , 40. https://doi.org/10.3390/nano8010040
  52. Sami Rtimi, Victor Nadtochenko, Inessa Khmel, Michael Bensimon, John Kiwi. First unambiguous evidence for distinct ionic and surface-contact effects during photocatalytic bacterial inactivation on Cu–Ag films: Kinetics, mechanism and energetics. Materials Today Chemistry 2017, 6 , 62-74. https://doi.org/10.1016/j.mtchem.2017.11.001
  53. Sami Rtimi. Indoor Light Enhanced Photocatalytic Ultra-Thin Films on Flexible Non-Heat Resistant Substrates Reducing Bacterial Infection Risks. Catalysts 2017, 7 (12) , 57. https://doi.org/10.3390/catal7020057
  54. Sami Rtimi, John Kiwi. Bactericide effects of transparent polyethylene photocatalytic films coated by oxides under visible light. Applied Catalysis B: Environmental 2017, 213 , 62-73. https://doi.org/10.1016/j.apcatb.2017.05.004
  55. J. Soria, J. Sanz, M.J. Torralvo, I. Sobrados, C. Garlisi, G. Palmisano, S. Çetinkaya, S. Yurdakal, V. Augugliaro. The effect of the surface disordered layer on the photoreactivity of titania nanoparticles. Applied Catalysis B: Environmental 2017, 210 , 306-319. https://doi.org/10.1016/j.apcatb.2017.03.045
  56. Dongting Wang, Xuehong Zhu, Yuzhen Fang, Jianhong Sun, Cong Zhang, Xianxi Zhang. Simultaneously composition and interface control for ZnO-based dye-sensitized solar cells with highly enhanced efficiency. Nano-Structures & Nano-Objects 2017, 10 , 1-8. https://doi.org/10.1016/j.nanoso.2017.01.001
  57. Mihai M. Rusu, Ruri A. Wahyuono, Carmen Ioana Fort, Andrea Dellith, Jan Dellith, Anna Ignaszak, Adriana Vulpoi, Virginia Danciu, Benjamin Dietzek, Lucian Baia. Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells. Journal of Sol-Gel Science and Technology 2017, 81 (3) , 693-703. https://doi.org/10.1007/s10971-016-4237-3
  58. J. Sanz, I. Sobrados, J. Soria, S. Yurdakal, V. Augugliaro. Anatase nanoparticles boundaries resulting from titanium tetrachloride hydrolysis. Catalysis Today 2017, 281 , 198-204. https://doi.org/10.1016/j.cattod.2016.06.052
  59. Javid Khan, Jiuwang Gu, Yuying Meng, Zhisheng Chai, Shiman He, Qili Wu, Shengfu Tong, Gulzar Ahmed, Wenjie Mai, Mingmei Wu. Anatase TiO 2 single crystal hollow nanoparticles: their facile synthesis and high-performance in dye-sensitized solar cells. CrystEngComm 2017, 19 (2) , 325-334. https://doi.org/10.1039/C6CE02062C
  60. Meysam Pazoki, Ute B. Cappel, Erik M. J. Johansson, Anders Hagfeldt, Gerrit Boschloo. Characterization techniques for dye-sensitized solar cells. Energy & Environmental Science 2017, 10 (3) , 672-709. https://doi.org/10.1039/C6EE02732F
  61. Ke Fan, Jiaguo Yu, Wingkei Ho. Improving photoanodes to obtain highly efficient dye-sensitized solar cells: a brief review. Materials Horizons 2017, 4 (3) , 319-344. https://doi.org/10.1039/C6MH00511J
  62. Hao Wu, Jing Geng, Peng Han, Hongtao Ge, Abdullah M. Alenizi, Gengfeng Zheng. Unconventional mesoporous single crystalline NiO by synergistically controlled evaporation and hydrolysis. Journal of Materials Chemistry A 2017, 5 (45) , 23840-23843. https://doi.org/10.1039/C7TA08155C
  63. M.A. Borysiewicz, S. Chusnutdinow, M. Wzorek, T. Wojciechowski. Dye Aggregation Influence on Dye Sensitized Solar Cell Performance in Nanocoral ZnO-Based Thin Film Cells Sensitized with N-719 and Rose Bengal Dyes. Acta Physica Polonica A 2016, 130 (5) , 1187-1189. https://doi.org/10.12693/APhysPolA.130.1187
  64. Sawsan A. Mahmoud, H. Atia, Samar H. Bendary. Synthesis of a high efficiency novel working electrode scandium/HOMBIKAT in dye-sensitized solar cells. Solar Energy 2016, 134 , 452-460. https://doi.org/10.1016/j.solener.2016.05.022
  65. Jinbao Zhang, Meysam Pazoki, Justus Simiyu, Malin B. Johansson, Ocean Cheung, Leif Häggman, Erik M.J. Johansson, Nick Vlachopoulos, Anders Hagfeldt, Gerrit Boschloo. The effect of mesoporous TiO2 pore size on the performance of solid-state dye sensitized solar cells based on photoelectrochemically polymerized Poly(3,4-ethylenedioxythiophene) hole conductor. Electrochimica Acta 2016, 210 , 23-31. https://doi.org/10.1016/j.electacta.2016.05.083
  66. Augusto Márquez, Manuel J. Rodríguez-Pérez, Juan A. Anta, Geonel Rodríguez-Gattorno, Gilles R. Bourret, Gerko Oskam, Thomas Berger. Defects in Porous Networks of WO 3 Particle Aggregates. ChemElectroChem 2016, 3 (4) , 658-667. https://doi.org/10.1002/celc.201500435
  67. Emanuele Maggio, Natalia Martsinovich, Alessandro Troisi. Continuum and atomistic description of excess electrons in TiO 2. Journal of Physics: Condensed Matter 2016, 28 (7) , 074004. https://doi.org/10.1088/0953-8984/28/7/074004
  68. Jung Yup Lim, Chang Soo Lee, Jung Min Lee, Joonmo Ahn, Hyung Hee Cho, Jong Hak Kim. Amphiphilic block-graft copolymer templates for organized mesoporous TiO2 films in dye-sensitized solar cells. Journal of Power Sources 2016, 301 , 18-28. https://doi.org/10.1016/j.jpowsour.2015.09.109
  69. Chao Zhao, Jia Zhang, Yue Hu, Neil Robertson, Ping An Hu, David Child, Desmond Gibson, Yong Qing Fu. In-situ microfluidic controlled, low temperature hydrothermal growth of nanoflakes for dye-sensitized solar cells. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep17750
  70. Supphadate Sujinnapram, Sasimonton Moungsrijun. An Improvement of Photoanode Performance for Enhanced Efficiency in Dye-Sensitized Solar Cell. Advanced Materials Research 2015, 1125 , 45-49. https://doi.org/10.4028/www.scientific.net/AMR.1125.45
  71. Kwangsuk Park, Qifeng Zhang, Junting Xi, Guozhong Cao. Enhanced charge transport properties by strengthened necks between TiO2 aggregates for dye sensitized solar cells. Thin Solid Films 2015, 588 , 19-25. https://doi.org/10.1016/j.tsf.2015.04.054
  72. Daniel W. Drumm, A. Bilic, Y. Tachibana, A. Miller, S. P. Russo. Optical properties of a conjugated-polymer-sensitised solar cell: the effect of interfacial structure. Physical Chemistry Chemical Physics 2015, 17 (22) , 14489-14494. https://doi.org/10.1039/C4CP05290K
  73. Aijo John K, Johns Naduvath, Sudhanshu Mallick, Thoudinja Shripathi, Manju Thankamoniamma, Rachel Reena Philip. A novel cost effective fabrication technique for highly preferential oriented TiO 2 nanotubes. Nanoscale 2015, 7 (48) , 20386-20390. https://doi.org/10.1039/C5NR06328K
  74. Po-Chun Huang, Tsan-Yao Chen, Yi-Lin Wang, Chiun-Yi Wu, Tsang-Lang Lin. Improving interfacial electron transfer and light harvesting in dye-sensitized solar cells by using Ag nanowire/TiO 2 nanoparticle composite films. RSC Advances 2015, 5 (86) , 70172-70177. https://doi.org/10.1039/C5RA12192B
  75. Jia Lin, Li Zheng, Xiaolin Liu, Shu Zhu, Yongsheng Liu, Xianfeng Chen. Assembly of a high-scattering photoelectrode using a hybrid nano-TiO 2 paste. Journal of Materials Chemistry C 2015, 3 (26) , 6645-6651. https://doi.org/10.1039/C5TC00860C
  76. Lizhou Fan, Jinlin Long, Quan Gu, Haowei Huang, Huaxiang Lin, Xuxu Wang. Single-site nickel-grafted anatase TiO 2 for hydrogen production: Toward understanding the nature of visible-light photocatalysis. Journal of Catalysis 2014, 320 , 147-159. https://doi.org/10.1016/j.jcat.2014.09.020
  77. Bingbing Hu, Qunwei Tang, Benlin He, Lin Lin, Haiyan Chen. Mesoporous TiO2 anodes for efficient dye-sensitized solar cells: An efficiency of 9.86% under one sun illumination. Journal of Power Sources 2014, 267 , 445-451. https://doi.org/10.1016/j.jpowsour.2014.05.119
  78. Wu-Qiang Wu, Hua-Shang Rao, Hao-Lin Feng, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. A family of vertically aligned nanowires with smooth, hierarchical and hyperbranched architectures for efficient energy conversion. Nano Energy 2014, 9 , 15-24. https://doi.org/10.1016/j.nanoen.2014.06.019
  79. Leo-Philipp Heiniger, Fabrizio Giordano, Thomas Moehl, Michael Grätzel. Mesoporous TiO 2 Beads Offer Improved Mass Transport for Cobalt-Based Redox Couples Leading to High Efficiency Dye-Sensitized Solar Cells. Advanced Energy Materials 2014, 4 (12) , 1400168. https://doi.org/10.1002/aenm.201400168
  80. , , , S. Guldin, U. Steiner. Soft matter design principles for inorganic photonic nanoarchitectures in photovoltaics, colorimetric sensing, and self-cleaning antireflective coatings. 2014,,, 908320. https://doi.org/10.1117/12.2050011
  81. Pablo Docampo, Stefan Guldin, Tomas Leijtens, Nakita K. Noel, Ullrich Steiner, Henry J. Snaith. Lessons Learned: From Dye-Sensitized Solar Cells to All-Solid-State Hybrid Devices. Advanced Materials 2014, 26 (24) , 4013-4030. https://doi.org/10.1002/adma.201400486
  82. Silvia Colella, Emanuele Orgiu, Ingmar Bruder, Andrea Liscio, Vincenzo Palermo, Bernd Bruchmann, Paolo Samorì, Peter Erk. Titanium Dioxide Mesoporous Electrodes for Solid-State Dye-Sensitized Solar Cells: Cross-Analysis of the Critical Parameters. Advanced Energy Materials 2014, 4 (9) , 1301362. https://doi.org/10.1002/aenm.201301362
  83. Kui Zhang, Xiangdong Wang, Xiaoling Guo, Tianou He, Yaming Feng. Preparation of highly visible light active Fe–N co-doped mesoporous TiO2 photocatalyst by fast sol–gel method. Journal of Nanoparticle Research 2014, 16 (2) https://doi.org/10.1007/s11051-014-2246-0
  84. Kui Zhang, Xiangdong Wang, Tianou He, Xiaoling Guo, Yaming Feng. Preparation and photocatalytic activity of B–N co-doped mesoporous TiO2. Powder Technology 2014, 253 , 608-613. https://doi.org/10.1016/j.powtec.2013.12.024
  85. Henry Snaith, Pablo Docampo. Solid State Dye-Sensitized Solar Cell. 2014,,, 2029-2040. https://doi.org/10.1007/978-1-4419-6996-5_522
  86. Sedat Yurdakal, Vincenzo Augugliaro, Jesús Sanz, Javier Soria, Isabel Sobrados, María José Torralvo. The influence of the anatase nanoparticles boundaries on the titania activity performance. Journal of Catalysis 2014, 309 , 97-104. https://doi.org/10.1016/j.jcat.2013.09.006
  87. José Maçaira, Luísa Andrade, Adélio Mendes. Modeling, simulation and design of dye sensitized solar cells. RSC Adv. 2014, 4 (6) , 2830-2844. https://doi.org/10.1039/C3RA46295A
  88. Qian Zhang, Ling Wang, Jiangtao Feng, Hao Xu, Wei Yan. Enhanced photoelectrochemical performance by synthesizing CdS decorated reduced TiO 2 nanotube arrays. Phys. Chem. Chem. Phys. 2014, 16 (42) , 23431-23439. https://doi.org/10.1039/C4CP02967D
  89. M. Pazoki, J. Oscarsson, L. Yang, B. W. Park, E. M. J. Johansson, H. Rensmo, A. Hagfeldt, G. Boschloo. Mesoporous TiO 2 microbead electrodes for solid state dye-sensitized solar cells. RSC Adv. 2014, 4 (91) , 50295-50300. https://doi.org/10.1039/C4RA10049B
  90. Sophia B. Betzler, Andreas Wisnet, Benjamin Breitbach, Christoph Mitterbauer, Jonas Weickert, Lukas Schmidt-Mende, Christina Scheu. Template-free synthesis of novel, highly-ordered 3D hierarchical Nb 3 O 7 (OH) superstructures with semiconductive and photoactive properties. Journal of Materials Chemistry A 2014, 2 (30) , 12005. https://doi.org/10.1039/C4TA02202E
  91. Shilong Jing, Hao Jiang, Yanjie Hu, Chunzhong Li. Graphene supported mesoporous single crystal silicon on Cu foam as a stable lithium-ion battery anode. J. Mater. Chem. A 2014, 2 (39) , 16360-16364. https://doi.org/10.1039/C4TA03370A
  92. Chin-Li Wang, Jyun-Yu Hu, Cheng-Hua Wu, Hshin-Hui Kuo, Yu-Cheng Chang, Zih-Jian Lan, Hui-Ping Wu, Eric Wei-Guang Diau, Ching-Yao Lin. Highly efficient porphyrin-sensitized solar cells with enhanced light harvesting ability beyond 800 nm and efficiency exceeding 10%. Energy & Environmental Science 2014, 7 (4) , 1392. https://doi.org/10.1039/c3ee44168g
  93. Tianou He, Xiaoling Guo, Kui Zhang, Yaming Feng, Xiangdong Wang. Synthesis and characterization of B–N co-doped mesoporous TiO2 with enhanced photocatalytic activity. RSC Advances 2014, 4 (12) , 5880. https://doi.org/10.1039/c3ra44046j
  94. Tiekun Jia, Fang Fu, Junwei Zhao, Jian Chen, Xiaofeng Wang, Zhenghua Fan, Lijun Cui, Fancheng Meng. Sonochemical Synthesis, Characterization, and Photocatalytic Activity of N-Doped TiO 2 Nanocrystals with Mesoporous Structure. International Journal of Photoenergy 2014, 2014 , 1-7. https://doi.org/10.1155/2014/516806
  95. Edward J. W. Crossland, Nakita Noel, Varun Sivaram, Tomas Leijtens, Jack A. Alexander-Webber, Henry J. Snaith. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495 (7440) , 215-219. https://doi.org/10.1038/nature11936
  96. Stefan Guldin. Crystal Growth in Block Copolymer-Derived Mesoporous TiO $$_2$$ 2. 2013,,, 87-100. https://doi.org/10.1007/978-3-319-00312-2_6
  97. Alexander J. Cowan, Wenhua Leng, Piers R. F. Barnes, David R. Klug, James R. Durrant. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Physical Chemistry Chemical Physics 2013, 15 (22) , 8772. https://doi.org/10.1039/c3cp50318f
  98. Peter Kohn, Sandeep Pathak, Morgan Stefik, Caterina Ducati, Ulrich Wiesner, Ullrich Steiner, Stefan Guldin. Low temperature crystallisation of mesoporous TiO2. Nanoscale 2013, 5 (21) , 10518. https://doi.org/10.1039/c3nr03009a
  99. Pablo Docampo, Aruna Ivaturi, Robert Gunning, Sandra Diefenbach, James Kirkpatrick, Claudia M. Palumbiny, Varun Sivaram, Hugh Geaney, Lukas Schmidt-Mende, Mark E. Welland, Henry J. Snaith. The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells. Journal of Materials Chemistry A 2013, 1 (39) , 12088. https://doi.org/10.1039/c3ta11855j
  100. Myungjun Kim, Changdeuck Bae, Hyunchul Kim, Hyunjun Yoo, Josep M. Montero Moreno, Hyun Suk Jung, Julien Bachmann, Kornelius Nielsch, Hyunjung Shin. Confined crystallization of anatase TiO2 nanotubes and their implications on transport properties. Journal of Materials Chemistry A 2013, 1 (45) , 14080. https://doi.org/10.1039/c3ta13417b