RETURN TO ISSUEPREVEnergy Conversion an...Energy Conversion and Storage; Energy and Charge TransportNEXT

Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells

View Author Information
Chemical and Materials Science Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
Cite this: J. Phys. Chem. Lett. 2013, 4, 17, 2880–2884
Publication Date (Web):August 13, 2013
https://doi.org/10.1021/jz401527q
Copyright © 2013 American Chemical Society
Article Views
8659
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

We report on the effect of TiO2 film thickness on the charge transport, recombination, and device characteristics of perovskite (CH3NH3)PbI3 sensitized solar cells using iodide-based electrolytes. (CH3NH3)PbI3 is relatively stable in a nonpolar solvent (e.g., ethyl acetate) with a low iodide concentration (e.g., 80 mM). Frequency-resolved modulated photocurrent/photovoltage spectroscopies show that increasing TiO2 film thickness from 1.8 to 8.3 μm has little effect on transport but increases recombination by more than 10-fold, reducing the electron diffusion length from 16.9 to 5.5 μm, which can be explained by the higher degree of iodide depletion within the TiO2 pores for thicker films. The changes of the charge-collection and light-absorption properties of (CH3NH3)PbI3 sensitized cells with varying TiO2 film thickness strongly affect the photocurrent density, photovoltage, fill factor, and solar conversion efficiency. Developing alternative, compatible redox electrolytes is important for (CH3NH3)PbI3 or similar perovskites to be used for potential photoelectrochemical applications.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental method, typical IMPS and IMVS responses in the complex plane, and Jsc dependence on the iodide concentration. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 258 publications.

  1. Antonio J. Riquelme, Valid Mwatati Mwalukuku, Patricia Sánchez-Fernández, Johan Liotier, Renán Escalante, Gerko Oskam, Renaud Demadrille, Juan A. Anta. Characterization of Photochromic Dye Solar Cells Using Small-Signal Perturbation Techniques. ACS Applied Energy Materials 2021, 4 (9) , 8941-8952. https://doi.org/10.1021/acsaem.1c01204
  2. Qi Liu, Yan Lei, Ruijuan Qi, Xiaogang Yang, Longyan Gu, Lu Chen, Qingbo Meng, Zhi Zheng. Highly Crystalline and (110)-Oriented n-Type Perovskite Films with Excellent Structural Stability via Cu Doping. Crystal Growth & Design 2021, 21 (1) , 462-470. https://doi.org/10.1021/acs.cgd.0c01280
  3. Allan Starkholm, Lars Kloo, Per H. Svensson. Implicit Tandem Organic–Inorganic Hybrid Perovskite Solar Cells Based on Internal Dye Sensitization: Robotized Screening, Synthesis, Device Implementation, and Theoretical Insights. Journal of the American Chemical Society 2020, 142 (43) , 18437-18448. https://doi.org/10.1021/jacs.0c06698
  4. Trupthi Devaiah Chonamada, Arka Bikash Dey, Pralay K. Santra. Degradation Studies of Cs3Sb2I9: A Lead-Free Perovskite. ACS Applied Energy Materials 2020, 3 (1) , 47-55. https://doi.org/10.1021/acsaem.9b01899
  5. Jiaming Liu, Liqun Zhu, Sisi Xiang, Hailiang Wang, Huicong Liu, Weiping Li, Haining Chen. Cs-Doped TiO2 Nanorod Array Enhances Electron Injection and Transport in Carbon-Based CsPbI3 Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16927-16932. https://doi.org/10.1021/acssuschemeng.9b04772
  6. Sachiko Matsushita, Seiya Sugawara, Toshihiro Isobe, Akira Nakajima. Temperature Dependence of a Perovskite-Sensitized Solar Cell: A Sensitized “Thermal” Cell. ACS Applied Energy Materials 2019, 2 (1) , 13-18. https://doi.org/10.1021/acsaem.8b01522
  7. Ming-Hui Shang, Jing Zhang, Peng Zhang, Zuobao Yang, Jinju Zheng, Md Azimul Haque, Weiyou Yang, Su-Huai Wei, Tom Wu. Stable Bandgap-Tunable Hybrid Perovskites with Alloyed Pb–Ba Cations for High-Performance Photovoltaic Applications. The Journal of Physical Chemistry Letters 2019, 10 (1) , 59-66. https://doi.org/10.1021/acs.jpclett.8b03352
  8. Jinlu He, Run Long. Lead Vacancy Can Explain the Suppressed Nonradiative Electron–Hole Recombination in FAPbI3 Perovskite under Iodine-Rich Conditions: A Time-Domain Ab Initio Study. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6489-6495. https://doi.org/10.1021/acs.jpclett.8b03095
  9. Md. Shahiduzzaman, Hiroto Ashikawa, Mizuki Kuniyoshi, Sem Visal, Seiya Sakakibara, Tetsuya Kaneko, Tetsuhiro Katsumata, Tetsuya Taima, Satoru Iwamori, Masao Isomura, Koji Tomita. Compact TiO2/Anatase TiO2 Single-Crystalline Nanoparticle Electron-Transport Bilayer for Efficient Planar Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 12070-12078. https://doi.org/10.1021/acssuschemeng.8b02406
  10. Shang-Hsuan Wu, Ming-Yi Lin, Sheng-Hao Chang, Wei-Chen Tu, Chih-Wei Chu, and Yia-Chung Chang . A Design Based on a Charge-Transfer Bilayer as an Electron Transport Layer for Improving the Performance and Stability in Planar Perovskite Solar Cells. The Journal of Physical Chemistry C 2018, 122 (1) , 236-244. https://doi.org/10.1021/acs.jpcc.7b11245
  11. Mopelola A. Idowu, Sung Hei Yau, Oleg Varnavski, and Theodore Goodson, III . Evolution of the Dynamics of As-Deposited and Annealed Lead Halide Perovskites. ACS Photonics 2017, 4 (5) , 1195-1206. https://doi.org/10.1021/acsphotonics.7b00095
  12. Weixin Huang, Joseph S. Manser, Subha Sadhu, Prashant V. Kamat, and Sylwia Ptasinska . Direct Observation of Reversible Transformation of CH3NH3PbI3 and NH4PbI3 Induced by Polar Gaseous Molecules. The Journal of Physical Chemistry Letters 2016, 7 (24) , 5068-5073. https://doi.org/10.1021/acs.jpclett.6b02499
  13. Jaeki Jeong, Hak-Beom Kim, Haeyeon Kim, Bright Walker, Seyeong Song, Jungwoo Heo, Yung Jin Yoon, Yimhyun Jo, Hyosung Choi, Gi-Hwan Kim, Dong Suk Kim, and Jin Young Kim . Ternary Halide Perovskites for Highly Efficient Solution-Processed Hybrid Solar Cells. ACS Energy Letters 2016, 1 (4) , 712-718. https://doi.org/10.1021/acsenergylett.6b00281
  14. Run Long, Weihai Fang, and Oleg. V. Prezhdo . Moderate Humidity Delays Electron–Hole Recombination in Hybrid Organic–Inorganic Perovskites: Time-Domain Ab Initio Simulations Rationalize Experiments. The Journal of Physical Chemistry Letters 2016, 7 (16) , 3215-3222. https://doi.org/10.1021/acs.jpclett.6b01412
  15. Lin Li, Xiaoliang Liu, Lu Lyu, Runsheng Wu, Peng Liu, Yuhe Zhang, Yuan Zhao, Hongyang Wang, Dongmei Niu, Junliang Yang, Yongli Gao. Modification of Ultrathin NPB Interlayer on the Electronic Structures of the CH3NH3PbI3/NPB/MoO3 Interface. The Journal of Physical Chemistry C 2016, 120 (32) , 17863-17871. https://doi.org/10.1021/acs.jpcc.6b02942
  16. Dan Li, Simon A. Bretschneider, Victor W. Bergmann, Ilka M. Hermes, Julian Mars, Alexander Klasen, Hao Lu, Wolfgang Tremel, Markus Mezger, Hans-Jürgen Butt, Stefan A. L. Weber, and Rüdiger Berger . Humidity-Induced Grain Boundaries in MAPbI3 Perovskite Films. The Journal of Physical Chemistry C 2016, 120 (12) , 6363-6368. https://doi.org/10.1021/acs.jpcc.6b00335
  17. Ilka M. Hermes, Simon A. Bretschneider, Victor W. Bergmann, Dan Li, Alexander Klasen, Julian Mars, Wolfgang Tremel, Frédéric Laquai, Hans-Jürgen Butt, Markus Mezger, Rüdiger Berger, Brian J. Rodriguez, and Stefan A. L. Weber . Ferroelastic Fingerprints in Methylammonium Lead Iodide Perovskite. The Journal of Physical Chemistry C 2016, 120 (10) , 5724-5731. https://doi.org/10.1021/acs.jpcc.5b11469
  18. Soumyo Chatterjee and Amlan J. Pal . Introducing Cu2O Thin Films as a Hole-Transport Layer in Efficient Planar Perovskite Solar Cell Structures. The Journal of Physical Chemistry C 2016, 120 (3) , 1428-1437. https://doi.org/10.1021/acs.jpcc.5b11540
  19. Tianyu Meng, Chang Liu, Kai Wang, Tianda He, Yu Zhu, Abdullah Al-Enizi, Ahmed Elzatahry, and Xiong Gong . High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiOx Electron Extraction Layer. ACS Applied Materials & Interfaces 2016, 8 (3) , 1876-1883. https://doi.org/10.1021/acsami.5b09873
  20. Haipeng Xie, Xiaoliang Liu, Lu Lyu, Dongmei Niu, Qi Wang, Jinsong Huang, and Yongli Gao . Effects of Precursor Ratios and Annealing on Electronic Structure and Surface Composition of CH3NH3PbI3 Perovskite Films. The Journal of Physical Chemistry C 2016, 120 (1) , 215-220. https://doi.org/10.1021/acs.jpcc.5b07728
  21. Run Long and Oleg V. Prezhdo . Dopants Control Electron–Hole Recombination at Perovskite–TiO2 Interfaces: Ab Initio Time-Domain Study. ACS Nano 2015, 9 (11) , 11143-11155. https://doi.org/10.1021/acsnano.5b05843
  22. Alex M. Ganose, Christopher N. Savory, and David O. Scanlon . (CH3NH3)2Pb(SCN)2I2: A More Stable Structural Motif for Hybrid Halide Photovoltaics?. The Journal of Physical Chemistry Letters 2015, 6 (22) , 4594-4598. https://doi.org/10.1021/acs.jpclett.5b02177
  23. Younghoon Kim, Emre Yassitepe, Oleksandr Voznyy, Riccardo Comin, Grant Walters, Xiwen Gong, Pongsakorn Kanjanaboos, Ana F. Nogueira, and Edward H. Sargent . Efficient Luminescence from Perovskite Quantum Dot Solids. ACS Applied Materials & Interfaces 2015, 7 (45) , 25007-25013. https://doi.org/10.1021/acsami.5b09084
  24. Anna Todinova, Jesús Idígoras, Manuel Salado, Samrana Kazim, and Juan A. Anta . Universal Features of Electron Dynamics in Solar Cells with TiO2 Contact: From Dye Solar Cells to Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (19) , 3923-3930. https://doi.org/10.1021/acs.jpclett.5b01696
  25. Zhao-Kui Wang, Meng Li, Da-Xing Yuan, Xiao-Bo Shi, Heng Ma, and Liang-Sheng Liao . Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & Interfaces 2015, 7 (18) , 9645-9651. https://doi.org/10.1021/acsami.5b01330
  26. Chong Liu, Jiandong Fan, Xing Zhang, Yanjiao Shen, Lin Yang, and Yaohua Mai . Hysteretic Behavior upon Light Soaking in Perovskite Solar Cells Prepared via Modified Vapor-Assisted Solution Process. ACS Applied Materials & Interfaces 2015, 7 (17) , 9066-9071. https://doi.org/10.1021/acsami.5b00375
  27. Keyou Yan, Mingzhu Long, Tiankai Zhang, Zhanhua Wei, Haining Chen, Shihe Yang, and Jianbin Xu . Hybrid Halide Perovskite Solar Cell Precursors: Colloidal Chemistry and Coordination Engineering behind Device Processing for High Efficiency. Journal of the American Chemical Society 2015, 137 (13) , 4460-4468. https://doi.org/10.1021/jacs.5b00321
  28. Alexander R. Pascoe, Noel W. Duffy, Andrew D. Scully, Fuzhi Huang, and Yi-Bing Cheng . Insights into Planar CH3NH3PbI3 Perovskite Solar Cells Using Impedance Spectroscopy. The Journal of Physical Chemistry C 2015, 119 (9) , 4444-4453. https://doi.org/10.1021/jp509896u
  29. Joel N. Schrauben, Yixin Zhao, Candy Mercado, Paul I. Dron, Joseph L. Ryerson, Josef Michl, Kai Zhu, and Justin C. Johnson . Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2015, 7 (4) , 2286-2293. https://doi.org/10.1021/am506329v
  30. Jeffrey A. Christians, Pierre A. Miranda Herrera, and Prashant V. Kamat . Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society 2015, 137 (4) , 1530-1538. https://doi.org/10.1021/ja511132a
  31. Yixin Zhao and Kai Zhu . Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (23) , 4175-4186. https://doi.org/10.1021/jz501983v
  32. Qinglong Jiang, Xia Sheng, Bing Shi, Xinjian Feng, and Tao Xu . Nickel-Cathoded Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118 (45) , 25878-25883. https://doi.org/10.1021/jp506991x
  33. Wan-Jian Yin, Yanfa Yan, and Su-Huai Wei . Anomalous Alloy Properties in Mixed Halide Perovskites. The Journal of Physical Chemistry Letters 2014, 5 (21) , 3625-3631. https://doi.org/10.1021/jz501896w
  34. Thomas Moehl, Jeong Hyeok Im, Yong Hui Lee, Konrad Domanski, Fabrizio Giordano, Shaik M. Zakeeruddin, M. Ibrahim Dar, Leo-Philipp Heiniger, Mohammad Khaja Nazeeruddin, Nam-Gyu Park, and Michael Grätzel . Strong Photocurrent Amplification in Perovskite Solar Cells with a Porous TiO2 Blocking Layer under Reverse Bias. The Journal of Physical Chemistry Letters 2014, 5 (21) , 3931-3936. https://doi.org/10.1021/jz502039k
  35. Elena Guillén, F. Javier Ramos, Juan A. Anta, and Shahzada Ahmad . Elucidating Transport-Recombination Mechanisms in Perovskite Solar Cells by Small-Perturbation Techniques. The Journal of Physical Chemistry C 2014, 118 (40) , 22913-22922. https://doi.org/10.1021/jp5069076
  36. Lee Seul Oh, Dong Hoe Kim, Jin Ah Lee, Seong Sik Shin, Jin-Wook Lee, Ik Jae Park, Min Jae Ko, Nam-Gyu Park, Sung Gyu Pyo, Kug Sun Hong, and Jin Young Kim . Zn2SnO4-Based Photoelectrodes for Organolead Halide Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118 (40) , 22991-22994. https://doi.org/10.1021/jp509183k
  37. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  38. Run Long, Niall J. English, and Oleg V. Prezhdo . Minimizing Electron–Hole Recombination on TiO2 Sensitized with PbSe Quantum Dots: Time-Domain Ab Initio Analysis. The Journal of Physical Chemistry Letters 2014, 5 (17) , 2941-2946. https://doi.org/10.1021/jz5013627
  39. Hui-Seon Kim and Nam-Gyu Park . Parameters Affecting I–V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. The Journal of Physical Chemistry Letters 2014, 5 (17) , 2927-2934. https://doi.org/10.1021/jz501392m
  40. Lili Wang, Christopher McCleese, Anton Kovalsky, Yixin Zhao, and Clemens Burda . Femtosecond Time-Resolved Transient Absorption Spectroscopy of CH3NH3PbI3 Perovskite Films: Evidence for Passivation Effect of PbI2. Journal of the American Chemical Society 2014, 136 (35) , 12205-12208. https://doi.org/10.1021/ja504632z
  41. Huan Wang, Xianwei Zeng, Zhanfeng Huang, Wenjun Zhang, Xianfeng Qiao, Bin Hu, Xiaoping Zou, Mingkui Wang, Yi-Bing Cheng, and Wei Chen . Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS Applied Materials & Interfaces 2014, 6 (15) , 12609-12617. https://doi.org/10.1021/am5025963
  42. Fa-Qian Liu, Kai Zhu, Tao Li, and Tao Xu . Drift Transport in Al2O3-Sheathed 3-D Transparent Conducting Oxide Photoanodes Observed in Liquid Electrolyte-Based Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (19) , 9951-9957. https://doi.org/10.1021/jp502220m
  43. Belen Suarez, Victoria Gonzalez-Pedro, Teresa S. Ripolles, Rafael S. Sanchez, Luis Otero, and Ivan Mora-Sero . Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (10) , 1628-1635. https://doi.org/10.1021/jz5006797
  44. Yixin Zhao and Kai Zhu . CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3: Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118 (18) , 9412-9418. https://doi.org/10.1021/jp502696w
  45. Xia Sheng, Dongqing He, Jie Yang, Kai Zhu, and Xinjian Feng . Oriented Assembled TiO2 Hierarchical Nanowire Arrays with Fast Electron Transport Properties. Nano Letters 2014, 14 (4) , 1848-1852. https://doi.org/10.1021/nl4046262
  46. Ilya A. Shkrob and Timothy W. Marin . Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds. The Journal of Physical Chemistry Letters 2014, 5 (7) , 1066-1071. https://doi.org/10.1021/jz5004022
  47. Prashant V. Kamat (Deputy Editor ) . Organometal Halide Perovskites for Transformative Photovoltaics. Journal of the American Chemical Society 2014, 136 (10) , 3713-3714. https://doi.org/10.1021/ja501108n
  48. Emilio J. Juarez-Perez, Michael Wuβler, Francisco Fabregat-Santiago, Kerstin Lakus-Wollny, Eric Mankel, Thomas Mayer, Wolfram Jaegermann, and Ivan Mora-Sero . Role of the Selective Contacts in the Performance of Lead Halide Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (4) , 680-685. https://doi.org/10.1021/jz500059v
  49. Yixin Zhao, Alexandre M. Nardes, and Kai Zhu . Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. The Journal of Physical Chemistry Letters 2014, 5 (3) , 490-494. https://doi.org/10.1021/jz500003v
  50. Qi Chen, Huanping Zhou, Ziruo Hong, Song Luo, Hsin-Sheng Duan, Hsin-Hua Wang, Yongsheng Liu, Gang Li, and Yang Yang . Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2) , 622-625. https://doi.org/10.1021/ja411509g
  51. Joshua J. Choi, Xiaohao Yang, Zachariah M. Norman, Simon J. L. Billinge, and Jonathan S. Owen . Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells. Nano Letters 2014, 14 (1) , 127-133. https://doi.org/10.1021/nl403514x
  52. Muhammad Saeed, Izaz Ul Haq, Awais Siddique Saleemi, Shafiq Ur Rehman, Bakhtiar Ul Haq, Aijaz Rasool Chaudhry, Imad Khan. First-principles prediction of the ground-state crystal structure of double-perovskite halides Cs2AgCrX6 (X = Cl, Br, and I). Journal of Physics and Chemistry of Solids 2022, 160 , 110302. https://doi.org/10.1016/j.jpcs.2021.110302
  53. Canyun Zhang, Chenfei Wang, Jin Chen, Fengchao Wang, Jinfang Kong, Lan Li, Hengxing Dong, Yu Sun, Xiaogai Peng, Jiayue Xu. Synthesis of perovskite nanocrystal films with a high luminous efficiency and an enhanced stability. Ceramics International 2021, 47 (23) , 33788-33797. https://doi.org/10.1016/j.ceramint.2021.08.290
  54. Sanjay Sahare, Hong Duc Pham, Dechan Angmo, Prachi Ghoderao, Jennifer MacLeod, Sadaf Bashir Khan, Shern‐Long Lee, Samareandra P. Singh, Prashant Sonar. Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials 2021, 11 (42) , 2101085. https://doi.org/10.1002/aenm.202101085
  55. Sagar Bhattarai, Arvind Sharma, Deboraj Muchahary, Monika Gogoi, T.D. Das. Carrier transport layer free perovskite solar cell for enhancing the efficiency: A simulation study. Optik 2021, 243 , 167492. https://doi.org/10.1016/j.ijleo.2021.167492
  56. Zhenjun Wang, Yanfeng Jiang. Advances in perovskite solar cells: Film morphology control and interface engineering. Journal of Cleaner Production 2021, 317 , 128368. https://doi.org/10.1016/j.jclepro.2021.128368
  57. Daniel Koch, Mohamed Chaker, Manabu Ihara, Sergei Manzhos. Density-Based Descriptors of Redox Reactions Involving Transition Metal Compounds as a Reality-Anchored Framework: A Perspective. Molecules 2021, 26 (18) , 5541. https://doi.org/10.3390/molecules26185541
  58. , V.P. Kostylyov, A.V. Sachenko, , I.O. Sokolovskyi, , V.M. Vlasiuk, , P.V. Torchyniuk, , O.I. V’yunov, , A.G. Belous, , A.I. Shkrebtii, . Influence of the reagents’ ratio on photoelectric and optical properties of perovskite films for photovoltaics. Semiconductor Physics, Quantum Electronics and Optoelectronics 2021, 24 (3) , 295-303. https://doi.org/10.15407/spqeo24.03.295
  59. A. Sivaprakasam, Naveen Kumar Elangovan. Effect of CdS thin film on the performance of methylammonium lead iodide perovskite solar cell. Journal of Materials Science: Materials in Electronics 2021, 32 (13) , 17612-17619. https://doi.org/10.1007/s10854-021-06294-7
  60. Ye Yuan, Zhong Ji, Genghua Yan, Zhuowei Li, Jinliang Li, Min Kuang, Bangqi Jiang, Longlong Zeng, Likun Pan, Wenjie Mai. TiO2 electron transport bilayer for all-inorganic perovskite photodetectors with remarkably improved UV stability toward imaging applications. Journal of Materials Science & Technology 2021, 75 , 39-47. https://doi.org/10.1016/j.jmst.2020.10.028
  61. Gillsang Han, Minje Kang, Yoojae Jeong, Sangwook Lee, Insun Cho. Thermal Evaporation Synthesis of Vertically Aligned Zn2SnO4/ZnO Radial Heterostructured Nanowires Array. Nanomaterials 2021, 11 (6) , 1500. https://doi.org/10.3390/nano11061500
  62. D. O. Oyewole, R. K. Koech, R. Ichwani, R. Ahmed, J. Hinostroza Tamayo, S. A. Adeniji, J. Cromwell, E. Colin Ulloa, O. K. Oyewole, B. Agyei-Tuffour, L. V. Titova, N. A. Burnham, W. O. Soboyejo. Annealing effects on interdiffusion in layered FA-rich perovskite solar cells. AIP Advances 2021, 11 (6) , 065327. https://doi.org/10.1063/5.0046205
  63. Shaan Bibi Jaffri, Khuram Shahzad Ahmad. Interfacial engineering revolutionizers: perovskite nanocrystals and quantum dots accentuated performance enhancement in perovskite solar cells. Critical Reviews in Solid State and Materials Sciences 2021, 46 (3) , 251-279. https://doi.org/10.1080/10408436.2020.1758627
  64. Yi Zhou, Caiyun Liu, Fanning Meng, Chu Zhang, Guoying Wei, Liguo Gao, Tingli Ma. Recent Progress in Perovskite Solar Cells Modified by Sulfur Compounds. Solar RRL 2021, 5 (4) , 2000713. https://doi.org/10.1002/solr.202000713
  65. Andrea Ciavatti, Roberto Sorrentino, Laura Basiricò, Bianca Passarella, Mario Caironi, Annamaria Petrozza, Beatrice Fraboni. High‐Sensitivity Flexible X‐Ray Detectors based on Printed Perovskite Inks. Advanced Functional Materials 2021, 31 (11) , 2009072. https://doi.org/10.1002/adfm.202009072
  66. Sukhendu Maity, Vinod Kumar Lokku, Akash Lata, K. Sarkar, Jahangeer Ahmed, M. A. Majeed Khan, Praveen Kumar. MAPbI3-based efficient, transparent and air-stable broadband photodetectors. Indian Journal of Physics 2021, 27 https://doi.org/10.1007/s12648-020-02004-x
  67. Marzieh Makenali, Iraj Kazeminezhad, Vahid Ahmadi, Farzaneh Arabpour Roghabadi. Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuOx as an efficient hole transporting layer. Journal of Materials Science: Materials in Electronics 2021, 32 (2) , 2312-2325. https://doi.org/10.1007/s10854-020-04996-y
  68. Sagar Bhattarai, T.D. Das. Optimization of the perovskite solar cell design to achieve a highly improved efficiency. Optical Materials 2021, 111 , 110661. https://doi.org/10.1016/j.optmat.2020.110661
  69. Peng Gao, Mohammad Khaja Nazeeruddin. Dye-Sensitized and Perovskite Solar Cells: Theory and Applications. 2021,,https://doi.org/10.1016/B978-0-08-102688-5.00074-X
  70. Naveen Kumar Elangovan, Arumugam Sivaprakasam. Investigation of parameters affecting the performance of Perovskite solar cells. Molecular Crystals and Liquid Crystals 2020, 710 (1) , 66-73. https://doi.org/10.1080/15421406.2020.1829425
  71. Antonio Riquelme, Francisco Enrique Gálvez, Lidia Contreras-Bernal, Hernán Míguez, Juan A. Anta. Internal quantum efficiency and time signals from intensity-modulated photocurrent spectra of perovskite solar cells. Journal of Applied Physics 2020, 128 (13) , 133103. https://doi.org/10.1063/5.0013317
  72. Muhammad Jodie Abraham Isa, Nji Raden Poespawati, Celine Mega Alma, Liem Kevin, Rembianov Rembianov, Junivan Sulistianto. Employing Tetra-ethyl Orthosilicate (TEOS) Concentration to Optimize Perovskite Solar Cell Performance. 2020,,, 80-85. https://doi.org/10.1109/ICITEE49829.2020.9271754
  73. Mustafa K.A. Mohammed, Ali K. Al-Mousoi, Mohammed S. Mehde, Abdulnasser M. Al-Gebori. Engineered electronic properties of the spin-coated MAPI for hole-transport-free perovskite solar cell (HT-free PSC): Spinning time and PSC performance relationship. Chemical Physics Letters 2020, 754 , 137718. https://doi.org/10.1016/j.cplett.2020.137718
  74. Xiaoqing Zhang, Jingling Li, Zhuoneng Bi, Kun He, Xueqing Xu, Xiudi Xiao, Yanqing Zhu, Yongjun Zhan, Liuwen Zhong, Gang Xu, Huangzhong Yu. Stable and efficient air-processed perovskite solar cells employing low-temperature processed compact In2O3 thin films as electron transport materials. Journal of Alloys and Compounds 2020, 836 , 155460. https://doi.org/10.1016/j.jallcom.2020.155460
  75. Jun Ryu, Saemon Yoon, Jinwoo Park, Sang Mun Jeong, Dong-Won Kang. Fabrication of nickel oxide composites with carbon nanotubes for enhanced charge transport in planar perovskite solar cells. Applied Surface Science 2020, 516 , 146116. https://doi.org/10.1016/j.apsusc.2020.146116
  76. Liguo Gao, Yi Zhou, Fanning Meng, Yang Li, Anmin Liu, Yanqiang Li, Chu Zhang, Meiqiang Fan, Guoying Wei, Tingli Ma. Several economical and eco-friendly bio-carbon electrodes for highly efficient perovskite solar cells. Carbon 2020, 162 , 267-272. https://doi.org/10.1016/j.carbon.2020.02.049
  77. Gabriel Bartholazzi, Robson Pacheco Pereira, Andreza Menezes Lima, Wagner Anacleto Pinheiro, Leila Rosa Cruz. Influence of substrate temperature on the chemical, microstructural and optical properties of spray deposited CH3NH3PbI3 perovskite thin films. Journal of Materials Research and Technology 2020, 9 (3) , 3411-3417. https://doi.org/10.1016/j.jmrt.2020.01.078
  78. Bandar Ali Al-Asbahi, Saif M.H. Qaid, Mahmoud Hezam, Idriss Bedja, Hamid M. Ghaithan, Abdullah S. Aldwayyan. Effect of deposition method on the structural and optical properties of CH3NH3PbI3 perovskite thin films. Optical Materials 2020, 103 , 109836. https://doi.org/10.1016/j.optmat.2020.109836
  79. Zhen Wang, Seungkuk Kuk, Byungsoo Kang, Phillip Lee, Jeung-hyun Jeong, David J. Hwang. One-step P2 scribing of organometal halide perovskite solar cells by picosecond laser of visible wavelength. Applied Surface Science 2020, 505 , 144408. https://doi.org/10.1016/j.apsusc.2019.144408
  80. Niall J. English. Dynamical properties of organo lead-halide perovskites and their interfaces to titania: insights from Density Functional Theory. Heliyon 2020, 6 (3) , e03427. https://doi.org/10.1016/j.heliyon.2020.e03427
  81. Lei Jin, Yuqin Qian, Yipei Zhang, Michael Bowen, Shoujun Ding. Polaronic transport in CH3NH3PbI3 single crystals. Journal of Materials Science: Materials in Electronics 2020, 31 (3) , 1945-1950. https://doi.org/10.1007/s10854-019-02713-y
  82. Alex Ganose. Photovoltaics. 2020,,, 3-20. https://doi.org/10.1007/978-3-030-55708-9_1
  83. Dhyey Raval, Margi Jani, Brijesh Tripathi, Deepak Verma, Manoj Kumar. Role of defect density on the electronic transport and current-voltage characteristics of the hole transporter free perovskite solar cell. Materials Today: Proceedings 2020, 28 , 223-229. https://doi.org/10.1016/j.matpr.2020.01.587
  84. Fengyou Wang, Meifang Yang, Shuo Yang, Xin Qu, Lili Yang, Lin Fan, Jinghai Yang, Federico Rosei. Iodine-assisted antisolvent engineering for stable perovskite solar cells with efficiency >21.3 %. Nano Energy 2020, 67 , 104224. https://doi.org/10.1016/j.nanoen.2019.104224
  85. Bianca-Maria Bresolin, Samia Ben Hammouda, Mika Sillanpää. An Emerging Visible-Light Organic–Inorganic Hybrid Perovskite for Photocatalytic Applications. Nanomaterials 2020, 10 (1) , 115. https://doi.org/10.3390/nano10010115
  86. Md. Shahiduzzaman, Toshiharu Sakuma, Tetsuya Kaneko, Koji Tomita, Masao Isomura, Tetsuya Taima, Shinjiro Umezu, Satoru Iwamori. Oblique Electrostatic Inkjet-Deposited TiO2 Electron Transport Layers for Efficient Planar Perovskite Solar Cells. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-56164-w
  87. Yue Yang, Haitao Dai, Feng Yang, Yating Zhang, Dan Luo, Xiaoli Zhang, Kai Wang, Xiao Wei Sun, Jianquan Yao. All-Perovskite Photodetector with Fast Response. Nanoscale Research Letters 2019, 14 (1) https://doi.org/10.1186/s11671-019-3082-z
  88. Kai Wang, Dong Yang, Congcong Wu, Mohan Sanghadasa, Shashank Priya. Recent progress in fundamental understanding of halide perovskite semiconductors. Progress in Materials Science 2019, 106 , 100580. https://doi.org/10.1016/j.pmatsci.2019.100580
  89. Jiangzhao Chen, Nam‐Gyu Park. Causes and Solutions of Recombination in Perovskite Solar Cells. Advanced Materials 2019, 31 (47) , 1803019. https://doi.org/10.1002/adma.201803019
  90. Muhammad Imran, Abida Saleem, Nawazish Ali Khan, Afzal Hussain Kamboh. Enhanced efficiency and stability of perovskite solar cells by partial replacement of CH3NH3+ with inorganic Cs+ in CH3NH3PbI3 perovskite absorber layer. Physica B: Condensed Matter 2019, 572 , 1-11. https://doi.org/10.1016/j.physb.2019.07.041
  91. Muhammad Jodie Abraham Isa, Junivan Sulistianto, Rembianov, Liem Kevin, Nji Raden Poespawati. Optimization of Perovskite Solar Cell Performance using Optimized Level of Tetraethyl Orthosilicate Concentration. 2019,,, 1-5. https://doi.org/10.1109/ICITEED.2019.8929960
  92. Ubaid Khan, Yu Zhinong, Abbas Ahmad Khan, Almas Zulfiqar, Qudrat Ullah khan. Organic–inorganic hybrid perovskites based on methylamine lead halide solar cell. Solar Energy 2019, 189 , 421-425. https://doi.org/10.1016/j.solener.2019.06.061
  93. Longfan Duan, Liang Li, Yizhou Zhao, Guangyue Cao, Xiuxiu Niu, Huanping Zhou, Yang Bai, Qi Chen. In-situ Interfacial Passivation for Stable Perovskite Solar Cells. Frontiers in Materials 2019, 6 https://doi.org/10.3389/fmats.2019.00200
  94. Nasir Ali, Sajid Rauf, Weiguang Kong, Shahid Ali, Xiaoyu Wang, Amir Khesro, Chang Ping Yang, Bin Zhu, Huizhen Wu. An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites. Renewable and Sustainable Energy Reviews 2019, 109 , 160-186. https://doi.org/10.1016/j.rser.2019.04.022
  95. Raana Sarvari, Samira Agbolaghi, Bakhshali Massoumi. Role of graphene ordered modifiers in regulating the organic halide perovskite devices. Optical Materials 2019, 92 , 81-86. https://doi.org/10.1016/j.optmat.2019.04.014
  96. Dong Zhao, Rendong Wang, Pengfei Wang, Shutao Li, Zhao Li, Meiling Sun, Yunyan Liu, Junshan Xiu. Effects of Chlorine Addition to TiO 2 Nanorods-Based Perovskite Solar Cells. Nano 2019, 14 (06) , 1950077. https://doi.org/10.1142/S1793292019500772
  97. Sisi Xiang, Weiping Li, Ya Wei, Jiaming Liu, Huicong Liu, Liqun Zhu, Shihe Yang, Haining Chen. Natrium Doping Pushes the Efficiency of Carbon-Based CsPbI3 Perovskite Solar Cells to 10.7%. iScience 2019, 15 , 156-164. https://doi.org/10.1016/j.isci.2019.04.025
  98. Hongri Liu, Zhiliang Chen, Haibing Wang, Feihong Ye, Junjie Ma, Xiaolu Zheng, Pengbin Gui, Liangbin Xiong, Jian Wen, Guojia Fang. A facile room temperature solution synthesis of SnO 2 quantum dots for perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (17) , 10636-10643. https://doi.org/10.1039/C8TA12561A
  99. Fanning Meng, Anmin Liu, Liguo Gao, Junmei Cao, Yeling Yan, Ning Wang, Meiqiang Fan, Guoying Wei, Tingli Ma. Current progress in interfacial engineering of carbon-based perovskite solar cells. Journal of Materials Chemistry A 2019, 7 (15) , 8690-8699. https://doi.org/10.1039/C9TA01364D
  100. Bablu K. Ghosh, Tapan K. Biswas. Emerging solar cells energy trade-off: Interface engineering materials impact on stability and efficiency progress. International Journal of Energy Research 2019, 43 (5) , 1670-1688. https://doi.org/10.1002/er.4298
Load more citations