Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectrochemical Water Splitting

View Author Information
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 United States
Key Laboratory of Molecular Engineering of Polymer (Minister of Education), Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People’s Republic of China
Cite this: Nano Lett. 2011, 11, 7, 3026–3033
Publication Date (Web):June 28, 2011
https://doi.org/10.1021/nl201766h
Copyright © 2011 American Chemical Society
Article Views
29175
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (4 MB)
Supporting Info (1)»

Abstract

We report the first demonstration of hydrogen treatment as a simple and effective strategy to fundamentally improve the performance of TiO2 nanowires for photoelectrochemical (PEC) water splitting. Hydrogen-treated rutile TiO2 (H:TiO2) nanowires were prepared by annealing the pristine TiO2 nanowires in hydrogen atmosphere at various temperatures in a range of 200–550 °C. In comparison to pristine TiO2 nanowires, H:TiO2 samples show substantially enhanced photocurrent in the entire potential window. More importantly, H:TiO2 samples have exceptionally low photocurrent saturation potentials of −0.6 V vs Ag/AgCl (0.4 V vs RHE), indicating very efficient charge separation and transportation. The optimized H:TiO2 nanowire sample yields a photocurrent density of ∼1.97 mA/cm2 at −0.6 V vs Ag/AgCl, in 1 M NaOH solution under the illumination of simulated solar light (100 mW/cm2 from 150 W xenon lamp coupled with an AM 1.5G filter). This photocurrent density corresponds to a solar-to-hydrogen (STH) efficiency of ∼1.63%. After eliminating the discrepancy between the irradiance of the xenon lamp and solar light, by integrating the incident-photon-to-current-conversion efficiency (IPCE) spectrum of the H:TiO2 nanowire sample with a standard AM 1.5G solar spectrum, the STH efficiency is calculated to be ∼1.1%, which is the best value for a TiO2 photoanode. IPCE analyses confirm the photocurrent enhancement is mainly due to the improved photoactivity of TiO2 in the UV region. Hydrogen treatment increases the donor density of TiO2 nanowires by 3 orders of magnitudes, via creating a high density of oxygen vacancies that serve as electron donors. Similar enhancements in photocurrent were also observed in anatase H:TiO2 nanotubes. The capability of making highly photoactive H:TiO2 nanowires and nanotubes opens up new opportunities in various areas, including PEC water splitting, dye-sensitized solar cells, and photocatalysis.

Supporting Information

ARTICLE SECTIONS
Jump To

Synthetic and analytical methods, TEM images, and XPS, XRD, and PEC data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 2010 publications.

  1. Heng Wu, Qi Liu, Li Zhang, YaWen Tang, Gang Wang, GuoBing Mao. Novel Nanostructured [email protected] Blue Heterojunction Photoanodes for Efficient Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2021, 4 (11) , 12508-12514. https://doi.org/10.1021/acsaem.1c02317
  2. Mohsin Ali Marwat, Muhammad Humayun, Muhammad Waqas Afridi, Haibo Zhang, Muhammad Ramzan Abdul Karim, Malik Ashtar, Muhammad Usman, Saad Waqar, Habib Ullah, Chundong Wang, Wei Luo. Advanced Catalysts for Photoelectrochemical Water Splitting. ACS Applied Energy Materials 2021, 4 (11) , 12007-12031. https://doi.org/10.1021/acsaem.1c02548
  3. Ádám Balog, Gergely F. Samu, Szabolcs Pető, Csaba Janáky. The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods. ACS Materials Au 2021, 1 (2) , 157-168. https://doi.org/10.1021/acsmaterialsau.1c00020
  4. Zhenlei Wang, Liwen Lai, Tianfu Zhang, Sanming Wu, Jie Zhao, Yuxin Zhao, Yuanhao Jin, Jiaping Wang, Shoushan Fan, Qunqing Li. Enhanced Visible-Light Absorption and Photocurrent Generation of Three-Dimensional Metal–Dielectric Hybrid-Structured Films. ACS Applied Energy Materials 2021, 4 (10) , 10542-10552. https://doi.org/10.1021/acsaem.1c01485
  5. Yueqi Chang, Cheng Dong, Dongxue Zhou, Ang Li, Wenjun Dong, Xue-Zheng Cao, Ge Wang. Fabrication and Elastic Properties of TiO2 Nanohelix Arrays through a Pressure-Induced Hydrothermal Method. ACS Nano 2021, 15 (9) , 14174-14184. https://doi.org/10.1021/acsnano.0c10901
  6. Tianci Fang, Hong Hu, Jie Liu, Meng Jiang, Sibo Zhou, Junli Fu, Wenzhong Wang, Yuping Yang. Type-II Band Alignment Enhances Unassisted Photoelectrochemical Water-Splitting Performance of the BaTiO3/CdS Ferroelectric Heterostructure Photoanode under Solar Light Irradiation. The Journal of Physical Chemistry C 2021, 125 (34) , 18734-18742. https://doi.org/10.1021/acs.jpcc.1c05639
  7. Houkui Xiang, Zhijian Wang, Jiazang Chen. Revealing and Facilitating the Rate-Determining Step for Efficient Sunlight-Driven Photocatalysis. The Journal of Physical Chemistry Letters 2021, 12 (32) , 7665-7670. https://doi.org/10.1021/acs.jpclett.1c02101
  8. Meng Jiang, Xuyi Liu, Manyu Zhang, Zhaojun Wu, Yajie Zheng, Yujie Liang, Wenzhong Wang, Ying Jia. Hot-Electron Injection and Charge Carrier Lifetime Prolongation Enhance the Photoelectrochemical Performance of a Plasmonic CdS/Au Photoanode. The Journal of Physical Chemistry C 2021, 125 (31) , 17109-17116. https://doi.org/10.1021/acs.jpcc.1c04965
  9. Debashish Pal, Ayan Sarkar, Nani Gopal Ghosh, Devendra Mayurdhwaj Sanke, Dipanjan Maity, Keshab Karmakar, Debasish Sarkar, Sanjio S. Zade, Gobinda Gopal Khan. Integration of LaCo(OH)x Photo-Electrocatalyst and Plasmonic Gold Nanoparticles with Sb-Doped TiO2 Nanorods for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials 2021, 4 (6) , 6111-6123. https://doi.org/10.1021/acsanm.1c00928
  10. Junming Li, Wenxia Su, Jun Li, Lu Wang, Jun Ren, Sheng Zhang, Pengtao Cheng, Hong Hong, Dunhui Wang, Yong Zhou, Wenbo Mi, Youwei Du. Orientational Alignment of Oxygen Vacancies: Electric-Field-Inducing Conductive Channels in TiO2 Film to Boost Photocatalytic Conversion of CO2 into CO. Nano Letters 2021, 21 (12) , 5060-5067. https://doi.org/10.1021/acs.nanolett.1c00897
  11. Shankara S. Kalanur, Young Jae Lee, Hyungtak Seo. Exploring the Synthesis, Band Edge Insights, and Photoelectrochemical Water Splitting Properties of Lead Vanadates. ACS Applied Materials & Interfaces 2021, 13 (22) , 25906-25917. https://doi.org/10.1021/acsami.1c03109
  12. Wei Lin, Yue Yu, Yaoxun Fang, Jianqiao Liu, Xinran Li, Jiangpeng Wang, Yilin Zhang, Chao Wang, Lin Wang, Xuelian Yu. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO3/NiFe-Layered Double Hydroxide Photoanodes. Langmuir 2021, 37 (21) , 6490-6497. https://doi.org/10.1021/acs.langmuir.1c00638
  13. Ji Hoon Choi, Dong Su Kim, Young Been Kim, Sung Hyeon Jung, Swagotom Sarker, Nishad G. Deshpande, Hak Hyeon Lee, Hee Won Suh, Hyung Koun Cho. Bundle-Type Columnar Cu2O Photoabsorbers with Vertical Grain Boundaries Fabricated Using Instant Strike-Processed Metallic Seeds and Their Enhanced Photoelectrochemical Efficiency. ACS Sustainable Chemistry & Engineering 2021, 9 (18) , 6390-6399. https://doi.org/10.1021/acssuschemeng.1c00931
  14. Jinwu Bai, Xiaolei Ren, Xue Chen, Peng Lu, Min Fu. Oxygen Vacancy-Enhanced Ultrathin Bi2O3–Bi2WO6 Nanosheets’ Photocatalytic Performances under Visible Light Irradiation. Langmuir 2021, 37 (16) , 5049-5058. https://doi.org/10.1021/acs.langmuir.1c00576
  15. Hong Zhang, Baoshun Liu. Preparation, Characterization, and Photocatalytic Properties of Self-Standing Pure and Cu-Doped TiO2 Nanobelt Membranes. ACS Omega 2021, 6 (7) , 4534-4541. https://doi.org/10.1021/acsomega.0c03873
  16. Jason K. Cooper, Zemin Zhang, Subhayan Roychoudhury, Chang-Ming Jiang, Sheraz Gul, Yi-Sheng Liu, Rohan Dhall, Alejandro Ceballos, Junko Yano, David Prendergast, Sebastian E. Reyes-Lillo. CuBi2O4: Electronic Structure, Optical Properties, and Photoelectrochemical Performance Limitations of the Photocathode. Chemistry of Materials 2021, 33 (3) , 934-945. https://doi.org/10.1021/acs.chemmater.0c03930
  17. Palyam Subramanyam, Bhagatram Meena, Duvvuri Suryakala, Challapalli Subrahmanyam. TiO2 Photoanodes Sensitized with Bi2Se3 Nanoflowers for Visible–Near-Infrared Photoelectrochemical Water Splitting. ACS Applied Nano Materials 2021, 4 (1) , 739-745. https://doi.org/10.1021/acsanm.0c03041
  18. Sungkyun Choi, Sol A. Lee, Hyunwoo Yang, Tae Hyung Lee, Changyeon Kim, Chung Won Lee, Hyunjung Shin, Ho Won Jang. Stabilization of NiFe Layered Double Hydroxides on n-Si by an Activated TiO2 Interlayer for Efficient Solar Water Oxidation. ACS Applied Energy Materials 2020, 3 (12) , 12298-12307. https://doi.org/10.1021/acsaem.0c02355
  19. Žan Kovačič, Blaž Likozar, Matej Huš. Photocatalytic CO2 Reduction: A Review of Ab Initio Mechanism, Kinetics, and Multiscale Modeling Simulations. ACS Catalysis 2020, 10 (24) , 14984-15007. https://doi.org/10.1021/acscatal.0c02557
  20. Zean Xie, Tingting Yu, Weiyu Song, Jianmei Li, Zhen Zhao, Baijun Liu, Zhenfei Gao, Dong Li. Highly Active Nanosized Anatase TiO2–x Oxide Catalysts In Situ Formed through Reduction and Ostwald Ripening Processes for Propane Dehydrogenation. ACS Catalysis 2020, 10 (24) , 14678-14693. https://doi.org/10.1021/acscatal.0c02825
  21. Parisa Shadabipour, Austin L. Raithel, Thomas W. Hamann. Charge-Carrier Dynamics at the CuWO4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (45) , 50592-50599. https://doi.org/10.1021/acsami.0c14705
  22. Na Chen, Yiwen Hu, Xuyi Liu, Jue Yang, Wenrui Li, Donghai Lu, Junli Fu, Yujie Liang, Wenzhong Wang. A Dual-Heterojunction Cu2O/CdS/ZnO Nanotube Array Photoanode for Highly Efficient Photoelectrochemical Solar-Driven Hydrogen Production with 2.8% Efficiency. The Journal of Physical Chemistry C 2020, 124 (40) , 21968-21977. https://doi.org/10.1021/acs.jpcc.0c06045
  23. Langqiu Xiao, Yanan Yu, Emma L. Schultz, Eric A. Stach, Thomas E. Mallouk. Electron Transport in Dye-Sensitized TiO2 Nanowire Arrays in Contact with Aqueous Electrolytes. The Journal of Physical Chemistry C 2020, 124 (40) , 22003-22010. https://doi.org/10.1021/acs.jpcc.0c07036
  24. Subash Rajasekar, Vinay Tiwari, Umish Srivastva, Steven Holdcroft. Effectiveness of CuO Nanoparticle-Based p–n Bulk-Heterojunction Electrodes for Photoelectrochemical Hydrogen Generation. ACS Applied Energy Materials 2020, 3 (9) , 8988-9001. https://doi.org/10.1021/acsaem.0c01419
  25. Ning Liu, Ming Zhu, Niu Niu, Jia Ren, Na Yang, Cong Yu. Aza-BODIPY Probe-Decorated Mesoporous Black TiO2 Nanoplatform for the Highly Efficient Synergistic Phototherapy. ACS Applied Materials & Interfaces 2020, 12 (37) , 41071-41078. https://doi.org/10.1021/acsami.0c10531
  26. Ze Wang, Shuwei Liu, Lu Wang, Haoyang Zou, Zidong Wang, Xiaoduo Tang, Wenjie Feng, Yu Chong, Yi Liu, Bai Yang, Hao Zhang. [email protected] Heterojunction Nanorods with Enhanced Charge Separation Efficiency for Multimodal Imaging and Synergy Therapy of Tumor. ACS Applied Bio Materials 2020, 3 (8) , 5080-5092. https://doi.org/10.1021/acsabm.0c00573
  27. Siping Huo, Yufei Wu, Chongyang Zhao, Fengjiao Yu, Jun Fang, Yang Yang. Core–Shell [email protected]/TiO2 Nanowire Arrays Photoanode for Efficient Photoelectrochemical Full Water Splitting. Industrial & Engineering Chemistry Research 2020, 59 (32) , 14224-14233. https://doi.org/10.1021/acs.iecr.0c02119
  28. Changhai Liu, Chao Zhang, Dingwei Ji, Ge Yin, Wenchang Wang, Zhidong Chen. Cobalt-Doped TiO2 Nanowire Arrays Coated with NiFe Layered-Double-Hydroxide Nanoplatelets as Photoanodes for Photoelectrochemical Water Oxidation. ACS Applied Nano Materials 2020, 3 (7) , 6598-6608. https://doi.org/10.1021/acsanm.0c01049
  29. Huang Zhou, Nannan Zhang, Yuxin Yang, Jie Xue, Lingfeng Kong, Qin Zhang, Renlong Liu, Xing Fan, Changyuan Tao. Floating Networks of Alga-like Photoelectrodes for Highly Efficient Photoelectrochemical H2 Production. ACS Sustainable Chemistry & Engineering 2020, 8 (28) , 10564-10571. https://doi.org/10.1021/acssuschemeng.0c03575
  30. Tarek A. Kandiel, Mahmoud G. Ahmed, Amira Y. Ahmed. Physical Insights into Band Bending in Pristine and Co-Pi-Modified BiVO4 Photoanodes with Dramatically Enhanced Solar Water Splitting Efficiency. The Journal of Physical Chemistry Letters 2020, 11 (13) , 5015-5020. https://doi.org/10.1021/acs.jpclett.0c01419
  31. He Yu, Jin Liu, Wenjie Lan, Shicheng Yan, Peng Zhou, Ying Yang, Hong Yu. Synthesis of Hydroxyl-Group-Rich Single-Crystalline SrTaO2N from Single-Crystalline NaTaO3 by Topotactic Transformation. Crystal Growth & Design 2020, 20 (7) , 4307-4312. https://doi.org/10.1021/acs.cgd.9b01680
  32. Tushar Kanta Sahu, Suhaib Alam, Devipriya Gogoi, Nageswara Rao Peela, Mohammad Qureshi. Effect of Catalytically Silent Cerium Hydroxide in Cobalt–Cerium Mixed Double Hydroxide for Enhanced Water Oxidation Kinetics in a BiVO4 Photoanode. ACS Applied Energy Materials 2020, 3 (6) , 5610-5619. https://doi.org/10.1021/acsaem.0c00551
  33. Ying Wang, Miaomiao Zhang, Shuhua Lv, Xiaoqian Li, Debao Wang, Caixia Song. Photogenerated Oxygen Vacancies in Hierarchical Ag/TiO2 Nanoflowers for Enhanced Photocatalytic Reactions. ACS Omega 2020, 5 (23) , 13994-14005. https://doi.org/10.1021/acsomega.0c01390
  34. Ying Xu, Xiaoyu Xuan, Zhuhua Zhang, Wanlin Guo. A Helical Monolayer Ice. The Journal of Physical Chemistry Letters 2020, 11 (10) , 3860-3865. https://doi.org/10.1021/acs.jpclett.0c01129
  35. Carola Ebenhoch, Julian Kalb, Joohyun Lim, Tobias Seewald, Christina Scheu, Lukas Schmidt-Mende. Hydrothermally Grown TiO2 Nanorod Array Memristors with Volatile States. ACS Applied Materials & Interfaces 2020, 12 (20) , 23363-23369. https://doi.org/10.1021/acsami.0c05164
  36. Wenjuan Li, Robert Liang, Norman Y. Zhou, Zihe Pan. Carbon Black-Doped Anatase TiO2 Nanorods for Solar Light-Induced Photocatalytic Degradation of Methylene Blue. ACS Omega 2020, 5 (17) , 10042-10051. https://doi.org/10.1021/acsomega.0c00504
  37. Kai Chen, Si-Jing Ding, Song Ma, Wei Wang, Shan Liang, Li Zhou, Qu-Quan Wang. Enhancing Photocatalytic Activity of Au-Capped CdS–PbS Heterooctahedrons by Morphology Control. The Journal of Physical Chemistry C 2020, 124 (14) , 7938-7945. https://doi.org/10.1021/acs.jpcc.0c00349
  38. D. V. Zyabkin, H. P. Gunnlaugsson, J. N. Gonçalves, K. Bharuth-Ram, B. Qi, I. Unzueta, D. Naidoo, R. Mantovan, H. Masenda, S. Ólafsson, G. Peters, J. Schell, U. Vetter, A. Dimitrova, S. Krischok, P. Schaaf. Experimental and Theoretical Study of Electronic and Hyperfine Properties of Hydrogenated Anatase (TiO2): Defect Interplay and Thermal Stability. The Journal of Physical Chemistry C 2020, 124 (13) , 7511-7522. https://doi.org/10.1021/acs.jpcc.0c00085
  39. Rathindranath Biswas, Shouvik Mete, Manajit Mandal, Biplab Banerjee, Harjinder Singh, Imtiaz Ahmed, Krishna Kanta Haldar. Novel Green Approach for Fabrication of Ag2CrO4/TiO2/Au/r-GO Hybrid Biofilm for Visible Light-Driven Photocatalytic Performance. The Journal of Physical Chemistry C 2020, 124 (5) , 3373-3388. https://doi.org/10.1021/acs.jpcc.9b10866
  40. Chao Wang, Jingjing Yang, Taozhu Li, Zihan Shen, Taolian Guo, Huigang Zhang, Zhenda Lu. In Situ Tuning of Defects and Phase Transition in Titanium Dioxide by Lithiothermic Reduction. ACS Applied Materials & Interfaces 2020, 12 (5) , 5750-5758. https://doi.org/10.1021/acsami.9b18359
  41. Jin-Young Jung, Dae Woong Kim, Tae Joo Park, Jung-Ho Lee. Design Guidelines of Insulator for Improving Stability and Performance of Nanoelectrocatalyst/Insulator/Semiconductor Photoelectrochemical Cells. ACS Applied Energy Materials 2020, 3 (1) , 1046-1053. https://doi.org/10.1021/acsaem.9b02070
  42. Aiymkul A. Markhabayeva, Md Moniruddin, Robin Dupre, Khabibulla A. Abdullin, Nurxat Nuraje. Designing of [email protected] Heterostructures to Enhance Photoelectrochemical Performances. The Journal of Physical Chemistry A 2020, 124 (3) , 486-491. https://doi.org/10.1021/acs.jpca.9b09173
  43. Meifang Wang, Yajie Zhao, Mengyu Chang, Binbin Ding, Xiaoran Deng, Shuzhong Cui, Zhiyao Hou, Jun Lin. Azo Initiator Loaded Black Mesoporous Titania with Multiple Optical Energy Conversion for Synergetic Photo-Thermal-Dynamic Therapy. ACS Applied Materials & Interfaces 2019, 11 (51) , 47730-47738. https://doi.org/10.1021/acsami.9b17375
  44. Zebiao Li, Haidong Bian, Xufen Xiao, Junda Shen, Chenghao Zhao, Jian Lu, Yang Yang Li. Defective Black TiO2 Nanotube Arrays for Enhanced Photocatalytic and Photoelectrochemical Applications. ACS Applied Nano Materials 2019, 2 (11) , 7372-7378. https://doi.org/10.1021/acsanm.9b01878
  45. Shi-Fang Duan, Yong-Fei Ji, Wei Wang, Dong-Fang Han, Hao-Yu Wang, Qiu-Yu Wei, Chun-Feng Li, Fei Jia, Dong-Xue Han, Li Niu, Dong-Dong Qin, Chun-Lan Tao. Unraveling the Impact of Electrochemically Created Oxygen Vacancies on the Performance of ZnO Nanowire Photoanodes. ACS Sustainable Chemistry & Engineering 2019, 7 (21) , 18165-18173. https://doi.org/10.1021/acssuschemeng.9b05442
  46. Indranil Mondal, Spandana Gonuguntla, Ujjwal Pal. Photoinduced Fabrication of Cu/TiO2 Core–Shell Heterostructures Derived from Cu-MOF for Solar Hydrogen Generation: The Size of the Cu Nanoparticle Matters. The Journal of Physical Chemistry C 2019, 123 (43) , 26073-26081. https://doi.org/10.1021/acs.jpcc.9b07171
  47. Guozheng Shao, Yushi Zang, Bruce J. Hinds. TiO2 Nanowires Based System for Urea Photodecomposition and Dialysate Regeneration. ACS Applied Nano Materials 2019, 2 (10) , 6116-6123. https://doi.org/10.1021/acsanm.9b00709
  48. He Zhang, Liang Huang, Junfeng Zhai, Shaojun Dong. Water/Oxygen Circulation-Based Biophotoelectrochemical System for Solar Energy Storage and Release. Journal of the American Chemical Society 2019, 141 (41) , 16416-16421. https://doi.org/10.1021/jacs.9b08046
  49. Yanfang He, Peipei Wang, Jianfei Zhu, Ying Yang, Yuan Liu, Mingming Chen, Dawei Cao, Xiaohong Yan. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO2. ACS Applied Materials & Interfaces 2019, 11 (40) , 37322-37329. https://doi.org/10.1021/acsami.9b12537
  50. Maged N. Shaddad, Drialys Cardenas-Morcoso, Miguel García-Tecedor, Francisco Fabregat-Santiago, Juan Bisquert, Abdullah M. Al-Mayouf, Sixto Gimenez. TiO2 Nanotubes for Solar Water Splitting: Vacuum Annealing and Zr Doping Enhance Water Oxidation Kinetics. ACS Omega 2019, 4 (14) , 16095-16102. https://doi.org/10.1021/acsomega.9b02297
  51. Melita Sluban, Polona Umek. Role of Water in the Transformation of Protonated Titanate Nanoribbons to Anatase Nanoribbons. The Journal of Physical Chemistry C 2019, 123 (38) , 23747-23757. https://doi.org/10.1021/acs.jpcc.9b08225
  52. Xin Liu, Patricia Carvalho, Marit Norderhaug Getz, Truls Norby, Athanasios Chatzitakis. Black Anatase TiO2 Nanotubes with Tunable Orientation for High Performance Supercapacitors. The Journal of Physical Chemistry C 2019, 123 (36) , 21931-21940. https://doi.org/10.1021/acs.jpcc.9b05070
  53. Hao Jin, Huijun Zhang, Jianwei Li, Tao Wang, Langhui Wan, Hong Guo, Yadong Wei. Data-Driven Systematic Search of Promising Photocatalysts for Water Splitting under Visible Light. The Journal of Physical Chemistry Letters 2019, 10 (17) , 5211-5218. https://doi.org/10.1021/acs.jpclett.9b01977
  54. Hsin-Chia Ho, Kai Chen, Tadaaki Nagao, Chun-Hway Hsueh. Photocurrent Enhancements of TiO2-Based Nanocomposites with Gold Nanostructures/Reduced Graphene Oxide on Nanobranched Substrate. The Journal of Physical Chemistry C 2019, 123 (34) , 21103-21113. https://doi.org/10.1021/acs.jpcc.9b03714
  55. Songbai Hu, Wenqiao Han, Sixia Hu, Jan Seidel, Junling Wang, Rui Wu, Jiaou Wang, Jiali Zhao, Zedong Xu, Mao Ye, Lang Chen. Voltage-Controlled Oxygen Non-Stoichiometry in SrCoO3−δ Thin Films. Chemistry of Materials 2019, 31 (16) , 6117-6123. https://doi.org/10.1021/acs.chemmater.9b01502
  56. Tushar Kanta Sahu, Adit Kumar Shah, Avishek Banik, Mohammad Qureshi. Enhanced Surface and Bulk Recombination Kinetics by Virtue of Sequential Metal and Nonmetal Incorporation in Hematite-Based Photoanode for Superior Photoelectrochemical Water Oxidation. ACS Applied Energy Materials 2019, 2 (6) , 4325-4334. https://doi.org/10.1021/acsaem.9b00548
  57. Ningsi Zhang, Haoliang Zheng, Yongsheng Guo, Jianyong Feng, Zhaosheng Li, Zhigang Zou. Design Principles for Construction of Charge Transport Channels in Particle-Assembled Water-Splitting Photoelectrodes. ACS Sustainable Chemistry & Engineering 2019, 7 (12) , 10509-10515. https://doi.org/10.1021/acssuschemeng.9b01067
  58. Ghazal Tofighi, Xiaojuan Yu, Henning Lichtenberg, Dmitry E. Doronkin, Wu Wang, Christof Wöll, Yuemin Wang, Jan-Dierk Grunwaldt. Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2. ACS Catalysis 2019, 9 (6) , 5462-5473. https://doi.org/10.1021/acscatal.9b00161
  59. Felipe Polo-Garzon, Zhenghong Bao, Xuanyu Zhang, Weixin Huang, Zili Wu. Surface Reconstructions of Metal Oxides and the Consequences on Catalytic Chemistry. ACS Catalysis 2019, 9 (6) , 5692-5707. https://doi.org/10.1021/acscatal.9b01097
  60. Zili Ma, Thomas Thersleff, Arno L. Görne, Niklas Cordes, Yanbing Liu, Simon Jakobi, Anna Rokicinska, Zebulon G. Schichtl, Robert H. Coridan, Piotr Kustrowski, Wolfgang Schnick, Richard Dronskowski, Adam Slabon. Quaternary Core–Shell Oxynitride Nanowire Photoanode Containing a Hole-Extraction Gradient for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2019, 11 (21) , 19077-19086. https://doi.org/10.1021/acsami.9b02483
  61. Zhao Liang, Huilin Hou, Zhi Fang, Fengmei Gao, Lin Wang, Ding Chen, Weiyou Yang. Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (21) , 19167-19175. https://doi.org/10.1021/acsami.9b04059
  62. Fumiaki Amano, Masashi Nakata, Junie Jhon M. Vequizo, Akira Yamakata. Enhanced Visible Light Response of TiO2 Codoped with Cr and Ta Photocatalysts by Electron Doping. ACS Applied Energy Materials 2019, 2 (5) , 3274-3282. https://doi.org/10.1021/acsaem.9b00126
  63. Zepeng Rao, Xiaofeng Xie, Xiao Wang, Asad Mahmood, Shengrui Tong, Maofa Ge, Jing Sun. Defect Chemistry of Er3+-Doped TiO2 and Its Photocatalytic Activity for the Degradation of Flowing Gas-Phase VOCs. The Journal of Physical Chemistry C 2019, 123 (19) , 12321-12334. https://doi.org/10.1021/acs.jpcc.9b02093
  64. Luca Mascaretti, Valeria Russo, Giorgio Zoppellaro, Andrea Lucotti, Carlo S. Casari, Štěpán Kment, Alberto Naldoni, Andrea Li Bassi. Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films. The Journal of Physical Chemistry C 2019, 123 (17) , 11292-11303. https://doi.org/10.1021/acs.jpcc.9b01727
  65. Faqi Zhan, Yang Liu, Keke Wang, Yisi Liu, Xuetao Yang, Yahui Yang, Xiaoqing Qiu, Wenzhang Li, Jie Li. In Situ Formation of WO3-Based Heterojunction Photoanodes with Abundant Oxygen Vacancies via a Novel Microbattery Method. ACS Applied Materials & Interfaces 2019, 11 (17) , 15467-15477. https://doi.org/10.1021/acsami.8b21895
  66. Andrea Merenda, Lingxue Kong, Narges Fahim, Abu Sadek, Edwin L. H. Mayes, Adrian Hawley, Bo Zhu, Stephen R. Gray, Ludovic F. Dumée. Sub-10-nm Mixed Titanium/Tantalum Oxide Nanoporous Films with Visible-Light Photocatalytic Activity for Water Treatment. ACS Applied Nano Materials 2019, 2 (4) , 1951-1963. https://doi.org/10.1021/acsanm.8b02350
  67. Songcan Wang, Gang Liu, Lianzhou Wang. Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews 2019, 119 (8) , 5192-5247. https://doi.org/10.1021/acs.chemrev.8b00584
  68. Muhammad Saleh, Thomas S. Hofer. A DFTB/MM MD Approach for Solid-State Interfaces: Structural and Dynamical Properties of H2O and NH3 on R-TiO2 (001). The Journal of Physical Chemistry C 2019, 123 (12) , 7230-7245. https://doi.org/10.1021/acs.jpcc.9b00574
  69. Dipayan Sen, Piotr Błoński, Michal Otyepka. Band-Edge Engineering at the Carbon Dot–TiO2 Interface by Substitutional Boron Doping. The Journal of Physical Chemistry C 2019, 123 (10) , 5980-5988. https://doi.org/10.1021/acs.jpcc.8b11554
  70. Yu-Lin Chen, Yu-Hung Chen, Jie-Wen Chen, Fengren Cao, Liang Li, Zheng-Ming Luo, Ing-Chi Leu, Ying-Chih Pu. New Insights into the Electron-Collection Efficiency Improvement of CdS-Sensitized TiO2 Nanorod Photoelectrodes by Interfacial Seed-Layer Mediation. ACS Applied Materials & Interfaces 2019, 11 (8) , 8126-8137. https://doi.org/10.1021/acsami.8b22418
  71. Maheswari Arunachalam, Gun Yun, Yong-Han Yun, Kwang-Soon Ahn, Soon Hyung Kang. Effects of Hydrogen Treatment and Nb2O5 Nanoparticle Decoration in TiO2Nanorods for Solar Water Oxidation. ACS Sustainable Chemistry & Engineering 2019, 7 (4) , 4495-4507. https://doi.org/10.1021/acssuschemeng.8b06628
  72. Nisha Kodan, Khushboo Agarwal, B. R. Mehta. All-Oxide α-Fe2O3/H:TiO2 Heterojunction Photoanode: A Platform for Stable and Enhanced Photoelectrochemical Performance through Favorable Band Edge Alignment. The Journal of Physical Chemistry C 2019, 123 (6) , 3326-3335. https://doi.org/10.1021/acs.jpcc.8b10794
  73. Aiyun Meng, Liuyang Zhang, Bei Cheng, Jiaguo Yu. TiO2–MnOx–Pt Hybrid Multiheterojunction Film Photocatalyst with Enhanced Photocatalytic CO2-Reduction Activity. ACS Applied Materials & Interfaces 2019, 11 (6) , 5581-5589. https://doi.org/10.1021/acsami.8b02552
  74. Qingfu Guo, Jingjing Li, Bin Zhang, Guangming Nie, Debao Wang. High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO2 Nanocomposites. ACS Applied Materials & Interfaces 2019, 11 (6) , 6491-6501. https://doi.org/10.1021/acsami.8b19505
  75. Zhiyao Hou, Kerong Deng, Meifang Wang, Yihan Liu, Mengyu Chang, Shanshan Huang, Chunxia Li, Yi Wei, Ziyong Cheng, Gang Han, Abdulaziz A. Al Kheraif, Jun Lin. Hydrogenated Titanium Oxide Decorated Upconversion Nanoparticles: Facile Laser Modified Synthesis and 808 nm Near-Infrared Light Triggered Phototherapy. Chemistry of Materials 2019, 31 (3) , 774-784. https://doi.org/10.1021/acs.chemmater.8b03762
  76. Xiaoping Han, Noureddine Amrane, Zongsheng Zhang, Maamar Benkraouda. Insights into the Characteristic Gap Level and n-Type Conductivity of Rutile TiO2 from the Hybrid Functional Method. The Journal of Physical Chemistry C 2019, 123 (4) , 2037-2047. https://doi.org/10.1021/acs.jpcc.8b09766
  77. Keorock Choi, Kyunghwan Kim, In Kyu Moon, Ilwhan Oh, Jungwoo Oh. Evaluation of Electroless Pt Deposition and Electron Beam Pt Evaporation on p-GaAs as a Photocathode for Hydrogen Evolution. ACS Applied Energy Materials 2019, 2 (1) , 770-776. https://doi.org/10.1021/acsaem.8b01838
  78. Limin Xiao, Taifeng Liu, Min Zhang, Qiuye Li, Jianjun Yang. Interfacial Construction of Zero-Dimensional/One-Dimensional g-C3N4 Nanoparticles/TiO2 Nanotube Arrays with Z-Scheme Heterostructure for Improved Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2483-2491. https://doi.org/10.1021/acssuschemeng.8b05392
  79. Bai Sun, Yuanzheng Chen, Li Tao, Hongbin Zhao, Guangdong Zhou, Yudong Xia, Hongyan Wang, Yong Zhao. Nanorod Array of SnO2 Quantum Dot Interspersed Multiphase TiO2 Heterojunctions with Highly Photocatalytic Water Splitting and Self-Rechargeable Battery-Like Applications. ACS Applied Materials & Interfaces 2019, 11 (2) , 2071-2081. https://doi.org/10.1021/acsami.8b18884
  80. Alberto Naldoni, Marco Altomare, Giorgio Zoppellaro, Ning Liu, Štěpán Kment, Radek Zbořil, Patrik Schmuki. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catalysis 2019, 9 (1) , 345-364. https://doi.org/10.1021/acscatal.8b04068
  81. Xiaogang Yang, Dunwei Wang. Photocatalysis: From Fundamental Principles to Materials and Applications. ACS Applied Energy Materials 2018, 1 (12) , 6657-6693. https://doi.org/10.1021/acsaem.8b01345
  82. Ingrid Rodríguez-Gutiérrez, Rodrigo García-Rodríguez, Manuel Rodríguez-Pérez, Alberto Vega-Poot, Geonel Rodríguez Gattorno, Bruce A. Parkinson, Gerko Oskam. Charge Transfer and Recombination Dynamics at Inkjet-Printed CuBi2O4 Electrodes for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C 2018, 122 (48) , 27169-27179. https://doi.org/10.1021/acs.jpcc.8b07936
  83. Neeraj Kumar, Hemant Mittal, Saeed M. Alhassan, Suprakas Sinha Ray. Bionanocomposite Hydrogel for the Adsorption of Dye and Reusability of Generated Waste for the Photodegradation of Ciprofloxacin: A Demonstration of the Circularity Concept for Water Purification. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 17011-17025. https://doi.org/10.1021/acssuschemeng.8b04347
  84. Dandan Cui, Liang Wang, Yi Du, Weichang Hao, Jun Chen. Photocatalytic Reduction on Bismuth-Based p-Block Semiconductors. ACS Sustainable Chemistry & Engineering 2018, 6 (12) , 15936-15953. https://doi.org/10.1021/acssuschemeng.8b04977
  85. Marcus Lau, Sven Reichenberger, Ina Haxhiaj, Stephan Barcikowski, Astrid M. Müller. Mechanism of Laser-Induced Bulk and Surface Defect Generation in ZnO and TiO2 Nanoparticles: Effect on Photoelectrochemical Performance. ACS Applied Energy Materials 2018, 1 (10) , 5366-5385. https://doi.org/10.1021/acsaem.8b00977
  86. Reza Katal, Mojtaba Salehi, Mohammad Hossein Davood Abadi Farahani, Saeid Masudy-Panah, Say Leong Ong, Jiangyong Hu. Preparation of a New Type of Black TiO2 under a Vacuum Atmosphere for Sunlight Photocatalysis. ACS Applied Materials & Interfaces 2018, 10 (41) , 35316-35326. https://doi.org/10.1021/acsami.8b14680
  87. Hua Zhang, Konstantin Chingin, Jiajia Li, Haiyan Lu, Keke Huang, Huanwen Chen. Selective Enrichment of Phosphopeptides and Phospholipids from Biological Matrixes on TiO2 Nanowire Arrays for Direct Molecular Characterization by Internal Extractive Electrospray Ionization Mass Spectrometry. Analytical Chemistry 2018, 90 (20) , 12101-12107. https://doi.org/10.1021/acs.analchem.8b03022
  88. Sicong Ma, Si-Da Huang, Ya-Hui Fang, Zhi-Pan Liu. TiH Hydride Formed on Amorphous Black Titania: Unprecedented Active Species for Photocatalytic Hydrogen Evolution. ACS Catalysis 2018, 8 (10) , 9711-9721. https://doi.org/10.1021/acscatal.8b03077
  89. Chung-Yi Su, Li-Chen Wang, Wei-Szu Liu, Chih-Chieh Wang, Tsong-Pyng Perng. Photocatalysis and Hydrogen Evolution of Al- and Zn-Doped TiO2 Nanotubes Fabricated by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2018, 10 (39) , 33287-33295. https://doi.org/10.1021/acsami.8b12299
  90. Dapeng Cao, Jie Wang, Jingbo Zhang, Shuaishuai Liu, Futing Xu, Song Xu, Xin Xu, Baoxiu Mi, Zhiqiang Gao. Mechanism Investigation of the Postnecking Treatment to WO3 Photoelectrodes. ACS Applied Energy Materials 2018, 1 (9) , 4670-4677. https://doi.org/10.1021/acsaem.8b00805
  91. Li Song, Xuebo Cao, Lei Li. Engineering Stable Surface Oxygen Vacancies on ZrO2 by Hydrogen-Etching Technology: An Efficient Support of Gold Catalysts for Water-Gas Shift Reaction. ACS Applied Materials & Interfaces 2018, 10 (37) , 31249-31259. https://doi.org/10.1021/acsami.8b07007
  92. Xuemei Zhou, Ning Liu, Tadahiro Yokosawa, Andres Osvet, Matthias E. Miehlich, Karsten Meyer, Erdmann Spiecker, Patrik Schmuki. Intrinsically Activated SrTiO3: Photocatalytic H2 Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst. ACS Applied Materials & Interfaces 2018, 10 (35) , 29532-29542. https://doi.org/10.1021/acsami.8b08564
  93. Liaoyong Wen, Rui Xu, Can Cui, Wenxiang Tang, Yan Mi, Xingxu Lu, Zhiqiang Zeng, Steven L. Suib, Pu-Xian Gao, Yong Lei. Template-Guided Programmable Janus Heteronanostructure Arrays for Efficient Plasmonic Photocatalysis. Nano Letters 2018, 18 (8) , 4914-4921. https://doi.org/10.1021/acs.nanolett.8b01675
  94. Seung Ki Baek, Joo Sung Kim, Young Dae Yun, Young Been Kim, Hyung Koun Cho. Cuprous/Cupric Heterojunction Photocathodes with Optimal Phase Transition Interface via Preferred Orientation and Precise Oxidation. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10364-10373. https://doi.org/10.1021/acssuschemeng.8b01715
  95. Jiayuan Hu, Shengsen Zhang, Yonghai Cao, Hongjuan Wang, Hao Yu, Feng Peng. Novel Highly Active Anatase/Rutile TiO2 Photocatalyst with Hydrogenated Heterophase Interface Structures for Photoelectrochemical Water Splitting into Hydrogen. ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10823-10832. https://doi.org/10.1021/acssuschemeng.8b02130
  96. Huan Fei Wen, Quanzhen Zhang, Yuuki Adachi, Masato Miyazaki, Yoshitaka Naitoh, Yan Jun Li, Yasuhiro Sugawara. Direct Visualization of Oxygen Reaction with Paired Hydroxyl on TiO2(110) Surface at 78 K by Atomic Force Microscopy. The Journal of Physical Chemistry C 2018, 122 (30) , 17395-17399. https://doi.org/10.1021/acs.jpcc.8b06289
  97. Yan Chen, Weiyi Yang, Shuang Gao, Caixia Sun, Qi Li. Synthesis of Bi2MoO6 Nanosheets with Rich Oxygen Vacancies by Postsynthesis Etching Treatment for Enhanced Photocatalytic Performance. ACS Applied Nano Materials 2018, 1 (7) , 3565-3578. https://doi.org/10.1021/acsanm.8b00719
  98. Patricio Allende-González, Miguel Ángel Laguna-Bercero, Lorena Barrientos, María Luisa Valenzuela, Carlos Díaz. Solid State Tuning of TiO2 Morphology, Crystal Phase, and Size through Metal Macromolecular Complexes and Its Significance in the Photocatalytic Response. ACS Applied Energy Materials 2018, 1 (7) , 3159-3170. https://doi.org/10.1021/acsaem.8b00374
  99. Xin Zhao, Jun Hu, Xin Yao, Shi Chen, Zhong Chen. Clarifying the Roles of Oxygen Vacancy in W-Doped BiVO4 for Solar Water Splitting. ACS Applied Energy Materials 2018, 1 (7) , 3410-3419. https://doi.org/10.1021/acsaem.8b00559
  100. Yi-Hsuan Chiu, Ting-Hsuan Lai, Chun-Yi Chen, Ping-Yen Hsieh, Kazunari Ozasa, Mitsuo Niinomi, Kiyoshi Okada, Tso-Fu Mark Chang, Nobuhiro Matsushita, Masato Sone, Yung-Jung Hsu. Fully Depleted Ti–Nb–Ta–Zr–O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. ACS Applied Materials & Interfaces 2018, 10 (27) , 22997-23008. https://doi.org/10.1021/acsami.8b00727
Load more citations