Continuous Surface Functionalization of Flame-Made TiO2 Nanoparticles

View Author Information
Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
*Corresponding author: Ph +41 44 632 31 80; Fax +41 44 632 15 95; e-mail [email protected]
†Currently at the Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich.
Cite this: Langmuir 2010, 26, 8, 5815–5822
Publication Date (Web):March 1, 2010
https://doi.org/10.1021/la9037149
Copyright © 2010 American Chemical Society
Article Views
1699
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

Hydrophilic TiO2 particles made in a flame aerosol reactor were converted in situ to hydrophobic ones by silylation of their surface hydroxyl groups. So the freshly formed titania aerosol was mixed with a fine spray of octyltriethoxysilane (OTES) in water/ethanol solution and functionalized continuously at high temperature. The extent of functionalization and structure of that surface layer were assessed by thermogravimetric analysis (TGA) coupled to mass spectroscopy (MS), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), and Raman spectroscopy. Product particles were characterized also by transmission electron microscopy (TEM), X-ray diffraction, and nitrogen adsorption. The influence of titania specific surface area (SSA) and OTES solution concentration on the functional group surface density was investigated. The titanium dioxide surface was covered with functional groups (up to 2.9 wt %) that were thermally stable up to 300 °C in air at an average density of 2 OTES/nm2. Such surface-functionalized particle suspensions in 2-ethylhexanoic acid and xylene were stable over several weeks. In contrast, as-prepared hydrophilic TiO2 precipitated within days in these solvents.

Supporting Information

ARTICLE SECTIONS
Jump To

FTIR spectra and Raman spectra of FSP-made pure HTiO2, H0.16TiO2, H0.08TiO2, and commercial T805 TiO2. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 28 publications.

  1. Shreya Kushwaha, Rajamani Nagarajan. Anatase Nanocrystals Covalently Functionalized with EDTA-diol: Interaction with Aromatic Sulfur. Langmuir 2021, 37 (37) , 11142-11152. https://doi.org/10.1021/acs.langmuir.1c02041
  2. Lukas R.H. Gerken, Anna L. Neuer, Pascal M. Gschwend, Kerda Keevend, Alexander Gogos, Alexandre H.C. Anthis, Leonie Aengenheister, Sotiris E. Pratsinis, Ludwig Plasswilm, Inge K. Herrmann. Scalable Synthesis of Ultrasmall Metal Oxide Radio-Enhancers Outperforming Gold. Chemistry of Materials 2021, 33 (9) , 3098-3112. https://doi.org/10.1021/acs.chemmater.0c04565
  3. Florian Meierhofer, Udo Fritsching. Synthesis of Metal Oxide Nanoparticles in Flame Sprays: Review on Process Technology, Modeling, and Diagnostics. Energy & Fuels 2021, 35 (7) , 5495-5537. https://doi.org/10.1021/acs.energyfuels.0c04054
  4. Beat Buesser and Sotiris E. Pratsinis . Design of Aerosol Coating Reactors: Precursor Injection. Industrial & Engineering Chemistry Research 2011, 50 (24) , 13831-13839. https://doi.org/10.1021/ie201575a
  5. Filip Zasada, Witold Piskorz, Szymon Godlewski, Jakub S. Prauzner-Bechcicki, Antoni Tekiel, Janusz Budzioch, Piotr Cyganik, Marek Szymonski, and Zbigniew Sojka . Chemical Functionalization of the TiO2(110)-(1 × 1) Surface by Deposition of Terephthalic Acid Molecules. A Density Functional Theory and Scanning Tunneling Microscopy Study. The Journal of Physical Chemistry C 2011, 115 (10) , 4134-4144. https://doi.org/10.1021/jp111014r
  6. Vasile‐Dan Hodoroaba, Steffi Rades, Patrizia Borghetti, Erik Ortel, Thomas Wirth, Sarai García, Estíbaliz Gómez, Miren Blanco, Gabriele Alberto, Gianmario Martra. Organic surface modification and analysis of titania nanoparticles for self‐assembly in multiple layers. Surface and Interface Analysis 2020, 52 (12) , 829-834. https://doi.org/10.1002/sia.6842
  7. A. Yu. Olenin, G. V. Lisichkin. Surface-Modified Oxide Nanoparticles: Synthesis and Application. Russian Journal of General Chemistry 2019, 89 (7) , 1451-1476. https://doi.org/10.1134/S1070363219070168
  8. Fabian H.L. Starsich, Inge K. Herrmann, Sotiris E. Pratsinis. Nanoparticles for Biomedicine: Coagulation During Synthesis and Applications. Annual Review of Chemical and Biomolecular Engineering 2019, 10 (1) , 155-174. https://doi.org/10.1146/annurev-chembioeng-060718-030203
  9. Shailesh Konda, Mohammad Moein Mohammadi, Raymond D. Buchner, Haiqing Lin, Mark T. Swihart. Flame‐based synthesis and in situ functionalization of palladium alloy nanoparticles. AIChE Journal 2018, 64 (11) , 3826-3834. https://doi.org/10.1002/aic.16368
  10. Christoph Blattmann, Sotiris Pratsinis. Single-Step Fabrication of Polymer Nanocomposite Films. Materials 2018, 11 (7) , 1177. https://doi.org/10.3390/ma11071177
  11. Kerda Keevend, Guido Panzarasa, Fabian H. L. Starsich, Martin Zeltner, Anastasia Spyrogianni, Elena Tsolaki, Giuseppino Fortunato, Sotiris E. Pratsinis, Sergio Bertazzo, Inge K. Herrmann. Facile meltPEGylation of flame-made luminescent Tb 3+ -doped yttrium oxide particles: hemocompatibility, cellular uptake and comparison to silica. Chemical Communications 2018, 54 (23) , 2914-2917. https://doi.org/10.1039/C7CC09402G
  12. Antoine R M Dalod, Lars Henriksen, Tor Grande, Mari-Ann Einarsrud. Functionalized TiO 2 nanoparticles by single-step hydrothermal synthesis: the role of the silane coupling agents. Beilstein Journal of Nanotechnology 2017, 8 , 304-312. https://doi.org/10.3762/bjnano.8.33
  13. Haytham Alloul, Thibault Roques-Carmes, Joumana Toufaily, Mounir Kassir, Manuel Pelletier, Angelina Razafitianamaharavo, Tayssir Hamieh, Frédéric Villiéras. Towards a better description of organosilane grafting onto silica particles using volumetric techniques based on molecular probing. Adsorption 2016, 22 (7) , 923-937. https://doi.org/10.1007/s10450-016-9800-2
  14. Jeong Hoon Byeon. Scalable hybrid chemical manufacture to photothermal therapy: PEG-capped phototransducers. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep31351
  15. Yun Wang, Ling Zhang, Yanjie Hu, Chunzhong Li. Comparative Study on Optical Properties and Scratch Resistance of Nanocomposite Coatings Incorporated with Flame Spray Pyrolyzed Silica Modified via in-situ Route and ex-situ Route. Journal of Materials Science & Technology 2016, 32 (3) , 251-258. https://doi.org/10.1016/j.jmst.2015.11.008
  16. Yun Wang, Ling Zhang, Yanjie Hu, Chunzhong Li. In situ Surface Functionalization of Hydrophilic Silica Nanoparticles via Flame Spray Process. Journal of Materials Science & Technology 2015, 31 (9) , 901-906. https://doi.org/10.1016/j.jmst.2015.07.001
  17. Sylviane Pulvin. Toxicity Associated with the Photo Catalytic and Photo Stable Forms of Titanium Dioxide Nanoparticles Used in Sunscreen lotion. MOJ Toxicology 2015, 1 (3) https://doi.org/10.15406/mojt.2015.01.00011
  18. Yanjie Hu, Hao Jiang, Jie Liu, Yunfeng Li, Xiaoyu Hou, Chunzhong Li. Highly compressible magnetic liquid marbles assembled from hydrophobic magnetic chain-like nanoparticles. RSC Adv. 2014, 4 (7) , 3162-3164. https://doi.org/10.1039/C3RA40998H
  19. Laura Treccani, Tanja Yvonne Klein, Fabian Meder, Karoline Pardun, Kurosch Rezwan. Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomaterialia 2013, 9 (7) , 7115-7150. https://doi.org/10.1016/j.actbio.2013.03.036
  20. C.A. Dorval Dion, J.R. Tavares. Photo-initiated chemical vapor deposition as a scalable particle functionalization technology (a practical review). Powder Technology 2013, 239 , 484-491. https://doi.org/10.1016/j.powtec.2013.02.024
  21. Katja Nevalainen, Sanna Auvinen, Olli Orell, Pirkko Eteläaho, Reija Suihkonen, Jyrki Vuorinen, Pentti Järvelä. Characterization of melt-compounded and masterbatch-diluted polypropylene composites filled with several fillers. Polymer Composites 2013, 34 (4) , 554-569. https://doi.org/10.1002/pc.22454
  22. Beat Buesser, Sotiris E. Pratsinis. Design of Nanomaterial Synthesis by Aerosol Processes. Annual Review of Chemical and Biomolecular Engineering 2012, 3 (1) , 103-127. https://doi.org/10.1146/annurev-chembioeng-062011-080930
  23. B. Buesser, A. J. Gröhn. Multiscale Aspects of Modeling Gas-Phase Nanoparticle Synthesis. Chemical Engineering & Technology 2012, 35 (7) , 1133-1143. https://doi.org/10.1002/ceat.201100723
  24. Moazzam Ali, Martin D. Donakowski, Christian Mayer, Markus Winterer. Chemical vapor functionalization: a continuous production process for functionalized ZnO nanoparticles. Journal of Nanoparticle Research 2012, 14 (3) https://doi.org/10.1007/s11051-011-0689-0
  25. Alexandra Wittmar, David Ruiz-Abad, Mathias Ulbricht. Dispersions of silica nanoparticles in ionic liquids investigated with advanced rheology. Journal of Nanoparticle Research 2012, 14 (2) https://doi.org/10.1007/s11051-011-0651-1
  26. Hongxu Guo, Jianhua Chen, Wen Weng, Shunxing Li. Hydrothermal synthesis of C-doped Zn3(OH)2V2O7 nanorods and their photocatalytic properties under visible light illumination. Applied Surface Science 2011, 257 (9) , 3920-3923. https://doi.org/10.1016/j.apsusc.2010.11.120
  27. Philip Demokritou, Robert Büchel, Ramon M. Molina, Glen M. Deloid, Joseph D. Brain, Sotiris E. Pratsinis. Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhalation Toxicology 2010, 22 (sup2) , 107-116. https://doi.org/10.3109/08958378.2010.499385
  28. J.T.N. Knijnenburg, A. Teleki, B. Buesser, S.E. Pratsinis. Core - Shell Nanostructures: Scalable, One-Step Aerosol Synthesis and In-Situ SiO2 Coating and Functionalization of TiO2 and Fe2O3 Nanoparticles. 2010,,, 1-12. https://doi.org/10.1002/9780470944042.ch1