Effect of Fluorination on the Surface Properties of Titania P25 Powder: An FTIR Study

View Author Information
Department of Analytical Chemistry and NIS Center of Excellence, University of Torino, Via P. Giuria 5, Torino 10125, Italy
Department of IPM Chemistry and NIS Center of Excellence, University of Torino, Via P. Giuria 7, Torino 10125, Italy
§ CNR-ISTEC, Strada delle Cacce 73, Torino 10135, Italy
*Corresponding author. E-mail: [email protected]
Cite this: Langmuir 2010, 26, 4, 2521–2527
Publication Date (Web):October 30, 2009
https://doi.org/10.1021/la902807g
Copyright © 2009 American Chemical Society
Article Views
2013
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (915 KB)
Supporting Info (1)»

Abstract

A study was carried out on the consequences of the −OHsurf/F exchange occurring at the surface of TiO2 P25 when suspended in HF/F solutions. The maximum extent of fluorination was reached at pH 3.0, resulting in the fixation on the surface of ca. 2.5 F/nm2. The surface features of fluorinated samples under two selected conditions were investigated by IR spectroscopy, in comparison with pristine TiO2. The collected data suggested that bridged −OHsurf, likely located on regular facets, was more resistant to exchange with F. Combined high resolution transmission electron microscopy (HRTEM), inductively coupled plasma mass spectrometry (ICP-MS) and IR measurements indicated that the fluorination performed in the adopted condition did not induce any etching of TiO2 particles, and the −OHsurf/F exchange appeared reversible by treatment in concentrated basic solutions. Furthermore, fluorination resulted in an increase of the Lewis acid strength of surface Ti4+ sites, which, as a consequence, retained adsorbed water molecules even after outgassing at 423 K. Such an effect involved the overwhelming majority of cations exposed on regular facets.

Supporting Information

ARTICLE SECTIONS
Jump To

TEM images of pristine TiO2 particles and of TiO2 particles after treatment in HF or NaOH solutions; comparison between the IR spectra of TiO2 outgassed at rt and TiO2−F/3.0 outgassed at 423 K. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 101 publications.

  1. Akbar Mahdavi-Shakib, Janine Sempel, Maya Hoffman, Aisha Oza, Ellie Bennett, Jonathan S. Owen, Amir Rahmani Chokanlu, Brian G. Frederick, Rachel Narehood Austin. Au/TiO2-Catalyzed Benzyl Alcohol Oxidation on Morphologically Precise Anatase Nanoparticles. ACS Applied Materials & Interfaces 2021, 13 (10) , 11793-11804. https://doi.org/10.1021/acsami.0c20442
  2. Nidhal Fessi, Mohamed Faouzi Nsib, Yves Chevalier, Chantal Guillard, Frédéric Dappozze, Ammar Houas, Leonardo Palmisano, Francesco Parrino. Pickering Emulsions of Fluorinated TiO2: A New Route for Intensification of Photocatalytic Degradation of Nitrobenzene. Langmuir 2020, 36 (45) , 13545-13554. https://doi.org/10.1021/acs.langmuir.0c02285
  3. Nidhal Fessi, Mohamed Faouzi Nsib, Luis Cardenas, Chantal Guillard, Frédéric Dappozze, Ammar Houas, Francesco Parrino, Leonardo Palmisano, Gilles Ledoux, David Amans, Yves Chevalier. Surface and Electronic Features of Fluorinated TiO2 and Their Influence on the Photocatalytic Degradation of 1-Methylnaphthalene. The Journal of Physical Chemistry C 2020, 124 (21) , 11456-11468. https://doi.org/10.1021/acs.jpcc.0c01929
  4. Lorenzo Mino, Francesco Pellegrino, Steffi Rades, Jörg Radnik, Vasile-Dan Hodoroaba, Giuseppe Spoto, Valter Maurino, Gianmario Martra. Beyond Shape Engineering of TiO2 Nanoparticles: Post-Synthesis Treatment Dependence of Surface Hydration, Hydroxylation, Lewis Acidity and Photocatalytic Activity of TiO2 Anatase Nanoparticles with Dominant {001} or {101} Facets. ACS Applied Nano Materials 2018, 1 (9) , 5355-5365. https://doi.org/10.1021/acsanm.8b01477
  5. Yoshio Nosaka and Atsuko Y. Nosaka . Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chemical Reviews 2017, 117 (17) , 11302-11336. https://doi.org/10.1021/acs.chemrev.7b00161
  6. Jue Liu, Daniel Olds, Rui Peng, Lei Yu, Guo Shiou Foo, Shuo Qian, Jong Keum, Beth S. Guiton, Zili Wu, and Katharine Page . Quantitative Analysis of the Morphology of {101} and {001} Faceted Anatase TiO2 Nanocrystals and Its Implication on Photocatalytic Activity. Chemistry of Materials 2017, 29 (13) , 5591-5604. https://doi.org/10.1021/acs.chemmater.7b01172
  7. Xiang He, Zhuoran Gan, Sergey Fisenko, Dawei Wang, Hani M. El-Kaderi, and Wei-Ning Wang . Rapid Formation of Metal–Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2 Photoreduction. ACS Applied Materials & Interfaces 2017, 9 (11) , 9688-9698. https://doi.org/10.1021/acsami.6b16817
  8. Augusto Márquez, Thomas Berger, Andrea Feinle, Nicola Hüsing, Martin Himly, Albert Duschl, and Oliver Diwald . Bovine Serum Albumin Adsorption on TiO2 Colloids: The Effect of Particle Agglomeration and Surface Composition. Langmuir 2017, 33 (10) , 2551-2558. https://doi.org/10.1021/acs.langmuir.6b03785
  9. Jiewei Chen, Gaoxiang Wu, Tianyue Wang, Xiaodan Li, Meicheng Li, Yuanhua Sang, and Hong Liu . Carrier Step-by-Step Transport Initiated by Precise Defect Distribution Engineering for Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Interfaces 2017, 9 (5) , 4634-4642. https://doi.org/10.1021/acsami.6b14700
  10. Jamal Ftouni, Ara Muñoz-Murillo, Andrey Goryachev, Jan P. Hofmann, Emiel J. M. Hensen, Li Lu, Christopher J. Kiely, Pieter C. A. Bruijnincx, and Bert M. Weckhuysen . ZrO2 Is Preferred over TiO2 as Support for the Ru-Catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone. ACS Catalysis 2016, 6 (8) , 5462-5472. https://doi.org/10.1021/acscatal.6b00730
  11. Maxim E. Sergeev, Federica Morgia, Mark Lazari, Christopher Wang, Jr., and R. Michael van Dam . Titania-Catalyzed Radiofluorination of Tosylated Precursors in Highly Aqueous Medium. Journal of the American Chemical Society 2015, 137 (17) , 5686-5694. https://doi.org/10.1021/jacs.5b02659
  12. Jonathan I. Brauer and Greg Szulczewski . Important Role of Surface Fluoride in Nitrogen-Doped TiO2 Nanoparticles with Visible Light Photocatalytic Activity. The Journal of Physical Chemistry B 2014, 118 (49) , 14188-14195. https://doi.org/10.1021/jp5071049
  13. Juan F. Montoya, Mohamed F. Atitar, Detlef W. Bahnemann, José Peral, and Pedro Salvador . Comprehensive Kinetic and Mechanistic Analysis of TiO2 Photocatalytic Reactions According to the Direct–Indirect Model: (II) Experimental Validation. The Journal of Physical Chemistry C 2014, 118 (26) , 14276-14290. https://doi.org/10.1021/jp4121657
  14. Yulong Liao, Huaiwu Zhang, Wenxiu Que, Peng Zhong, Feiming Bai, Zhiyong Zhong, Qiye Wen, and Wenhao Chen . Activating the Single-Crystal TiO2 Nanoparticle Film with Exposed {001} Facets. ACS Applied Materials & Interfaces 2013, 5 (14) , 6463-6466. https://doi.org/10.1021/am401869e
  15. Kadiatou Therese Dembele, Gurpreet Singh Selopal, Caterina Soldano, Riad Nechache, Julio Cesar Rimada, Isabella Concina, Giorgio Sberveglieri, Federico Rosei, and Alberto Vomiero . Hybrid Carbon Nanotubes–TiO2 Photoanodes for High Efficiency Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (28) , 14510-14517. https://doi.org/10.1021/jp403553t
  16. Yunbo Luan, Liqiang Jing, Ying Xie, Xiaojun Sun, Yujie Feng, and Honggang Fu . Exceptional Photocatalytic Activity of 001-Facet-Exposed TiO2 Mainly Depending on Enhanced Adsorbed Oxygen by Residual Hydrogen Fluoride. ACS Catalysis 2013, 3 (6) , 1378-1385. https://doi.org/10.1021/cs400216a
  17. Lorenzo Mino, Giuseppe Spoto, Silvia Bordiga, and Adriano Zecchina . Rutile Surface Properties Beyond the Single Crystal Approach: New Insights from the Experimental Investigation of Different Polycrystalline Samples and Periodic DFT Calculations. The Journal of Physical Chemistry C 2013, 117 (21) , 11186-11196. https://doi.org/10.1021/jp401916q
  18. Masaaki Kitano, Emiko Wada, Kiyotaka Nakajima, Shigenobu Hayashi, Souichi Miyazaki, Hisayoshi Kobayashi, and Michikazu Hara . Protonated Titanate Nanotubes with Lewis and Brønsted Acidity: Relationship between Nanotube Structure and Catalytic Activity. Chemistry of Materials 2013, 25 (3) , 385-393. https://doi.org/10.1021/cm303324b
  19. Lorenzo Mino, Giuseppe Spoto, Silvia Bordiga, and Adriano Zecchina . Particles Morphology and Surface Properties As Investigated by HRTEM, FTIR, and Periodic DFT Calculations: From Pyrogenic TiO2 (P25) to Nanoanatase. The Journal of Physical Chemistry C 2012, 116 (32) , 17008-17018. https://doi.org/10.1021/jp303942h
  20. Thomas R. Gordon, Matteo Cargnello, Taejong Paik, Filippo Mangolini, Ralph T. Weber, Paolo Fornasiero, and Christopher B. Murray . Nonaqueous Synthesis of TiO2 Nanocrystals Using TiF4 to Engineer Morphology, Oxygen Vacancy Concentration, and Photocatalytic Activity. Journal of the American Chemical Society 2012, 134 (15) , 6751-6761. https://doi.org/10.1021/ja300823a
  21. Damián Monllor-Satoca, Teresa Lana-Villarreal, and Roberto Gómez . Effect of Surface Fluorination on the Electrochemical and Photoelectrocatalytic Properties of Nanoporous Titanium Dioxide Electrodes. Langmuir 2011, 27 (24) , 15312-15321. https://doi.org/10.1021/la203319b
  22. Mahmoud Samadpour, Pablo P. Boix, Sixto Giménez, Azam Iraji Zad, Nima Taghavinia, Iván Mora-Seró, and Juan Bisquert . Fluorine Treatment of TiO2 for Enhancing Quantum Dot Sensitized Solar Cell Performance. The Journal of Physical Chemistry C 2011, 115 (29) , 14400-14407. https://doi.org/10.1021/jp202819y
  23. Lorenzo Mino, Anna Maria Ferrari, Valentina Lacivita, Giuseppe Spoto, Silvia Bordiga, and Adriano Zecchina . CO Adsorption on Anatase Nanocrystals: A Combined Experimental and Periodic DFT Study. The Journal of Physical Chemistry C 2011, 115 (15) , 7694-7700. https://doi.org/10.1021/jp2017049
  24. Chiara Deiana, Ettore Fois, Salvatore Coluccia, and Gianmario Martra . Surface Structure of TiO2 P25 Nanoparticles: Infrared Study of Hydroxy Groups on Coordinative Defect Sites. The Journal of Physical Chemistry C 2010, 114 (49) , 21531-21538. https://doi.org/10.1021/jp107671k
  25. Ricardo H. Gonçalves, Wido Herwig Schreiner and Edson R. Leite . Synthesis of TiO2 Nanocrystals with a High Affinity for Amine Organic Compounds. Langmuir 2010, 26 (14) , 11657-11662. https://doi.org/10.1021/la1007473
  26. Kee Eun Lee, Mario A. Gomez, Samir Elouatik and George P. Demopoulos . Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2 Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 2010, 26 (12) , 9575-9583. https://doi.org/10.1021/la100137u
  27. Yechen Wang, Yaru Wang, Jianjun Zhao, Yiming Xu. Effect of inorganic ions on H2O2 production over illuminated Au/WO3 with visible light. Applied Catalysis B: Environmental 2021, 350 , 120676. https://doi.org/10.1016/j.apcatb.2021.120676
  28. Jianjun Zhao, Yaru Wang, Yechen Wang, Yiming Xu. Mutual influence of cupric cations and several anions in anatase and rutile TiO2 photocatalysis. Photochemical & Photobiological Sciences 2021, 20 (8) , 1099-1107. https://doi.org/10.1007/s43630-021-00083-1
  29. Jianping Chen, Zan Zhu, Wei-Ning Wang. Towards addressing environmental challenges: rational design of metal-organic frameworks-based photocatalysts via a microdroplet approach. Journal of Physics: Energy 2021, 3 (3) , 032005. https://doi.org/10.1088/2515-7655/abe4a2
  30. Tsutomu Hirakawa, Chifumi K. Nishimoto, Asuka Komano, Mai Otsuka, Nobuaki Negishi, Hajime Miyaguchi, Yasuo Seto, Koji Takeuchi. Experimental study for adsorption and photocatalytic reaction of ethyl methylphosphonate molecule as organophosphorus compound adsorbed at surface of titanium dioxide under UV irradiation in ambient condition. Research on Chemical Intermediates 2021, 47 (4) , 1563-1579. https://doi.org/10.1007/s11164-020-04389-0
  31. Guoming Gao, Ximeng Wang, Qifeng Chen, Caibo Xie, Jie Zheng, Huailin Fan, Lulu Ma, Ruifang Guan, Yanfen Fang, Xun Hu. Synergy of surface fluorine and oxygen vacancy of TiO 2 nanosheets for O 2 activation in selective photocatalytic organic transformations. Journal of Materials Chemistry C 2021, 9 (5) , 1593-1603. https://doi.org/10.1039/D0TC04874G
  32. Di Zhang, Sidong Zhang, Yanyan Fang, Dongmei Xie, Xiaowen Zhou, Yuan Lin. Effect of linkers with different chemical structures on photovoltaic performance of CdSe quantum dot-sensitized solar cells. Electrochimica Acta 2021, 367 , 137452. https://doi.org/10.1016/j.electacta.2020.137452
  33. Qimeng Yang, Heng Zhu, Yanghui Hou, Duanduan Liu, Huang Tang, Depei Liu, Weining Zhang, Shicheng Yan, Zhigang Zou. Surface polaron states on single-crystal rutile TiO 2 nanorod arrays enhancing charge separation and transfer. Dalton Transactions 2020, 49 (42) , 15054-15060. https://doi.org/10.1039/D0DT03068F
  34. Jianjun Zhao, Shengwei Liu, Xiao Zhang, Yiming Xu. Different effects of fluoride and phosphate anions on TiO 2 photocatalysis (rutile). Catalysis Science & Technology 2020, 10 (19) , 6552-6561. https://doi.org/10.1039/D0CY01111H
  35. Xiaofang Li, Xiaofeng Wu, Shengwei Liu, Yuhan Li, Jiajie Fan, Kangle Lv. Effects of fluorine on photocatalysis. Chinese Journal of Catalysis 2020, 41 (10) , 1451-1467. https://doi.org/10.1016/S1872-2067(20)63594-X
  36. Marco Minella, Elisa De Laurentiis, Francesco Pellegrino, Marco Prozzi, Federica Dal Bello, Valter Maurino, Claudio Minero. Photocatalytic Transformations of 1H-Benzotriazole and Benzotriazole Derivates. Nanomaterials 2020, 10 (9) , 1835. https://doi.org/10.3390/nano10091835
  37. Satoshi Inagaki, Narumi Yamada, Mai Nishii, Yuko Nishi, Yoshihiro Kubota. Control of framework Al distribution in ZSM-5 zeolite via post-synthetic TiCl4 treatment. Microporous and Mesoporous Materials 2020, 302 , 110223. https://doi.org/10.1016/j.micromeso.2020.110223
  38. Ai-Yong Zhang, Yang Zhou, Xiao Liu, Nai-Hui Huang, Hai-Hong Niu. Photochemical pollutant degradation on facet junction-engineered TiO2 promoted by organic arsenical: Governing roles of arsenic-terminated surface chemistry and bulk-free radical speciation. Journal of Hazardous Materials 2020, 390 , 122159. https://doi.org/10.1016/j.jhazmat.2020.122159
  39. Marianna Bellardita, Corrado Garlisi, Lütfiye Yildiz Ozer, Anna Maria Venezia, Jacinto Sá, Fikret Mamedov, Leonardo Palmisano, Giovanni Palmisano. Highly stable defective TiO2-x with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. Applied Surface Science 2020, 510 , 145419. https://doi.org/10.1016/j.apsusc.2020.145419
  40. Yugan He, Qi Yan, Xuefei Liu, Menglong Dong, Junjiao Yang. Effect of annealing on the structure, morphology and photocatalytic activity of surface-fluorinated TiO2 with dominant {001} facets. Journal of Photochemistry and Photobiology A: Chemistry 2020, 393 , 112400. https://doi.org/10.1016/j.jphotochem.2020.112400
  41. Federica Bertolotti, Anna Vivani, Daniele Moscheni, Fabio Ferri, Antonio Cervellino, Norberto Masciocchi, Antonietta Guagliardi. Structure, Morphology, and Faceting of TiO2 Photocatalysts by the Debye Scattering Equation Method. The P25 and P90 Cases of Study. Nanomaterials 2020, 10 (4) , 743. https://doi.org/10.3390/nano10040743
  42. Chunxiang Li, Zhaohua Jiang, Zhongping Yao. Large-scale preparation of titania film for water splitting reaction. Polyhedron 2020, 179 , 114348. https://doi.org/10.1016/j.poly.2020.114348
  43. Soon Weng Chong, Chin Wei Lai, Joon Ching Juan, Bey Fen Leo. An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy 2019, 191 , 663-671. https://doi.org/10.1016/j.solener.2019.08.065
  44. Yunlong Gao, Molly Lockart, Lowell D. Kispert, Michael K. Bowman. Photo-induced charge separation in hydroxycoumarins on TiO 2 and F–TiO 2. Dalton Transactions 2019, 48 (29) , 10881-10891. https://doi.org/10.1039/C9DT01455A
  45. Tobias Rath, Andrej Uhrich, Alexander Lüken, Guixia Zhao, André Rittermeier, Martin Muhler. Cl 2 Production by Photocatalytic Oxidation of HCl over TiO 2. ChemSusChem 2019, 12 (12) , 2725-2731. https://doi.org/10.1002/cssc.201900642
  46. Di Zhang, Pin Ma, Shuo Wang, Mingpeng Xia, Sidong Zhang, Dongmei Xie, Xiaowen Zhou, Yuan Lin. The in situ ligand exchange linker-assisted assembly of oil-soluble CdSe quantum dots to TiO2 films. Applied Surface Science 2019, 475 , 813-819. https://doi.org/10.1016/j.apsusc.2018.12.289
  47. Heng Zhu, Meiming Zhao, Junkang Zhou, Wenchao Li, Haoyu Wang, Zhe Xu, Lei Lu, Lang Pei, Zhan Shi, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental 2018, 234 , 100-108. https://doi.org/10.1016/j.apcatb.2018.04.040
  48. Tania Guadalupe Peñaflor Galindo, Kota Shiba, Motohiro Tagaya. Particulate Titania Coating on Poly(Dimethylsiloxane) Films for Improving Osteoconductive Ability. Key Engineering Materials 2018, 782 , 151-157. https://doi.org/10.4028/www.scientific.net/KEM.782.151
  49. Zuzana Barbieriková, Dana Dvoranová, Vlasta Brezová. Photoinduced transformation of glycerol in titania suspensions. (An EPR spin trapping study of radical intermediates). Catalysis Today 2018, 313 , 106-113. https://doi.org/10.1016/j.cattod.2017.12.005
  50. S. Ferraris, S. Spriano, M. Miola, E. Bertone, V. Allizond, A.M. Cuffini, G. Banche. Surface modification of titanium surfaces through a modified oxide layer and embedded silver nanoparticles: Effect of reducing/stabilizing agents on precipitation and properties of the nanoparticles. Surface and Coatings Technology 2018, 344 , 177-189. https://doi.org/10.1016/j.surfcoat.2018.03.020
  51. Alireza Haghighat Mamaghani, Fariborz Haghighat, Chang-Seo Lee. Gas phase adsorption of volatile organic compounds onto titanium dioxide photocatalysts. Chemical Engineering Journal 2018, 337 , 60-73. https://doi.org/10.1016/j.cej.2017.12.082
  52. Marianna Bellardita, Corrado Garlisi, Anna Maria Venezia, Giovanni Palmisano, Leonardo Palmisano. Influence of fluorine on the synthesis of anatase TiO 2 for photocatalytic partial oxidation: are exposed facets the main actors?. Catalysis Science & Technology 2018, 8 (6) , 1606-1620. https://doi.org/10.1039/C7CY02382K
  53. Gabriel Jeantelot, Samy Ould-Chikh, Julien Sofack-Kreutzer, Edy Abou-Hamad, Dalaver H. Anjum, Sergei Lopatin, Moussab Harb, Luigi Cavallo, Jean-Marie Basset. Morphology control of anatase TiO 2 for well-defined surface chemistry. Physical Chemistry Chemical Physics 2018, 20 (21) , 14362-14373. https://doi.org/10.1039/C8CP01983E
  54. Jesús A Díaz-Real, Geyla C Dubed-Bandomo, Juan Galindo-de-la-Rosa, Luis G Arriaga, Janet Ledesma-García, Nicolas Alonso-Vante. Impact of the anodization time on the photocatalytic activity of TiO 2 nanotubes. Beilstein Journal of Nanotechnology 2018, 9 , 2628-2643. https://doi.org/10.3762/bjnano.9.244
  55. Pengxin Liu, Jie Chen, Nanfeng Zheng. Photochemical route for preparing atomically dispersed Pd 1 /TiO 2 catalysts on (001)-exposed anatase nanocrystals and P25. Chinese Journal of Catalysis 2017, 38 (9) , 1574-1580. https://doi.org/10.1016/S1872-2067(17)62784-0
  56. Min Chen, Jinzhu Ma, Bo Zhang, Guangzhi He, Yaobin Li, Changbin Zhang, Hong He. Remarkable synergistic effect between {001} facets and surface F ions promoting hole migration on anatase TiO2. Applied Catalysis B: Environmental 2017, 207 , 397-403. https://doi.org/10.1016/j.apcatb.2017.02.048
  57. Denis V. Barsukov, Aleksey V. Saprykin, Irina R. Subbotina, Nikolay Ya. Usachev. Beneficial effect of TiO 2 surface fluorination on the complete photooxidation of ethanol vapor. Mendeleev Communications 2017, 27 (3) , 248-250. https://doi.org/10.1016/j.mencom.2017.05.010
  58. S. Spriano, V. Sarath Chandra, A. Cochis, F. Uberti, L. Rimondini, E. Bertone, A. Vitale, C. Scolaro, M. Ferrari, F. Cirisano, G. Gautier di Confiengo, S. Ferraris. How do wettability, zeta potential and hydroxylation degree affect the biological response of biomaterials?. Materials Science and Engineering: C 2017, 74 , 542-555. https://doi.org/10.1016/j.msec.2016.12.107
  59. Masaaki Kitano, Hisayoshi Kobayashi, Shigenobu Hayashi, Michikazu Hara. Acid Properties of Protonated Titanate Nanotubes. Journal of the Japan Petroleum Institute 2017, 60 (3) , 113-120. https://doi.org/10.1627/jpi.60.113
  60. M. Minella, F. Sordello, C. Minero. Photocatalytic process in TiO 2 /graphene hybrid materials. Evidence of charge separation by electron transfer from reduced graphene oxide to TiO 2. Catalysis Today 2017, 281 , 29-37. https://doi.org/10.1016/j.cattod.2016.03.040
  61. Valter Maurino, Marco Minella, Fabrizio Sordello, Claudio Minero. A proof of the direct hole transfer in photocatalysis: The case of melamine. Applied Catalysis A: General 2016, 521 , 57-67. https://doi.org/10.1016/j.apcata.2015.11.012
  62. Tobias F. Berto, Kai E. Sanwald, Wolfgang Eisenreich, Oliver Y. Gutiérrez, Johannes A. Lercher. Photoreforming of ethylene glycol over Rh/TiO2 and Rh/GaN:ZnO. Journal of Catalysis 2016, 338 , 68-81. https://doi.org/10.1016/j.jcat.2016.02.021
  63. Yongkun Zou, Yuxuan Gong, Bizhou Lin, Nathan P. Mellott. Photodegradation of methylene blue in the visible spectrum: An efficient W6+ ion doped anatase titania photocatalyst via a solvothermal method. Vacuum 2016, 126 , 63-69. https://doi.org/10.1016/j.vacuum.2016.01.018
  64. Xuefei Wang, Rui Yu, Ping Wang, Feng Chen, Huogen Yu. Co-modification of F− and Fe(III) ions as a facile strategy towards effective separation of photogenerated electrons and holes. Applied Surface Science 2015, 351 , 66-73. https://doi.org/10.1016/j.apsusc.2015.05.056
  65. Hua Sheng, Hongna Zhang, Wenjing Song, Hongwei Ji, Wanhong Ma, Chuncheng Chen, Jincai Zhao. Activation of Water in Titanium Dioxide Photocatalysis by Formation of Surface Hydrogen Bonds: An In Situ IR Spectroscopy Study. Angewandte Chemie 2015, 127 (20) , 6003-6007. https://doi.org/10.1002/ange.201412035
  66. Hua Sheng, Hongna Zhang, Wenjing Song, Hongwei Ji, Wanhong Ma, Chuncheng Chen, Jincai Zhao. Activation of Water in Titanium Dioxide Photocatalysis by Formation of Surface Hydrogen Bonds: An In Situ IR Spectroscopy Study. Angewandte Chemie International Edition 2015, 54 (20) , 5905-5909. https://doi.org/10.1002/anie.201412035
  67. Min Zhuang, Yifan Zheng, Zongjian Liu, Wanzhen Huang, Xianchao Hu. Shape-dependent performance of TiO 2 nanocrystals as adsorbents for methyl orange removal. RSC Advances 2015, 5 (17) , 13200-13207. https://doi.org/10.1039/C4RA14636K
  68. Yusuke Kakuma, Atsuko Y. Nosaka, Yoshio Nosaka. Difference in TiO 2 photocatalytic mechanism between rutile and anatase studied by the detection of active oxygen and surface species in water. Physical Chemistry Chemical Physics 2015, 17 (28) , 18691-18698. https://doi.org/10.1039/C5CP02004B
  69. Longhui Nie, Peng Zhou, Jiaguo Yu, Mietek Jaroniec. Deactivation and regeneration of Pt/TiO2 nanosheet-type catalysts with exposed (001) facets for room temperature oxidation of formaldehyde. Journal of Molecular Catalysis A: Chemical 2014, 390 , 7-13. https://doi.org/10.1016/j.molcata.2014.02.033
  70. C.L. Bianchi, S. Gatto, C. Pirola, A. Naldoni, A. Di Michele, G. Cerrato, V. Crocellà, V. Capucci. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental 2014, 146 , 123-130. https://doi.org/10.1016/j.apcatb.2013.02.047
  71. Konstantin Hadjiivanov. Identification and Characterization of Surface Hydroxyl Groups by Infrared Spectroscopy. 2014,,, 99-318. https://doi.org/10.1016/B978-0-12-800127-1.00002-3
  72. Blain Paul, Kwang-Ho Choo, Gajanan S. Ghodake, Daesung Lee. Gold nanoparticles immobilized on crystalline titanate fibres and shuttling effect of charges in solar photocatalysis. RSC Adv. 2014, 4 (103) , 58949-58955. https://doi.org/10.1039/C4RA11529E
  73. Hua Sheng, Qin Li, Wanhong Ma, Hongwei Ji, Chuncheng Chen, Jincai Zhao. Photocatalytic degradation of organic pollutants on surface anionized TiO2: Common effect of anions for high hole-availability by water. Applied Catalysis B: Environmental 2013, 138-139 , 212-218. https://doi.org/10.1016/j.apcatb.2013.03.001
  74. Tsutomu Hirakawa, Keita Sato, Asuka Komano, Shintarou Kishi, Chifumi K. Nishimoto, Nobuaki Mera, Masahiro Kugishima, Taizo Sano, Nobuaki Negishi, Hiromichi Ichinose, Yasuo Seto, Koji Takeuchi. Specific properties on TiO2 photocatalysis to decompose isopropyl methylphosphonofluoridate and dimethyl methylphosphonate in Gas Phase. Journal of Photochemistry and Photobiology A: Chemistry 2013, 264 , 12-17. https://doi.org/10.1016/j.jphotochem.2013.04.012
  75. Thomas Berger, Juan A. Anta, Víctor Morales-Flórez. Surface Properties of Anatase TiO 2 Nanowire Films Grown from a Fluoride-Containing Solution. ChemPhysChem 2013, 14 (8) , 1676-1685. https://doi.org/10.1002/cphc.201300024
  76. S. Livraghi, M. Pelaez, J. Biedrzycki, I. Corazzari, E. Giamello, D.D. Dionysiou. Influence of the chemical synthesis on the physicochemical properties of N-TiO2 nanoparticles. Catalysis Today 2013, 209 , 54-59. https://doi.org/10.1016/j.cattod.2012.12.020
  77. Wenjun Jiang, Jeffrey A. Joens, Dionysios D. Dionysiou, Kevin E. O'Shea. Optimization of photocatalytic performance of TiO2 coated glass microspheres using response surface methodology and the application for degradation of dimethyl phthalate. Journal of Photochemistry and Photobiology A: Chemistry 2013, 262 , 7-13. https://doi.org/10.1016/j.jphotochem.2013.04.008
  78. Maria Vittoria Dozzi, Elena Selli. Effects of phase composition and surface area on the photocatalytic paths on fluorinated titania. Catalysis Today 2013, 206 , 26-31. https://doi.org/10.1016/j.cattod.2012.03.029
  79. Maria Fittipaldi, Dante Gatteschi, Paolo Fornasiero. The power of EPR techniques in revealing active sites in heterogeneous photocatalysis: The case of anion doped TiO2. Catalysis Today 2013, 206 , 2-11. https://doi.org/10.1016/j.cattod.2012.04.024
  80. Claudio Minero, Valter Maurino, Davide Vione. Photocatalytic Mechanisms and Reaction Pathways Drawn from Kinetic and Probe Molecules. 2013,,, 53-72. https://doi.org/10.1002/9783527645404.ch3
  81. Maria Vittoria Dozzi, Elena Selli. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 14 , 13-28. https://doi.org/10.1016/j.jphotochemrev.2012.09.002
  82. Jian Liu, Eric J. Nichols, Jane Howe, Scott T. Misture. Enhanced photocatalytic activity of TiO 2 –niobate nanosheet composites. Journal of Materials Research 2013, 28 (3) , 424-430. https://doi.org/10.1557/jmr.2012.357
  83. Claudio Minero. Surface-Modified Photocatalysts. 2013,,, 23-44. https://doi.org/10.1007/698_2013_250
  84. Valentina Aina, Gabriele Alberto, Chiara Deiana, Yuriy Sakhno, Alessandro Damin, Gianmario Martra. Surface Sites of Nanomaterials: Investigation of Local Structures by In Situ IR Spectroscopy. 2013,,, 145-163. https://doi.org/10.1007/978-1-4614-7675-7_12
  85. Chiara Deiana, Marco Minella, Gloria Tabacchi, Valter Maurino, Ettore Fois, Gianmario Martra. Shape-controlled TiO 2 nanoparticles and TiO 2 P25 interacting with CO and H 2 O 2 molecular probes: a synergic approach for surface structure recognition and physico-chemical understanding. Phys. Chem. Chem. Phys. 2013, 15 (1) , 307-315. https://doi.org/10.1039/C2CP42381B
  86. Zeyan Wang, Baibiao Huang, Ying Dai, Xianglin Zhu, Yuanyuan Liu, Xiaoyang Zhang, Xiaoyan Qin. The roles of growth conditions on the topotactic transformation from TiOF2 nanocubes to 3D hierarchical TiO2 nanoboxes. CrystEngComm 2013, 15 (17) , 3436. https://doi.org/10.1039/c3ce00041a
  87. Claudio Minero, Andrea Bedini, Valter Maurino. Glycerol as a probe molecule to uncover oxidation mechanism in photocatalysis. Applied Catalysis B: Environmental 2012, 128 , 135-143. https://doi.org/10.1016/j.apcatb.2012.02.014
  88. Yu-Yen Kuo, Tze-Huei Li, Jing-Neng Yao, Chiung-Yuan Lin, Chao-Hsin Chien. Hydrothermal crystallization and modification of surface hydroxyl groups of anodized TiO2 nanotube-arrays for more efficient photoenergy conversion. Electrochimica Acta 2012, 78 , 236-243. https://doi.org/10.1016/j.electacta.2012.05.157
  89. Shengwei Liu, Jiaguo Yu, Bei Cheng, Mietek Jaroniec. Fluorinated semiconductor photocatalysts: Tunable synthesis and unique properties. Advances in Colloid and Interface Science 2012, 173 , 35-53. https://doi.org/10.1016/j.cis.2012.02.004
  90. Kangle Lv, Bei Cheng, Jiaguo Yu, Gang Liu. Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. Physical Chemistry Chemical Physics 2012, 14 (16) , 5349. https://doi.org/10.1039/c2cp23461k
  91. Holger W. Strauss, Richard R. Chromik, Salim Hassani, Jolanta E. Klemberg-Sapieha. In situ tribology of nanocomposite Ti–Si–C–H coatings prepared by PE-CVD. Wear 2011, 272 (1) , 133-148. https://doi.org/10.1016/j.wear.2011.08.001
  92. Maria Fittipaldi, Valentina Gombac, Alberto Gasparotto, Chiara Deiana, Gianpiero Adami, Davide Barreca, Tiziano Montini, Gianmario Martra, Dante Gatteschi, Paolo Fornasiero. Synergistic Role of B and F Dopants in Promoting the Photocatalytic Activity of Rutile TiO2. ChemPhysChem 2011, 12 (12) , 2221-2224. https://doi.org/10.1002/cphc.201100254
  93. H Tiainen, M Monjo, J Knychala, O Nilsen, S P Lyngstadaas, J E Ellingsen, H J Haugen. The effect of fluoride surface modification of ceramic TiO 2 on the surface properties and biological response of osteoblastic cells in vitro. Biomedical Materials 2011, 6 (4) , 045006. https://doi.org/10.1088/1748-6041/6/4/045006
  94. Venkata Bharat Ram Boppana, Raul F. Lobo. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. Journal of Catalysis 2011, 281 (1) , 156-168. https://doi.org/10.1016/j.jcat.2011.04.014
  95. Anna Maria Ferrari, Dénes Szieberth, Yves Noel. DFT modeling of anatase nanotubes. Journal of Materials Chemistry 2011, 21 (12) , 4568. https://doi.org/10.1039/c0jm03257c
  96. C. Charbonneau, R. Gauvin, G. P. Demopoulos. Aqueous Solution Synthesis of Crystalline Anatase Nanocolloids for the Fabrication of DSC Photoanodes. Journal of The Electrochemical Society 2011, 158 (3) , H224. https://doi.org/10.1149/1.3529238
  97. K. E. Lee, M. A. Gomez, S. Elouatik, G. B. Shan, G. P. Demopoulos. Vibrational Spectroscopic Imaging of N719-TiO2 Films in the High Wavenumber Region Coupled to EIS Analysis. Journal of The Electrochemical Society 2011, 158 (7) , H708. https://doi.org/10.1149/1.3582323
  98. Bo Wen, Yue Li, Chuncheng Chen, Wanhong Ma, Jincai Zhao. An Unexplored O 2 ‐Involved Pathway for the Decarboxylation of Saturated Carboxylic Acids by TiO 2 Photocatalysis: An Isotopic Probe Study. Chemistry – A European Journal 2010, 16 (39) , 11859-11866. https://doi.org/10.1002/chem.201001704
  99. Mathieu Grandcolas, Jinhua Ye. Preparation of fine, uniform nitrogen- and sulfur-modified TiO 2 nanoparticles from titania nanotubes. Science and Technology of Advanced Materials 2010, 11 (5) , 055001. https://doi.org/10.1088/1468-6996/11/5/055001
  100. Xiuli Wang, Zhaochi Feng, Jianying Shi, Guoqing Jia, Shuai Shen, Jun Zhou, Can Li. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Physical Chemistry Chemical Physics 2010, 12 (26) , 7083. https://doi.org/10.1039/b925277k
Load all citations