Synthesis and Photoinduced Charge-Transfer Properties of a ZnFe2O4-Sensitized TiO2 Nanotube Array Electrode

View Author Information
Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China
Department of Chemical and Biomolecular Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
*Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, People’s Republic of China. Telephone: +86-411-8470-7733. Fax: +86-411-8470-8083. E-mail: [email protected]
Cite this: Langmuir 2011, 27, 6, 3113–3120
Publication Date (Web):February 18, 2011
https://doi.org/10.1021/la2000975
Copyright © 2011 American Chemical Society
Article Views
2727
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)

Abstract

TiO2 nanotube arrays sensitized with ZnFe2O4 nano-crystals were successfully fabricated by a two-step process of anodization and a vacuum-assistant impregnation method followed by annealing. The sample was studied by an environmental scanning electron microscope, a transmission electron microscope, energy-dispersive X-ray analysis, and X-ray diffraction to characterize its morphology and chemical composition. Ultraviolet−visible (UV−vis) absorption spectra and a photoelectrochemical measurement approved that the ZnFe2O4 sensitization enhanced the probability of photoinduced charge separation and extended the range of the photoresponse of TiO2 nanotube arrays from the UV to visible region. In addition, the behaviors of photoinduced charge transfer in a TiO2 nanotube array electrode before and after sensitization by ZnFe2O4 nanocrystals were comparatively studied. The photoluminescence of the TiO2 nanotube array electrode became suppressed, and the surface photovoltage responses on the spectrum were significantly enhanced after the introduction of ZnFe2O4 nanocrystals. The transfer dynamics of the photoinduced charges were observed directly by a transient photovoltage measurement, which revealed a fast charge separation at the interface between ZnFe2O4 nanocrystals and TiO2 nanotubes upon light excitation.

Cited By


This article is cited by 93 publications.

  1. Anchao Zhang, Puyang Zhou, Xinmin Zhang, Haixia Li, Yichao Wang, Zhijun Sun, Jun Xiang, Sheng Su, Zhichao Liu. Insights into Efficient Removal of Gaseous Hg0 using AgIO3-Modified BiOI/CoFe2O4 Composites through Photocatalytic Oxidation. Energy & Fuels 2019, 33 (12) , 12538-12548. https://doi.org/10.1021/acs.energyfuels.9b02366
  2. Haowei Lin, Kai Chen, Mingke Li, Beibei Ji, Yaohui Jia, Xinyu Liu, Jinling Li, Weiqiang Song, Chunlong Guan. Constructing a Green Light Photodetector on Inorganic/Organic Semiconductor Homogeneous Hybrid Nanowire Arrays with Remarkably Enhanced Photoelectric Response. ACS Applied Materials & Interfaces 2019, 11 (10) , 10146-10152. https://doi.org/10.1021/acsami.8b20340
  3. Rajeshkumar S. Hyam, Jihoon Jeon, Songhwa Chae, Yong Tae Park, Sung Jae Kim, Byeongchan Lee, Choongyeop Lee, and Dukhyun Choi . Plasmonic–Photonic Interference Coupling in Submicrometer Amorphous TiO2–Ag Nanoarchitectures. Langmuir 2017, 33 (43) , 12398-12403. https://doi.org/10.1021/acs.langmuir.7b01080
  4. Jie Zhu, Xiaohe Huo, Xiaoqiang Liu, and Huangxian Ju . Gold Nanoparticles Deposited Polyaniline–TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing. ACS Applied Materials & Interfaces 2016, 8 (1) , 341-349. https://doi.org/10.1021/acsami.5b08837
  5. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  6. Suzhen Liang, Jingfu He, Zhihu Sun, Qinghua Liu, Yong Jiang, Hao Cheng, Bo He, Zhi Xie, and Shiqiang Wei . Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters. The Journal of Physical Chemistry C 2012, 116 (16) , 9049-9053. https://doi.org/10.1021/jp300552s
  7. Dongting Wang, Xin Li, Jianfeng Chen, and Xia Tao . Enhanced Visible-Light Photoelectrocatalytic Degradation of Organic Contaminants at Iodine-Doped Titanium Dioxide Film Electrode. Industrial & Engineering Chemistry Research 2012, 51 (1) , 218-224. https://doi.org/10.1021/ie202009a
  8. Jing Jiang, Xi Zhang, Peibei Sun, and Lizhi Zhang . ZnO/BiOI Heterostructures: Photoinduced Charge-Transfer Property and Enhanced Visible-Light Photocatalytic Activity. The Journal of Physical Chemistry C 2011, 115 (42) , 20555-20564. https://doi.org/10.1021/jp205925z
  9. Mohamad Mohsen Momeni, Mohammad Najafi. Structural, morphological, optical and photoelectrochemical properties of ZnFe2O4 thin films grown via an electrodeposition method. Inorganic Chemistry Communications 2021, 132 , 108809. https://doi.org/10.1016/j.inoche.2021.108809
  10. L. Renuka, K.S. Anantharaju, Y.S. Vidya, H. Nagabhushana, B. Uma, S. Malini, Sunil S. More, Praveennath Koppad. Porous network ZrO2/ZnFe2O4 nanocomposite with heterojunction towards industrial water purification under sunlight: Enhanced charge separation and elucidation of photo-mechanism. Ceramics International 2021, 47 (10) , 14845-14861. https://doi.org/10.1016/j.ceramint.2020.08.219
  11. Shunhui Zhao, Min Fu, Yanxia Li, Xueli Hu, Chenxi Yuan, Rui Pan. Facile hydrothermal preparation of a ZnFe2O4/TiO2 heterojunction for NOx removal. Molecular Catalysis 2021, 507 , 111570. https://doi.org/10.1016/j.mcat.2021.111570
  12. J. Nimita Jebaranjitham, Adhimoorthy Prasannan, K. Sankarasubramanian, K. S. Prakash, Baskaran Ganesh Kumar. Earth Abundant Materials for Environmental Remediation and Commercialization. 2021,,, 195-217. https://doi.org/10.1007/978-3-030-68976-6_7
  13. Bowen Li, Qiuye Li, Bhavana Gupta, Chunqing He, Jianjun Yang. Boosting visible-light-driven catalytic hydrogen evolution via surface Ti 3+ and bulk oxygen vacancies in urchin-like hollow black TiO 2 decorated with RuO 2 and Pt dual cocatalysts. Catalysis Science & Technology 2020, 10 (23) , 7914-7921. https://doi.org/10.1039/D0CY01706J
  14. Bowen Li, Qiuye Li, Bhavana Gupta, Zhongjie Guan, Lin Zhang, Min Zhang, Jianjun Yang. Space-induced charge carriers separation enhances photocatalytic hydrogen evolution on hollow urchin-like TiO2 nanomaterial. Journal of Alloys and Compounds 2020, 837 , 155547. https://doi.org/10.1016/j.jallcom.2020.155547
  15. Ru Jiang, Hueyue Zhu, Yongqian Fu, Shengtao Jiang, Enmin Zong, Jun Yao. Photocatalytic Decolorization of Congo Red Wastewater by Magnetic ZnFe 2 O 4 /Graphene Nanosheets Composite under Simulated Solar Light Irradiation. Ozone: Science & Engineering 2020, 42 (2) , 174-182. https://doi.org/10.1080/01919512.2019.1635432
  16. Gao-yu Zhao, Meng-ting Le, Gui-ju Zeng, Yu Zhang, Jin-hai Li. A rapid preparation of PPECu and plasmonic Ag/PPECu nanocomposites with high performance for photocatalytic hydrogen production. Journal of Materials Science: Materials in Electronics 2020, 31 (3) , 2231-2239. https://doi.org/10.1007/s10854-019-02754-3
  17. M. A. Mousa, E. A Gomaa, M. Khairy, M. E. Eltanany. Thermodynamic and Thermal Properties of Solvation for Nano Nickel Ferrite and Nano Zinc Ferrite Prepared by the Sol–Gel Method in Different CH3COOH Concentrations at Different Temperatures. Journal of Inorganic and Organometallic Polymers and Materials 2020, 30 (2) , 417-426. https://doi.org/10.1007/s10904-019-01200-5
  18. J. Nimita Jebaranjitham, Baskaran Ganesh Kumar. Heterogeneous Type-I and Type-II Catalysts for the Degradation of Pollutants. 2020,,, 209-234. https://doi.org/10.1007/978-3-030-15608-4_9
  19. Xiayu Lu, Li Liu, Xuan Xie, Yu Cui, Emeka E. Oguzie, Fuhui Wang. Synergetic effect of graphene and Co(OH)2 as cocatalysts of TiO2 nanotubes for enhanced photogenerated cathodic protection. Journal of Materials Science & Technology 2020, 37 , 55-63. https://doi.org/10.1016/j.jmst.2019.07.034
  20. Hongyu Deng, Huan He, Shijie Sun, Xintong Zhu, Dongxu Zhou, Fengxia Han, Bin Huang, Xuejun Pan. Photocatalytic degradation of dye by Ag/TiO2 nanoparticles prepared with different sol–gel crystallization in the presence of effluent organic matter. Environmental Science and Pollution Research 2019, 26 (35) , 35900-35912. https://doi.org/10.1007/s11356-019-06728-0
  21. Sher Bahadur Rawal, Hye Jin Kang, Dong-Il Won, Wan In Lee. Novel ZnFe2O4/WO3, a highly efficient visible-light photocatalytic system operated by a Z-scheme mechanism. Applied Catalysis B: Environmental 2019, 256 , 117856. https://doi.org/10.1016/j.apcatb.2019.117856
  22. Xinshan Rong, Haifei Chen, Jian Rong, Xiaoying Zhang, Jing Wei, Shuang Liu, Xiangtong Zhou, Jicheng Xu, Fengxian Qiu, Zhiren Wu. An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. Chemical Engineering Journal 2019, 371 , 286-293. https://doi.org/10.1016/j.cej.2019.04.052
  23. Chi-Jung Chang, Wei-Che Tsai. CuS ZnS decorated Fe3O4 nanoparticles as magnetically separable composite photocatalysts with excellent hydrogen production activity. International Journal of Hydrogen Energy 2019, 44 (37) , 20872-20880. https://doi.org/10.1016/j.ijhydene.2018.06.083
  24. Andris Šutka, Martin Järvekülg, Kārlis A. Gross. Photocatalytic Nanoheterostructures and Chemically Bonded Junctions Made by Solution-Based Approaches. Critical Reviews in Solid State and Materials Sciences 2019, 44 (3) , 239-263. https://doi.org/10.1080/10408436.2018.1485549
  25. Yan Jiang, Mengmeng Zhang, Yanjun Xin, Chao Chai, Qinghua Chen. Construction of immobilized CuS/TiO 2 nanobelts heterojunction photocatalyst for photocatalytic degradation of enrofloxacin: synthesis, characterization, influencing factors and mechanism insight. Journal of Chemical Technology & Biotechnology 2019, 46 https://doi.org/10.1002/jctb.6006
  26. Liang Bian, Jianan Nie, Xiaoqiang Jiang, Mianxin Song, Faqin Dong, Liping Shang, Hu Deng, Huichao He, Nelson Belzile, Yuwei Chen, Bing Xu, Xiaonan Liu. Selective adsorption of uranyl and potentially toxic metal ions at the core-shell MFe2O4-TiO2 (M=Mn, Fe, Zn, Co, or Ni) nanoparticles. Journal of Hazardous Materials 2019, 365 , 835-845. https://doi.org/10.1016/j.jhazmat.2018.11.076
  27. Jie Jian, Guangshen Jiang, Roel van de Krol, Bingqing Wei, Hongqiang Wang. Recent advances in rational engineering of multinary semiconductors for photoelectrochemical hydrogen generation. Nano Energy 2018, 51 , 457-480. https://doi.org/10.1016/j.nanoen.2018.06.074
  28. Ljubica Andjelković, Marija Šuljagić, Mladen Lakić, Dejan Jeremić, Predrag Vulić, Aleksandar S. Nikolić. A study of the structural and morphological properties of Ni–ferrite, Zn–ferrite and Ni–Zn–ferrites functionalized with starch. Ceramics International 2018, 44 (12) , 14163-14168. https://doi.org/10.1016/j.ceramint.2018.05.018
  29. I. Neelakanta Reddy, Ch. Venkata Reddy, Adem Sreedhar, Jaesool Shim, Migyung Cho, Kisoo Yoo, Dongseob Kim, Jin Seog Gwag. A stable novel nanostructure of ZnFe2O4 based nanocomposite for improved photoelectrocatalytic and photocatalytic activities. Journal of Electroanalytical Chemistry 2018, 823 , 517-526. https://doi.org/10.1016/j.jelechem.2018.07.003
  30. Jing Li, Hongxiao Zhao, Yan Lei, Qingyuan Yang, Zhi Zheng. Synthesis and Photocatalytic Properties of SnSe 2 /Se Heterojunction Films. Nano 2018, 13 (04) , 1850045. https://doi.org/10.1142/S1793292018500455
  31. Xuefeng She, Zhuo Zhang, Minki Baek, Kijung Yong. Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures. Applied Surface Science 2018, 429 , 29-36. https://doi.org/10.1016/j.apsusc.2017.06.257
  32. Naveen Kumar Veldurthi, Neerugatti KrishnaRao Eswar, Satyapaul A. Singh, Giridhar Madras. Heterojunction ZnWO 4 /ZnFe 2 O 4 composites with concerted effects and integrated properties for enhanced photocatalytic hydrogen evolution. Catalysis Science & Technology 2018, 8 (4) , 1083-1093. https://doi.org/10.1039/C7CY02281F
  33. Lili Hou, Zhongjie Guan, Min Zhang, Chunqing He, Qiuye Li, Jianjun Yang. Adjusting the ratio of bulk single-electron-trapped oxygen vacancies/surface oxygen vacancies in TiO 2 for efficient photocatalytic hydrogen evolution. Catalysis Science & Technology 2018, 8 (11) , 2809-2817. https://doi.org/10.1039/C8CY00644J
  34. Fengyu Wei, Tao Liu, Fuzhi Zhou, Wei Ran, Yunjin Yao, Hui Wang, Pinghua Wang. Magnetic Recoverable F-N Co-Doped ZnFe 2 O 4 /C/TiO 2 Nanocomposites with UV-Vis Light Photocatalytic Activity. Environmental Engineering Science 2018, 35 (1) , 37-45. https://doi.org/10.1089/ees.2017.0037
  35. Yongzheng Shi, Dongzhi Yang, Yuan Li, Jin Qu, Zhong-Zhen Yu. Fabrication of [email protected] 2 /Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Applied Surface Science 2017, 426 , 622-629. https://doi.org/10.1016/j.apsusc.2017.06.302
  36. Shan Xie, Ke Ouyang, Yan Shao. A solar responsive photocatalytic fuel cell with a heterostructured ZnFe2O4/TiO2-NTs photoanode and an air-breathing cathode. International Journal of Hydrogen Energy 2017, 42 (49) , 29201-29209. https://doi.org/10.1016/j.ijhydene.2017.10.059
  37. Anuraj S. Kshirsagar, Ashish Gautam, Pawan K. Khanna. Efficient photo-catalytic oxidative degradation of organic dyes using CuInSe2/TiO2 hybrid hetero-nanostructures. Journal of Photochemistry and Photobiology A: Chemistry 2017, 349 , 73-90. https://doi.org/10.1016/j.jphotochem.2017.08.058
  38. Xuefeng She, Zhuo Zhang. ZnFe2O4 Nanotapers: Slag Assistant-Growth and Enhanced Photoelectrochemical Efficiency. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-1938-7
  39. Alessandra Truppi, Francesca Petronella, Tiziana Placido, Marinella Striccoli, Angela Agostiano, Maria Curri, Roberto Comparelli. Visible-Light-Active TiO2-Based Hybrid Nanocatalysts for Environmental Applications. Catalysts 2017, 7 (12) , 100. https://doi.org/10.3390/catal7040100
  40. Jing Lei, Qian Shao, Xiutong Wang, Qinyi Wei, Lihui Yang, Hong Li, Yanliang Huang, Baorong Hou. ZnFe2O4/TiO2 nanocomposite films for photocathodic protection of 304 stainless steel under visible light. Materials Research Bulletin 2017, 95 , 253-260. https://doi.org/10.1016/j.materresbull.2017.07.048
  41. Ming Qin, Qin Shuai, Guanglei Wu, Bohan Zheng, Zhengdong Wang, Hongjing Wu. Zinc ferrite composite material with controllable morphology and its applications. Materials Science and Engineering: B 2017, 224 , 125-138. https://doi.org/10.1016/j.mseb.2017.07.016
  42. Xiaojie Yuan, Junhui Yi, Hongjuan Wang, Hao Yu, Shanqing Zhang, Feng Peng. New route of fabricating BiOI and Bi 2 O 3 supported TiO 2 nanotube arrays via the electrodeposition of bismuth nanoparticles for photocatalytic degradation of acid orange II. Materials Chemistry and Physics 2017, 196 , 237-244. https://doi.org/10.1016/j.matchemphys.2017.05.003
  43. Yang Hou, Xiaodong Zhuang, Xinliang Feng. Recent Advances in Earth-Abundant Heterogeneous Electrocatalysts for Photoelectrochemical Water Splitting. Small Methods 2017, 1 (6) , 1700090. https://doi.org/10.1002/smtd.201700090
  44. Xi Chen, Yutang Liu, Xinnian Xia, Longlu Wang. Popcorn balls-like ZnFe 2 O 4 -ZrO 2 microsphere for photocatalytic degradation of 2,4-dinitrophenol. Applied Surface Science 2017, 407 , 470-478. https://doi.org/10.1016/j.apsusc.2017.02.198
  45. Shan Xie, Ke Ouyang, Yueming Lao, Peihao He, Qun Wang. Heterostructured ZnFe2O4/TiO2 nanotube arrays with remarkable visible-light photoelectrocatalytic performance and stability. Journal of Colloid and Interface Science 2017, 493 , 198-205. https://doi.org/10.1016/j.jcis.2017.01.023
  46. Liang Bian, Hai-long Li, Hai-liang Dong, Fa-qin Dong, Mian-xin Song, Li-sheng Wang, Tian-liang Zhou, Wei-min Li, Wen-ping Hou, Xiao-yan Zhang, Xi-rui Lu, Xin-Xi Li, Lei Xie. Fluorescent enhancement of bio-synthesized X-Zn-ferrite-bismuth ferrite (X = Mg, Mn or Ni) membranes: Experiment and theory. Applied Surface Science 2017, 396 , 1177-1186. https://doi.org/10.1016/j.apsusc.2016.11.108
  47. Meng Wei, Junmin Wan, Zhiwen Hu, Zhiqin Peng, Bing Wang, Huigang Wang. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO 2 nanotube photocatalyst. Applied Surface Science 2017, 391 , 267-274. https://doi.org/10.1016/j.apsusc.2016.05.161
  48. Yajie Chen, Guohui Tian, Wei Zhou, Yuting Xiao, Jinge Wang, Xin Zhang, Honggang Fu. Enhanced photogenerated carrier separation in CdS quantum dot sensitized ZnFe 2 O 4 /ZnIn 2 S 4 nanosheet stereoscopic films for exceptional visible light photocatalytic H 2 evolution performance. Nanoscale 2017, 9 (18) , 5912-5921. https://doi.org/10.1039/C7NR00155J
  49. Xuefeng She, Zhuo Zhang, Minki Baek, Kijung Yong. Elevated photoelectrochemical activity of FeVO 4 /ZnFe 2 O 4 /ZnO branch-structures via slag assisted-synthesis. RSC Advances 2017, 7 (27) , 16787-16794. https://doi.org/10.1039/C7RA00812K
  50. Juhua Luo, Zhu Yan, Rongqi Liu, Jianguang Xu, Xu Wang. Synthesis and excellent visible light photocatalysis performance of magnetic reduced graphene oxide/ZnO/ZnFe 2 O 4 composites. RSC Advances 2017, 7 (38) , 23246-23254. https://doi.org/10.1039/C7RA02083J
  51. S. M. Masoudpanah, M. Hasheminisari, A. Ghasemi. Magnetic properties and photocatalytic activity of ZnFe2−x La x O4 nanoparticles synthesized by sol–gel autocombustion method. Journal of Sol-Gel Science and Technology 2016, 80 (2) , 487-494. https://doi.org/10.1007/s10971-016-4101-5
  52. Qinghua Chen, Shuna Wu, Yanjun Xin. Synthesis of Au–CuS–TiO 2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline. Chemical Engineering Journal 2016, 302 , 377-387. https://doi.org/10.1016/j.cej.2016.05.076
  53. Chi-Jung Chang, Zijing Lee, Kuan-Wu Chu, Yi-Hung Wei. CoFe 2 O 4 @ZnS core–shell spheres as magnetically recyclable photocatalysts for hydrogen production. Journal of the Taiwan Institute of Chemical Engineers 2016, 66 , 386-393. https://doi.org/10.1016/j.jtice.2016.06.033
  54. Amel Boudjemaa, Ionel Popescu, Tatjana Juzsakova, Mohammed Kebir, Nassima Helaili, Khaldoun Bachari, Ioan-Cezar Marcu. M-substituted (M = Co, Ni and Cu) zinc ferrite photo-catalysts for hydrogen production by water photo-reduction. International Journal of Hydrogen Energy 2016, 41 (26) , 11108-11118. https://doi.org/10.1016/j.ijhydene.2016.04.088
  55. Xue-Li Zheng, Cao-Thang Dinh, F. Pelayo García de Arquer, Bo Zhang, Min Liu, Oleksandr Voznyy, Yi-Ying Li, Gordon Knight, Sjoerd Hoogland, Zheng-Hong Lu, Xi-Wen Du, Edward H. Sargent. ZnFe 2 O 4 Leaves Grown on TiO 2 Trees Enhance Photoelectrochemical Water Splitting. Small 2016, 12 (23) , 3181-3188. https://doi.org/10.1002/smll.201600534
  56. Yufei Wang, Long Yan, Xiaomei He, Jian Li, Danjun Wang. Controlled fabrication of Ag/TiO2 nanofibers with enhanced stability of photocatalytic activity. Journal of Materials Science: Materials in Electronics 2016, 27 (5) , 5190-5196. https://doi.org/10.1007/s10854-016-4412-x
  57. Yang-Fan Xu, Hua-Shang Rao, Xu-Dong Wang, Hong-Yan Chen, Dai-Bin Kuang, Cheng-Yong Su. In situ formation of zinc ferrite modified Al-doped ZnO nanowire arrays for solar water splitting. Journal of Materials Chemistry A 2016, 4 (14) , 5124-5129. https://doi.org/10.1039/C5TA10563C
  58. Thanh Binh Nguyen, Ruey-an Doong. Fabrication of highly visible-light-responsive ZnFe 2 O 4 /TiO 2 heterostructures for the enhanced photocatalytic degradation of organic dyes. RSC Advances 2016, 6 (105) , 103428-103437. https://doi.org/10.1039/C6RA21002C
  59. Mingyang Xu, Helin Niu, Jinjing Huang, Jiming Song, Changjie Mao, Shengyi Zhang, Chengfeng Zhu, Changle Chen. Facile synthesis of graphene-like Co3S4 nanosheet/Ag2S nanocomposite with enhanced performance in visible-light photocatalysis. Applied Surface Science 2015, 351 , 374-381. https://doi.org/10.1016/j.apsusc.2015.05.158
  60. Yunjin Yao, Jiacheng Qin, Hao Chen, Fengyu Wei, Xueting Liu, Jianlong Wang, Shaobin Wang. One-pot approach for synthesis of N-doped TiO2/ZnFe2O4 hybrid as an efficient photocatalyst for degradation of aqueous organic pollutants. Journal of Hazardous Materials 2015, 291 , 28-37. https://doi.org/10.1016/j.jhazmat.2015.02.042
  61. Katarzyna Siuzdak, Mirosław Sawczak, Anna Lisowska-Oleksiak. Fabrication and properties of electrode material composed of ordered titania nanotubes and pEDOT:PSS. Solid State Ionics 2015, 271 , 56-62. https://doi.org/10.1016/j.ssi.2014.09.041
  62. Haijin Li, Yong Zhou, Wenguang Tu, Jinhua Ye, Zhigang Zou. State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Advanced Functional Materials 2015, 25 (7) , 998-1013. https://doi.org/10.1002/adfm.201401636
  63. Yujing Xue, Yan Sun, Guixin Wang, Kangping Yan, Jingyong Zhao. Effect of NH4F concentration and controlled-charge consumption on the photocatalytic hydrogen generation of TiO2 nanotube arrays. Electrochimica Acta 2015, 155 , 312-320. https://doi.org/10.1016/j.electacta.2014.12.134
  64. Fenglin Liao, Ben Tsz Lo, Douglas Sexton, Jin Qu, Chensheng Ma, Rath Chau-Ting Chan, Qin Lu, Renchao Che, Wai-Ming Kwok, Heyong He, Simon Fairclough, Shik Chi Edman Tsang. A New Class of Tunable Heterojunction by using Two Support Materials for the Synthesis of Supported Bimetallic Catalysts. ChemCatChem 2015, 7 (2) , 230-235. https://doi.org/10.1002/cctc.201402710
  65. S.S. Kumbhar, M.A. Mahadik, S.S. Shinde, K.Y. Rajpure, C.H. Bhosale. Fabrication of ZnFe2O4 films and its application in photoelectrocatalytic degradation of salicylic acid. Journal of Photochemistry and Photobiology B: Biology 2015, 142 , 118-123. https://doi.org/10.1016/j.jphotobiol.2014.12.002
  66. Huanhuan Huo, Zhaodong Xu, Ting Zhang, Cailing Xu. Ni/CdS/TiO 2 nanotube array heterostructures for high performance photoelectrochemical biosensing. Journal of Materials Chemistry A 2015, 3 (11) , 5882-5888. https://doi.org/10.1039/C4TA07190E
  67. Y. H. Gao, P. P. Wang, M. H. Zhang, Y. Lei, H. L. Niu, P. J. Li, W. J. Fa, Z. Zheng. Heavy doping of S 2 in Cu 7.2 S 4 lattice into chemically homogeneous superlattice Cu 7.2 S x nanowires: strong photoelectric response. Journal of Materials Chemistry C 2015, 3 (11) , 2575-2581. https://doi.org/10.1039/C4TC01803F
  68. Xuan Guo, Haojun Zhu, Quan Li. Visible-light-driven photocatalytic properties of ZnO/ZnFe2O4 core/shell nanocable arrays. Applied Catalysis B: Environmental 2014, 160-161 , 408-414. https://doi.org/10.1016/j.apcatb.2014.05.047
  69. Xiaodi Zhu, Fan Zhang, Mengjiao Wang, Jianjun Ding, Song Sun, Jun Bao, Chen Gao. Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2. Applied Surface Science 2014, 319 , 83-89. https://doi.org/10.1016/j.apsusc.2014.07.051
  70. Kun Yang, Wenhong Pu, Yuanbin Tan, Man Zhang, Changzhu Yang, Jingdong Zhang. Enhanced photoelectrocatalytic activity of Cr-doped TiO2 nanotubes modified with polyaniline. Materials Science in Semiconductor Processing 2014, 27 , 777-784. https://doi.org/10.1016/j.mssp.2014.08.007
  71. Meidan Ye, Miaoqiang Lv, Chang Chen, James Iocozzia, Changjian Lin, Zhiqun Lin. Design, Fabrication, and Modification of Cost-Effective Nanostructured TiO2 for Solar Energy Applications. 2014,,, 9-54. https://doi.org/10.1007/978-1-4471-6473-9_2
  72. Xu Liu, Zhongqing Liu, Jinlin Lu, Xuelian Wu, Bo Xu, Wei Chu. Electrodeposition preparation of Ag nanoparticles loaded TiO2 nanotube arrays with enhanced photocatalytic performance. Applied Surface Science 2014, 288 , 513-517. https://doi.org/10.1016/j.apsusc.2013.10.062
  73. Mengye Wang, James Ioccozia, Lan Sun, Changjian Lin, Zhiqun Lin. Inorganic-modified semiconductor TiO 2 nanotube arrays for photocatalysis. Energy Environ. Sci. 2014, 7 (7) , 2182-2202. https://doi.org/10.1039/C4EE00147H
  74. Youhong Guo, Yanming Fu, Ya Liu, Shaohua Shen. Photoelectrochemical activity of ZnFe 2 O 4 modified α-Fe 2 O 3 nanorod array films. RSC Advances 2014, 4 (70) , 36967. https://doi.org/10.1039/C4RA05289G
  75. Jie Chen, Shaohua Shen, Penghui Guo, Po Wu, Liejin Guo. Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation. Journal of Materials Chemistry A 2014, 2 (13) , 4605. https://doi.org/10.1039/c3ta14811d
  76. Bing-Xin Lei, Wei Sun, Zhen-Fan Sun. Synthesis of visible-light absorbing CoFe2O4 sensitized TiO2 nanotube arrays electrode with enhanced photoelectrochemical performance. Materials Research Bulletin 2013, 48 (9) , 3625-3629. https://doi.org/10.1016/j.materresbull.2013.04.085
  77. Meng Wang, Jiangang Jiang, Guanjie Liu, Jinwen Shi, Liejin Guo. Controllable synthesis of double layered tubular CdSe/ZnO arrays and their photoelectrochemical performance for hydrogen production. Applied Catalysis B: Environmental 2013, 138-139 , 304-310. https://doi.org/10.1016/j.apcatb.2013.02.027
  78. Lin Sun, Rong Shao, Lanqin Tang, Zhidong Chen. Synthesis of ZnFe2O4/ZnO nanocomposites immobilized on graphene with enhanced photocatalytic activity under solar light irradiation. Journal of Alloys and Compounds 2013, 564 , 55-62. https://doi.org/10.1016/j.jallcom.2013.02.147
  79. Arif Sheikh, Ashish Yengantiwar, Meenal Deo, Sarika Kelkar, Satishchandra Ogale. Near-Field Plasmonic Functionalization of Light Harvesting Oxide-Oxide Heterojunctions for Efficient Solar Photoelectrochemical Water Splitting: The AuNP/ZnFe 2 O 4 /ZnO System. Small 2013, 9 (12) , 2091-2096. https://doi.org/10.1002/smll.201202140
  80. Taiping Xie, Longjun Xu, Chenglun Liu, Yuan Wang. Magnetic composite ZnFe2O4/SrFe12O19: Preparation, characterization, and photocatalytic activity under visible light. Applied Surface Science 2013, 273 , 684-691. https://doi.org/10.1016/j.apsusc.2013.02.113
  81. Kansong Chen, Xinran Feng, Rui Hu, Yuebin Li, Kun Xie, Yang Li, Haoshuang Gu. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. Journal of Alloys and Compounds 2013, 554 , 72-79. https://doi.org/10.1016/j.jallcom.2012.11.126
  82. Linsong Zhang, Zhi-Gang Shao, Hongmei Yu, Xunying Wang, Baolian Yi. IrO2 coated TiO2 nanopore arrays electrode for SPE HBr electrolysis. Journal of Electroanalytical Chemistry 2013, 688 , 262-268. https://doi.org/10.1016/j.jelechem.2012.08.008
  83. Qingsen Meng, Tuo Wang, Enzuo Liu, Xinbin Ma, Qingfeng Ge, Jinlong Gong. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics 2013, 15 (24) , 9549. https://doi.org/10.1039/c3cp51476e
  84. Qing Kang, Junyu Cao, Yuanjian Zhang, Lequan Liu, Hua Xu, Jinhua Ye. Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A 2013, 1 (18) , 5766. https://doi.org/10.1039/c3ta10689f
  85. Mengye Wang, Lan Sun, Jianhuai Cai, Pan Huang, Yufeng Su, Changjian Lin. A facile hydrothermal deposition of ZnFe2O4 nanoparticles on TiO2 nanotube arrays for enhanced visible light photocatalytic activity. Journal of Materials Chemistry A 2013, 1 (39) , 12082. https://doi.org/10.1039/c3ta12577g
  86. Guoxiu Tong, Fangfang Du, Wenhua Wu, Ruonan Wu, Fangting Liu, Yan Liang. Enhanced reactive oxygen species (ROS) yields and antibacterial activity of spongy ZnO/ZnFe2O4 hybrid micro-hexahedra selectively synthesized through a versatile glucose-engineered co-precipitation/annealing process. Journal of Materials Chemistry B 2013, 1 (20) , 2647. https://doi.org/10.1039/c3tb20229a
  87. Song Sun, Xiaoyan Yang, Yi Zhang, Fan Zhang, Jianjun Ding, Jun Bao, Chen Gao. Enhanced photocatalytic activity of sponge-like ZnFe2O4 synthesized by solution combustion method. Progress in Natural Science: Materials International 2012, 22 (6) , 639-643. https://doi.org/10.1016/j.pnsc.2012.11.008
  88. Miguel Pelaez, Nicholas T. Nolan, Suresh C. Pillai, Michael K. Seery, Polycarpos Falaras, Athanassios G. Kontos, Patrick S.M. Dunlop, Jeremy W.J. Hamilton, J.Anthony Byrne, Kevin O'Shea, Mohammad H. Entezari, Dionysios D. Dionysiou. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental 2012, 125 , 331-349. https://doi.org/10.1016/j.apcatb.2012.05.036
  89. E. Moreira, L. A. Fraga, M. H. Mendonça, O. C. Monteiro. Synthesis, optical, and photocatalytic properties of a new visible-light-active ZnFe2O4–TiO2 nanocomposite material. Journal of Nanoparticle Research 2012, 14 (6) https://doi.org/10.1007/s11051-012-0937-y
  90. Jianyu Gong, Wenhong Pu, Changzhu Yang, Jingdong Zhang. A simple electrochemical oxidation method to prepare highly ordered Cr-doped titania nanotube arrays with promoted photoelectrochemical property. Electrochimica Acta 2012, 68 , 178-183. https://doi.org/10.1016/j.electacta.2012.02.049
  91. Yubin Chen, Liejin Guo. Highly efficient visible-light-driven photocatalytic hydrogen production from water using Cd0.5Zn0.5S/TNTs (titanate nanotubes) nanocomposites without noble metals. Journal of Materials Chemistry 2012, 22 (15) , 7507. https://doi.org/10.1039/c2jm16797b
  92. Gaoke Zhang, Jie Gong, Huihui Gan, Fan Lü. The induced synthesis of mixed phase niobate by Cu doping and its photocatalytic property. Journal of Alloys and Compounds 2011, 509 (41) , 9791-9797. https://doi.org/10.1016/j.jallcom.2011.07.108
  93. Yang Hou, Xinyong Li, Qidong Zhao, Xie Quan, Guohua Chen. TiO2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion. Journal of Materials Chemistry 2011, 21 (44) , 18067. https://doi.org/10.1039/c1jm12788h