RETURN TO ISSUEPREVPhysical Processes i...Physical Processes in Nanomaterials and NanostructuresNEXT

Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis

View Author Information
Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
Department of Chemistry, University of Rochester, Rochester, New York 14642, United States
Cite this: J. Phys. Chem. Lett. 2014, 5, 10, 1642–1647
Publication Date (Web):April 21, 2014
https://doi.org/10.1021/jz500565v
Copyright © 2014 American Chemical Society
Article Views
729
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)

Abstract

Highly ordered TiO2 nanotube arrays can be grown by simple electrochemical anodization of a titanium metal sheet, stimulating intense research and applications to solar cells and fuels. TiO2 nanotubes were expected to exhibit better electron transport than nanocrystal films. However, experiments showed that nanotubes provided little advantage over nanoparticles. Using nonadiabatic molecular dynamics, we demonstrate that oxygen vacancies, which are common in TiO2, accelerate nonradiative energy losses by an order of magnitude. Oxygen vacancies produce localized Ti3+ states hundreds of millielectronvolts below the TiO2 conduction band. The states lower the nanotube band gap, trap excited electrons, induce stronger electron–phonon couplings, and facilitate the relaxation. Our results rationalize the unforeseen experimental observations and provide the atomistic basis for improving the structure and charge transport by TiO2 nanotubes.

Cited By


This article is cited by 20 publications.

  1. Dalia Leon, Alberto Maimone, David Carvajal, Lorean Madriz, Benjamín R. Scharifker, Franco M. Cabrerizo, Ronald Vargas. Unraveling Kinetic Effects during Photoelectrochemical Mineralization of Phenols. Rutile:Anatase TiO2 Nanotube Photoanodes under Thin-Layer Conditions. The Journal of Physical Chemistry C 2021, 125 (1) , 610-617. https://doi.org/10.1021/acs.jpcc.0c09890
  2. Savini Bandaranayake, Emily Hruska, Stephen Londo, Somnath Biswas, L. Robert Baker. Small Polarons and Surface Defects in Metal Oxide Photocatalysts Studied Using XUV Reflection–Absorption Spectroscopy. The Journal of Physical Chemistry C 2020, 124 (42) , 22853-22870. https://doi.org/10.1021/acs.jpcc.0c07047
  3. Lili Zhang, Weibin Chu, Qijing Zheng, Alexander V. Benderskii, Oleg V. Prezhdo, Jin Zhao. Suppression of Electron–Hole Recombination by Intrinsic Defects in 2D Monoelemental Material. The Journal of Physical Chemistry Letters 2019, 10 (20) , 6151-6158. https://doi.org/10.1021/acs.jpclett.9b02620
  4. Yeonsig Nam, Linqiu Li, Jin Yong Lee, Oleg V. Prezhdo. Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO2 Nanoparticles. The Journal of Physical Chemistry Letters 2019, 10 (11) , 2676-2683. https://doi.org/10.1021/acs.jpclett.9b00987
  5. Yaqing Wei, Zhaohui Zhou, Wei-Hai Fang, Run Long. Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO2 Despite Fast Charge Recombination: A Time-Domain ab Initio Analysis. The Journal of Physical Chemistry Letters 2018, 9 (19) , 5884-5889. https://doi.org/10.1021/acs.jpclett.8b02761
  6. Somnath Biswas, Jakub Husek, Stephen Londo, L. Robert Baker. Ultrafast Electron Trapping and Defect-Mediated Recombination in NiO Probed by Femtosecond Extreme Ultraviolet Reflection–Absorption Spectroscopy. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5047-5054. https://doi.org/10.1021/acs.jpclett.8b01865
  7. Mohammad H. Zarifi, Benjamin D. Wiltshire, Najia Mahdi, Karthik Shankar, Mojgan Daneshmand. Distinguishing between Deep Trapping Transients of Electrons and Holes in TiO2 Nanotube Arrays Using Planar Microwave Resonator Sensor. ACS Applied Materials & Interfaces 2018, 10 (35) , 29857-29865. https://doi.org/10.1021/acsami.8b03629
  8. Yeonsig Nam, Linqiu Li, Jin Yong Lee, Oleg V. Prezhdo. Size and Shape Effects on Charge Recombination Dynamics of TiO2 Nanoclusters. The Journal of Physical Chemistry C 2018, 122 (9) , 5201-5208. https://doi.org/10.1021/acs.jpcc.8b00691
  9. Xin Zhou, Linqiu Li, Hao Dong, Ashutosh Giri, Patrick E. Hopkins, and Oleg V. Prezhdo . Temperature Dependence of Electron–Phonon Interactions in Gold Films Rationalized by Time-Domain Ab Initio Analysis. The Journal of Physical Chemistry C 2017, 121 (32) , 17488-17497. https://doi.org/10.1021/acs.jpcc.7b05211
  10. Zhaohui Zhou, Jin Liu, Run Long, Linqiu Li, Liejin Guo, and Oleg V. Prezhdo . Control of Charge Carriers Trapping and Relaxation in Hematite by Oxygen Vacancy Charge: Ab Initio Non-adiabatic Molecular Dynamics. Journal of the American Chemical Society 2017, 139 (19) , 6707-6717. https://doi.org/10.1021/jacs.7b02121
  11. Ilya V. Roslyakov, Dmitry S. Koshkodaev, Andrei A. Eliseev, Daniel Hermida-Merino, Andrei V. Petukhov, and Kirill S. Napolskii . Crystallography-Induced Correlations in Pore Ordering of Anodic Alumina Films. The Journal of Physical Chemistry C 2016, 120 (35) , 19698-19704. https://doi.org/10.1021/acs.jpcc.6b05268
  12. Yeonsig Nam, Hao Li, Jin Yong Lee. Site-dependent photoinduced charge carrier dynamics in nitrogen/fluorine doped TiO 2 nanoparticles. Journal of Materials Chemistry C 2021, 9 (6) , 1992-2000. https://doi.org/10.1039/D0TC05063F
  13. Nagabharana RM, Kumaraswamy GN, Susheel Kumar Gundanna, Umananda M. Bhatta. Effect of thermal annealing on structural and electrical properties of tio2 thin films. Thin Solid Films 2020, 710 , 138262. https://doi.org/10.1016/j.tsf.2020.138262
  14. L. Robert Baker, Emily Hruska, Jakub Husek. Surface Electron Dynamics in TiO2 Probed by Ultrafast XUV Spectroscopy: Understanding the Role of O Vacancy Defects. 2020,,, M4A.29. https://doi.org/10.1364/UP.2020.M4A.29
  15. Yanyan Qin, Yilian Li, Zhen Tian, Yangling Wu, Yanping Cui. Efficiently Visible-Light Driven Photoelectrocatalytic Oxidation of As(III) at Low Positive Biasing Using Pt/TiO2 Nanotube Electrode. Nanoscale Research Letters 2016, 11 (1) https://doi.org/10.1186/s11671-016-1248-5
  16. Fan Tian, Huiping Zhao, Guangfang Li, Zan Dai, Yunling Liu, Rong Chen. Modification with Metallic Bismuth as Efficient Strategy for the Promotion of Photocatalysis: The Case of Bismuth Phosphate. ChemSusChem 2016, 9 (13) , 1579-1585. https://doi.org/10.1002/cssc.201600489
  17. Ke Liang, Xue Chen, Zhenyu Guo, Tingjun Hou, Xiaohong Zhang, Youyong Li. Lithium intercalation and diffusion in TiO 2 nanotubes: a first-principles investigation. Physical Chemistry Chemical Physics 2016, 18 (35) , 24370-24376. https://doi.org/10.1039/C6CP03830A
  18. D. Regonini, A. Groff, G. D. Sorarù, F. J. Clemens. Suppressing Deep Traps in Self-Organized TiO 2 Nanotubes by Nb Doping and Optimized Water Content. Journal of The Electrochemical Society 2016, 163 (3) , H243-H251. https://doi.org/10.1149/2.0131605jes
  19. Kun-Mu Lee, Sheng Hsiung Chang, Ming-Chung Wu, Chun-Guey Wu. Raman and photoluminescence investigation of CdS/CdSe quantum dots on TiO2 nanoparticles with multi-walled carbon nanotubes and their application in solar cells. Vibrational Spectroscopy 2015, 80 , 66-69. https://doi.org/10.1016/j.vibspec.2015.08.001
  20. Prashant K. Sarswat, York R. Smith, Michael L. Free, Mano Misra. Duality in Resistance Switching Behavior of TiO 2 -Cu 2 ZnSnS 4 Device. ECS Journal of Solid State Science and Technology 2015, 4 (8) , Q83-Q91. https://doi.org/10.1149/2.0071508jss