Fabrication of Highly Ordered TiO2 Nanorod/Nanotube Adjacent Arrays for Photoelectrochemical Applications

View Author Information
Environmental Futures Centre and Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222, Australia
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
§ ARC Centre for Functional Nanomaterials, School of Chemical Sciences and Engineering, The University of New South Wales, NSW 2052, Sydney, Australia
*Corresponding author: Fax 61 7 55528067, Tel 61 7 55528261, e-mail [email protected]
Cite this: Langmuir 2010, 26, 13, 11226–11232
Publication Date (Web):April 12, 2010
Copyright © 2010 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


This work reports a facile approach to fabricate a perpendicularly aligned and highly ordered TiO2 nanorod/nanotube (NR/NT) adjacent film by directly anodizing a modified titanium foil. The titanium foil substrate was modified with a layer of crystalline TiO2 film via a hydrothermal process in 0.05 M (NH4)2S2O8. The resultant NR/NT architecture consists of a highly ordered nanorod top layer that directly adjoins to a highly ordered nanotube array bottom layer. The thickness of the top nanorod layer was ∼90 nm with average nanorod diameter of 22 nm after 20 min of anodization. The thickness of the bottom nanotube array layer was found to be ca. 250 nm after 20 min of anodization, having an average outer and inner tubular diameters of 120 and 80 nm, respectively. A broad implication of the method is that a simple modification to the substrate surface can lead to new forms of nanostructures. For as-anodized NR/NT samples, XRD analysis reveals that the nanorods are of anatase TiO2 crystalline form while the nanotubes are amorphous. Anatase TiO2 crystalline form of NR/NT film with high crystallinity can be obtained by thermally treating the as-anodized sample at 450 °C for 2 h in air. The resultant NR/NT film was used as a photoanode for photoactivity evaluation. Comparing with a nanotube array photoanode prepared by direct anodization of unmodified titanium foil, the NR/NT photoanode exhibits a unique feature of selective photocatalytic oxidation toward organics, which makes it very attractive to photocatalytic degradation of organic pollutants, sensing, and other applications.

Supporting Information

Jump To

Surface SEM images of the crystalline TiO2 modified film after 0.5% HF treatment without applied anodic potential. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 58 publications.

  1. Yi-Hsuan Chiu, Ting-Hsuan Lai, Chun-Yi Chen, Ping-Yen Hsieh, Kazunari Ozasa, Mitsuo Niinomi, Kiyoshi Okada, Tso-Fu Mark Chang, Nobuhiro Matsushita, Masato Sone, Yung-Jung Hsu. Fully Depleted Ti–Nb–Ta–Zr–O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. ACS Applied Materials & Interfaces 2018, 10 (27) , 22997-23008. https://doi.org/10.1021/acsami.8b00727
  2. Hua Wang, Yan Su, Huanxin Zhao, Hongtao Yu, Shuo Chen, Yaobin Zhang, and Xie Quan . Photocatalytic Oxidation of Aqueous Ammonia Using Atomic Single Layer Graphitic-C3N4. Environmental Science & Technology 2014, 48 (20) , 11984-11990. https://doi.org/10.1021/es503073z
  3. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  4. Yunbo Luan, Liqiang Jing, Ying Xie, Xiaojun Sun, Yujie Feng, and Honggang Fu . Exceptional Photocatalytic Activity of 001-Facet-Exposed TiO2 Mainly Depending on Enhanced Adsorbed Oxygen by Residual Hydrogen Fluoride. ACS Catalysis 2013, 3 (6) , 1378-1385. https://doi.org/10.1021/cs400216a
  5. Fábio D. A. Aarão Reis, J. P. Badiali, and Dung di Caprio . Modeling Growth of Organized Nanoporous Structures by Anodic Oxidation. Langmuir 2012, 28 (36) , 13034-13041. https://doi.org/10.1021/la301840c
  6. Haimin Zhang, Yun Wang, Porun Liu, Yanhe Han, Xiangdong Yao, Jin Zou, Huiming Cheng, and Huijun Zhao . Anatase TiO2 Crystal Facet Growth: Mechanistic Role of Hydrofluoric Acid and Photoelectrocatalytic Activity. ACS Applied Materials & Interfaces 2011, 3 (7) , 2472-2478. https://doi.org/10.1021/am200363p
  7. Jung-Ho Yun, Yun Hau Ng, Changhui Ye, Attila J. Mozer, Gordon G. Wallace, and Rose Amal . Sodium Fluoride-Assisted Modulation of Anodized TiO2 Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & Interfaces 2011, 3 (5) , 1585-1593. https://doi.org/10.1021/am200147b
  8. Peng Hu, Xing Zhang, Ning Han, Weicheng Xiang, Yuebin Cao, and Fangli Yuan . Solution-Controlled Self-Assembly of ZnO Nanorods into Hollow Microspheres. Crystal Growth & Design 2011, 11 (5) , 1520-1526. https://doi.org/10.1021/cg101429f
  9. Somayeh Sohrabi, Mostafa Keshavarz Moraveji, Davood Iranshahi. A review on the design and development of photocatalyst synthesis and application in microfluidic reactors: challenges and opportunities. Reviews in Chemical Engineering 2020, 36 (6) , 687-722. https://doi.org/10.1515/revce-2018-0013
  10. Naresh Kumar Sethy, Zeenat Arif, Pradeep Kumar Mishra, Pradeep Kumar. Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test. Journal of Polymer Engineering 2020, 40 (3) , 211-220. https://doi.org/10.1515/polyeng-2019-0257
  11. Guan-Wei Lin, Jia-Shuang Chen, Wenjea Tseng, Fu-Hsing Lu. Formation of anatase TiO2 coatings by plasma electrolytic oxidation for photocatalytic applications. Surface and Coatings Technology 2019, 357 , 28-35. https://doi.org/10.1016/j.surfcoat.2018.10.010
  12. Min Cheng, Sen Yang, Rong Chen, Xun Zhu, Qiang Liao, Yi Huang. Visible light responsive CdS sensitized TiO2 nanorod array films for efficient photocatalytic reduction of gas phase CO2. Molecular Catalysis 2018, 448 , 185-194. https://doi.org/10.1016/j.mcat.2018.01.005
  13. Oleksandr Stroyuk. Synthesis of Nanocrystalline Photo-Active Semiconductors. 2018,,, 241-318. https://doi.org/10.1007/978-3-319-68879-4_5
  14. Fengxia Zhang, Ping Zhang, Qiong Wu, Wenjing Xiong, Qi Kang, Dazhong Shen. Impedance response of photoelectrochemical sensor and size-exclusion filter and catalytic effects in Mn3(BTC)2/g-C3N4/TiO2 nanotubes. Electrochimica Acta 2017, 247 , 80-88. https://doi.org/10.1016/j.electacta.2017.06.084
  15. Jinqing Jiao, Yuechang Wei, Yilong Zhao, Zhen Zhao, Aijun Duan, Jian Liu, Youyong Pang, Jianmei Li, Guiyuan Jiang, Yajun Wang. AuPd/3DOM-TiO 2 catalysts for photocatalytic reduction of CO 2 : High efficient separation of photogenerated charge carriers. Applied Catalysis B: Environmental 2017, 209 , 228-239. https://doi.org/10.1016/j.apcatb.2017.02.076
  16. Sami Rtimi, Stefanos Giannakis, Cesar Pulgarin. Self-Sterilizing Sputtered Films for Applications in Hospital Facilities. Molecules 2017, 22 (7) , 1074. https://doi.org/10.3390/molecules22071074
  17. Min Cheng, Sen Yang, Rong Chen, Xun Zhu, Qiang Liao, Yi Huang. Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2. International Journal of Hydrogen Energy 2017, 42 (15) , 9722-9732. https://doi.org/10.1016/j.ijhydene.2017.01.126
  18. Qi Kang, Xuxiang Wang, Xiaolong Ma, Lingqiang Kong, Ping Zhang, Dazhong Shen. Sensitive detection of ascorbic acid and alkaline phosphatase activity by double-channel photoelectrochemical detection design based on g-C3N4/TiO2 nanotubes hybrid film. Sensors and Actuators B: Chemical 2016, 230 , 231-241. https://doi.org/10.1016/j.snb.2016.02.059
  19. Yanwei Huang, Fengjiao Chen, Xin Li, Ye Yuan, Haini Dong, Sudeshna Samanta, Zhenhai Yu, Saqib Rahman, Jun Zhang, Ke Yang, Shuai Yan, Lin Wang. Pressure-induced phase transitions of exposed curved surface nano-TiO 2 with high photocatalytic activity. Journal of Applied Physics 2016, 119 (21) , 215903. https://doi.org/10.1063/1.4953218
  20. Chunli Hu, Bin Hu, Yuming Wang, Qingsong Zhang, Xingfu Zhou. TiO2 nanotube arrays based DSA electrode and application in treating dye wastewater. Russian Journal of Electrochemistry 2016, 52 (5) , 420-426. https://doi.org/10.1134/S1023193516050062
  21. Haidar Abdul Razaq Abdul Hussian, Marwa Abdul Muhsien Hassan, Ibrahim R. Agool. Synthesis of titanium dioxide (TiO2) nanofiber and nanotube using different chemical method. Optik 2016, 127 (5) , 2996-2999. https://doi.org/10.1016/j.ijleo.2015.12.012
  22. Jinwen Wang, Guangqing Xu, Xu Zhang, Pengbo Zhai, Jun Lv, Dongmei Wang, Zhixiang Zheng, Yucheng Wu. Photoelectrochemical performances of TiO2 nanotube arrays hydrothermally treated in sulfide. Applied Surface Science 2016, 363 , 644-650. https://doi.org/10.1016/j.apsusc.2015.12.038
  23. Cong Zhao, Dachuan Zhu, Shixiu Cao. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices and Microstructures 2016, 90 , 257-264. https://doi.org/10.1016/j.spmi.2015.12.037
  24. Metin Yurddaskal, Tuncay Dikici, Serdar Yildirim, Melis Yurddaskal, Mustafa Toparli, Erdal Celik. Fabrication and characterization of nanostructured anatase TiO 2 films prepared by electrochemical anodization and their photocatalytic properties. Journal of Alloys and Compounds 2015, 651 , 59-71. https://doi.org/10.1016/j.jallcom.2015.08.064
  25. Özge Kerkez Kuyumcu, İsmail Boz. Synergistic effect of Pt0 and M2+ (Cu2+, Ni2+, Co2+) on photo(electro)catalytic activity of TiO2 nanorod array thin films. Journal of Photochemistry and Photobiology A: Chemistry 2015, 301 , 32-39. https://doi.org/10.1016/j.jphotochem.2015.01.001
  26. Jinwen Wang, Guangqing Xu, Xu Zhang, Jun Lv, Dongmei Wang, Zhixiang Zheng, Jianmin Wang, Yucheng Wu. Photoelectrochemical activity and its mechanism of mesoporous TiO 2 nanotube arrays prepared with chemical etching method. New Journal of Chemistry 2015, 39 (11) , 9019-9027. https://doi.org/10.1039/C5NJ02204E
  27. Hua Wang, Xiufang Zhang, Yan Su, Hongtao Yu, Shuo Chen, Xie Quan, Fenglin Yang. Photoelectrocatalytic oxidation of aqueous ammonia using TiO2 nanotube arrays. Applied Surface Science 2014, 311 , 851-857. https://doi.org/10.1016/j.apsusc.2014.05.195
  28. Jiating He, Weijie Ji, Lin Yao, Yawen Wang, Bahareh Khezri, Richard D. Webster, Hongyu Chen. Strategy for Nano-Catalysis in a Fixed-Bed System. Advanced Materials 2014, 26 (24) , 4151-4155. https://doi.org/10.1002/adma.201306157
  29. Özge Kerkez, İsmail Boz. Photo(electro)catalytic Activity of Cu2+-Modified TiO2 Nanorod Array Thin Films under Visible Light Irradiation. Journal of Physics and Chemistry of Solids 2014, 75 (5) , 611-618. https://doi.org/10.1016/j.jpcs.2013.12.019
  30. Qiang Liu, Dongyan Ding, Congqin Ning. Anodic Fabrication of Ti-Nb-Zr-O Nanotube Arrays. Journal of Nanomaterials 2014, 2014 , 1-7. https://doi.org/10.1155/2014/240346
  31. Kyung-Suk Moon, Ji-Myung Bae, Sungho Jin, Seunghan Oh. Infrared-Mediated Drug Elution Activity of Gold Nanorod-Grafted TiO 2 Nanotubes. Journal of Nanomaterials 2014, 2014 , 1-8. https://doi.org/10.1155/2014/750813
  32. Özge Kerkez, İsmail Boz. Efficient removal of methylene blue by photocatalytic degradation with TiO2 nanorod array thin films. Reaction Kinetics, Mechanisms and Catalysis 2013, 110 (2) , 543-557. https://doi.org/10.1007/s11144-013-0616-8
  33. C.P. Ferreira, M.C. Gonçalves, R. Caram, R. Bertazzoli, C.A. Rodrigues. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys. Applied Surface Science 2013, 285 , 226-234. https://doi.org/10.1016/j.apsusc.2013.08.041
  34. Xianfeng Gao, Junhong Chen, Chris Yuan. Enhancing the performance of free-standing TiO2 nanotube arrays based dye-sensitized solar cells via ultraprecise control of the nanotube wall thickness. Journal of Power Sources 2013, 240 , 503-509. https://doi.org/10.1016/j.jpowsour.2013.04.037
  35. Xin Nie, Jiangyao Chen, Guiying Li, Huixian Shi, Huijun Zhao, Po-Keung Wong, Taicheng An. Synthesis and characterization of TiO 2 nanotube photoanode and its application in photoelectrocatalytic degradation of model environmental pharmaceuticals. Journal of Chemical Technology & Biotechnology 2013, 88 (8) , 1488-1497. https://doi.org/10.1002/jctb.3992
  36. HaiMin Zhang, XiaoLu Liu, YiBing Li, Ying Li, HuiJun Zhao. {001} facets dominated anatase TiO2: Morphology, formation/etching mechanisms and performance. Science China Chemistry 2013, 56 (4) , 402-417. https://doi.org/10.1007/s11426-012-4766-8
  37. T. Prakash, M. Navaneethan, J. Archana, S. Ponnusamy, C. Muthamizhchelvan, Y. Hayakawa. Preparation of N-methylaniline capped mesoporous TiO2 spheres by simple wet chemical method. Materials Research Bulletin 2013, 48 (4) , 1541-1544. https://doi.org/10.1016/j.materresbull.2012.12.051
  38. Hui Li, Jian-Wen Cheng, Shiwei Shu, Jie Zhang, Lingxia Zheng, Chun Kwan Tsang, Hua Cheng, Fengxia Liang, Shuit-Tong Lee, Yang Yang Li. Selective Removal of the Outer Shells of Anodic TiO 2 Nanotubes. Small 2013, 9 (1) , 37-44. https://doi.org/10.1002/smll.201201874
  39. Dapeng Wu, Zhiyong Gao, Fang Xu, Jiuli Chang, Wenguang Tao, Jinjin He, Shuyan Gao, Kai Jiang. Hierarchical ZnO aggregates assembled by orderly aligned nanorods for dye-sensitized solar cells. CrystEngComm 2013, 15 (6) , 1210. https://doi.org/10.1039/c2ce26460a
  40. Guorui Chen, Peng Gao, Longqiang Wang, Di Bao, Shaoqiang Yang, Yujin Chen, Ying Wang, Guobao Li, Yuzeng Sun. Synthesis of Cd(OH)Cl hollow nano-spiremes from a dipolar binary liquid system and their conversion to Cd(OH)2 hollow nano-spiremes. New Journal of Chemistry 2013, 37 (3) , 815. https://doi.org/10.1039/c2nj41054k
  41. Xianfeng Gao, Dongsheng Guan, Jingwan Huo, Junhong Chen, Chris Yuan. Free standing TiO2 nanotube array electrodes with an ultra-thin Al2O3 barrier layer and TiCl4 surface modification for highly efficient dye sensitized solar cells. Nanoscale 2013, 5 (21) , 10438. https://doi.org/10.1039/c3nr03198e
  42. Seunghan Oh, Kyung-Suk Moon, Joo-Hee Moon, Ji-Myung Bae, Sungho Jin. Visible Light Irradiation-Mediated Drug Elution Activity of Nitrogen-Doped TiO 2 Nanotubes. Journal of Nanomaterials 2013, 2013 , 1-7. https://doi.org/10.1155/2013/802318
  43. Porun Liu, Yun Wang, Haimin Zhang, Taicheng An, Huagui Yang, Zhiyong Tang, Weiping Cai, Huijun Zhao. Vapor-Phase Hydrothermal Transformation of HTiOF 3 Intermediates into {001} Faceted Anatase Single-Crystalline Nanosheets. Small 2012, 8 (23) , 3664-3673. https://doi.org/10.1002/smll.201200971
  44. Thomas Berger, Damián Monllor-Satoca, Milena Jankulovska, Teresa Lana-Villarreal, Roberto Gómez. The Electrochemistry of Nanostructured Titanium Dioxide Electrodes. ChemPhysChem 2012, 13 (12) , 2824-2875. https://doi.org/10.1002/cphc.201200073
  45. Yanzong Zhang, Xiaoyan Xiong, Yue Han, Xiaohong Zhang, Fei Shen, Shihuai Deng, Hong Xiao, Xinyao Yang, Gang Yang, Hong Peng. Photoelectrocatalytic degradation of recalcitrant organic pollutants using TiO2 film electrodes: An overview. Chemosphere 2012, 88 (2) , 145-154. https://doi.org/10.1016/j.chemosphere.2012.03.020
  46. L. Cui, K.N. Hui, K.S. Hui, S.K. Lee, W. Zhou, Z.P. Wan, Chi-Nhan Ha Thuc. Facile microwave-assisted hydrothermal synthesis of TiO2 nanotubes. Materials Letters 2012, 75 , 175-178. https://doi.org/10.1016/j.matlet.2012.02.004
  47. Cheng-Wei Wang, Jian-Biao Chen, Lin-Qing Wang, You-Min Kang, Dong-Sheng Li, Feng Zhou. Single crystal TiO2 nanorods: Large-scale synthesis and field emission. Thin Solid Films 2012, 520 (15) , 5036-5041. https://doi.org/10.1016/j.tsf.2012.03.039
  48. Yuekun Lai, Jiaojiao Gong, Changjian Lin. Self-organized TiO2 nanotube arrays with uniform platinum nanoparticles for highly efficient water splitting. International Journal of Hydrogen Energy 2012, 37 (8) , 6438-6446. https://doi.org/10.1016/j.ijhydene.2012.01.078
  49. . Dye-Sensitized Solar Cells II. 2012,,, 199-233. https://doi.org/10.1002/9783527647668.ch6
  50. Kyung-Suk Moon, Sang-Hui Yu, Ji-Myung Bae, Seunghan Oh. Biphasic Osteogenic Characteristics of Human Mesenchymal Stem Cells Cultured on TiO 2 Nanotubes of Different Diameters. Journal of Nanomaterials 2012, 2012 , 1-8. https://doi.org/10.1155/2012/252481
  51. Hongjun Wu, Zhonghai Zhang. Photoelectrochemical water splitting and simultaneous photoelectrocatalytic degradation of organic pollutant on highly smooth and ordered TiO2 nanotube arrays. Journal of Solid State Chemistry 2011, 184 (12) , 3202-3207. https://doi.org/10.1016/j.jssc.2011.10.012
  52. Shengsen Zhang, Jingxia Qiu, Jisheng Han, Haimin Zhang, Porun Liu, Shanqing Zhang, Feng Peng, Huijun Zhao. A facile one-step preparation of hierarchically-structured TiO2 nanotube array photoanodes with enhanced photocatalytic activity. Electrochemistry Communications 2011, 13 (11) , 1151-1154. https://doi.org/10.1016/j.elecom.2011.09.012
  53. Xiaosong Zhou, Feng Peng, Hongjuan Wang, Hao Yu. Boron and nitrogen-codoped TiO2 nanorods: Synthesis, characterization, and photoelectrochemical properties. Journal of Solid State Chemistry 2011, 184 (11) , 3002-3007. https://doi.org/10.1016/j.jssc.2011.09.017
  54. Haimin Zhang, Porun Liu, Feng Li, Hongwei Liu, Yun Wang, Shanqing Zhang, Mingxing Guo, Huiming Cheng, Huijun Zhao. Facile Fabrication of Anatase TiO2 Microspheres on Solid Substrates and Surface Crystal Facet Transformation from {001} to {101}. Chemistry - A European Journal 2011, 17 (21) , 5949-5957. https://doi.org/10.1002/chem.201002433
  55. Hualan Zhou, Zhong Zou, Sha Wu, Fangzhou Ge, Ying Li, Wenjian Shi. Rapid synthesis of TiO2 hollow nanostructures with crystallized walls by using CuO as template and microwave heating. Materials Letters 2011, 65 (6) , 1034-1036. https://doi.org/10.1016/j.matlet.2011.01.007
  56. Q Wang, Y Z Pan, S S Huang, S T Ren, P Li, J J Li. Resistive and capacitive response of nitrogen-doped TiO 2 nanotubes film humidity sensor. Nanotechnology 2011, 22 (2) , 025501. https://doi.org/10.1088/0957-4484/22/2/025501
  57. Jing Zhou, Gaoling Zhao, Bin Song, Gaorong Han. Solvent-controlled synthesis of three-dimensional TiO2 nanostructures via a one-step solvothermal route. CrystEngComm 2011, 13 (7) , 2294. https://doi.org/10.1039/c0ce00793e
  58. Qiang Zhou, Xianfeng Yang, Shanqing Zhang, Yaxiong Han, Gangfeng Ouyang, Zhenhui He, Chaolun Liang, Mingmei Wu, Huijun Zhao. Rutile nanowire arrays: tunable surface densities, wettability and photochemistry. Journal of Materials Chemistry 2011, 21 (39) , 15806. https://doi.org/10.1039/c1jm12690c