Hydrogenated TiO2 Nanotube Arrays for Supercapacitors

View Author Information
KLGHEI of Environment and Energy Chemistry, MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 United States
*E-mail: (Y.T.) [email protected]; (Y.L.) [email protected]
Cite this: Nano Lett. 2012, 12, 3, 1690–1696
Publication Date (Web):February 24, 2012
https://doi.org/10.1021/nl300173j
Copyright © 2012 American Chemical Society
Article Views
17121
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

We report a new and general strategy for improving the capacitive properties of TiO2 materials for supercapacitors, involving the synthesis of hydrogenated TiO2 nanotube arrays (NTAs). The hydrogenated TiO2 (denoted as H–TiO2) were obtained by calcination of anodized TiO2 NTAs in hydrogen atmosphere in a range of temperatures between 300 to 600 °C. The H–TiO2 NTAs prepared at 400 °C yields the largest specific capacitance of 3.24 mF cm–2 at a scan rate of 100 mV s–1, which is 40 times higher than the capacitance obtained from air-annealed TiO2 NTAs at the same conditions. Importantly, H–TiO2 NTAs also show remarkable rate capability with 68% areal capacitance retained when the scan rate increase from 10 to 1000 mV s–1, as well as outstanding long-term cycling stability with only 3.1% reduction of initial specific capacitance after 10 000 cycles. The prominent electrochemical capacitive properties of H–TiO2 are attributed to the enhanced carrier density and increased density of hydroxyl group on TiO2 surface, as a result of hydrogenation. Furthermore, we demonstrate that H–TiO2 NTAs is a good scaffold to support MnO2 nanoparticles. The capacitor electrodes made by electrochemical deposition of MnO2 nanoparticles on H–TiO2 NTAs achieve a remarkable specific capacitance of 912 F g–1 at a scan rate of 10 mV s–1 (based on the mass of MnO2). The ability to improve the capacitive properties of TiO2 electrode materials should open up new opportunities for high-performance supercapacitors.

Supporting Information

ARTICLE SECTIONS
Jump To

Synthetic and analytical methods, capacitive equations, SEM and TEM images, XPS and XRD spectra, CV and charge/discharge curves, and Mott–Schottky plots. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 1074 publications.

  1. Ádám Balog, Gergely F. Samu, Szabolcs Pető, Csaba Janáky. The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods. ACS Materials Au 2021, 1 (2) , 157-168. https://doi.org/10.1021/acsmaterialsau.1c00020
  2. Qing-He Shang, Jing-Nan Liu, Wan-Zhong Lang, Xi Yan, Xiao-Jing Guo, Ya-Jun Guo. Improved Catalytic Activity and Chemical Stability of Defective TiO2 Catalysts by Doping Rare Earth Metal Sc for Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2021, 60 (35) , 12811-12820. https://doi.org/10.1021/acs.iecr.1c01568
  3. Pritam Das, N. Usha Kiran, Shyamal Chatterjee. Electron Beam Modulated Wettability and Electrical Conductivity of Hydrogen Titanate Nanowires. The Journal of Physical Chemistry C 2021, 125 (29) , 16191-16199. https://doi.org/10.1021/acs.jpcc.1c03231
  4. Heng Zhu, Qimeng Yang, Depei Liu, Yu Du, Shicheng Yan, Min Gu, Zhigang Zou. Direct Electrochemical Protonation of Metal Oxide Particles. Journal of the American Chemical Society 2021, 143 (24) , 9236-9243. https://doi.org/10.1021/jacs.1c04631
  5. Nian Li, Wei Chen, Lin Song, Renjun Guo, Manuel A. Scheel, Dan Yang, Volker Körstgens, Matthias Schwartzkopf, Stephan V. Roth, Peter Müller-Buschbaum. In Situ Study of Order Formation in Mesoporous Titania Thin Films Templated by a Diblock Copolymer during Slot-Die Printing. ACS Applied Materials & Interfaces 2020, 12 (51) , 57627-57637. https://doi.org/10.1021/acsami.0c18851
  6. Jianmin Luo, Xuan Lu, Edward Matios, Chuanlong Wang, Huan Wang, Yiwen Zhang, Xiaofei Hu, Weiyang Li. Tunable MXene-Derived 1D/2D Hybrid Nanoarchitectures as a Stable Matrix for Dendrite-Free and Ultrahigh Capacity Sodium Metal Anode. Nano Letters 2020, 20 (10) , 7700-7708. https://doi.org/10.1021/acs.nanolett.0c03215
  7. Sumina Namboorimadathil Backer, Animesh M. Ramachandran, Adithya A. Venugopal, A. P. Mohamed, Adersh Asok, Saju Pillai. Clean Water from Air Utilizing Black TiO2-Based Photothermal Nanocomposite Sheets. ACS Applied Nano Materials 2020, 3 (7) , 6827-6835. https://doi.org/10.1021/acsanm.0c01207
  8. Robert Bogdanowicz, Anna Dettlaff, Franciszek Skiba, Konrad Trzcinski, Mariusz Szkoda, Michal Sobaszek, Mateusz Ficek, Bartlomiej Dec, Lukasz Macewicz, Konrad Wyrębski, Grzegorz Pasciak, Dongsheng Geng, Arkadiusz Ignaczak, Jacek Ryl. Enhanced Charge Storage Mechanism and Long-Term Cycling Stability in Diamondized Titania Nanocomposite Supercapacitors Operating in Aqueous Electrolytes. The Journal of Physical Chemistry C 2020, 124 (29) , 15698-15712. https://doi.org/10.1021/acs.jpcc.0c02792
  9. Dongmei Niu, Lizhen Wu, Xufei Zhu, Dawei Xu, Xiaojie Feng, Mengmeng Tian, Ye Song. FeOOH Composite Electrode Based on TiN Nanopetals for High-Performance Supercapacitors. The Journal of Physical Chemistry C 2020, 124 (28) , 15028-15035. https://doi.org/10.1021/acs.jpcc.0c03744
  10. Chun-Feng Li, Xiaojing Guo, Qing-He Shang, Xi Yan, Cuilan Ren, Wan-Zhong Lang, Ya-Jun Guo. Defective TiO2 for Propane Dehydrogenation. Industrial & Engineering Chemistry Research 2020, 59 (10) , 4377-4387. https://doi.org/10.1021/acs.iecr.9b06759
  11. Rathindranath Biswas, Shouvik Mete, Manajit Mandal, Biplab Banerjee, Harjinder Singh, Imtiaz Ahmed, Krishna Kanta Haldar. Novel Green Approach for Fabrication of Ag2CrO4/TiO2/Au/r-GO Hybrid Biofilm for Visible Light-Driven Photocatalytic Performance. The Journal of Physical Chemistry C 2020, 124 (5) , 3373-3388. https://doi.org/10.1021/acs.jpcc.9b10866
  12. Weidong Zhu, Wenming Chai, Dandan Chen, He Xi, Dazheng Chen, Jingjing Chang, Jincheng Zhang, Chunfu Zhang, Yue Hao. Recycling of FTO/TiO2 Substrates: Route toward Simultaneously High-Performance and Cost-Efficient Carbon-Based, All-Inorganic CsPbIBr2 Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (4) , 4549-4557. https://doi.org/10.1021/acsami.9b21331
  13. Xin Liu, Patricia Carvalho, Marit Norderhaug Getz, Truls Norby, Athanasios Chatzitakis. Black Anatase TiO2 Nanotubes with Tunable Orientation for High Performance Supercapacitors. The Journal of Physical Chemistry C 2019, 123 (36) , 21931-21940. https://doi.org/10.1021/acs.jpcc.9b05070
  14. Yan-Hui Zhang, Meng-Jie Li, Hai-Jun Wang, Ruo Yuan, Sha-Ping Wei. Supersensitive Photoelectrochemical Aptasensor Based on Br,N-Codoped TiO2 Sensitized by Quantum Dots. Analytical Chemistry 2019, 91 (16) , 10864-10869. https://doi.org/10.1021/acs.analchem.9b02600
  15. Yan Li, Yan Kong, Yang Hou, Bin Yang, Zhongjian Li, Lecheng Lei, Zhenhai Wen. In Situ Growth of Nitrogen-Doped Carbon-Coated γ-Fe2O3 Nanoparticles on Carbon Fabric for Electrochemical N2 Fixation. ACS Sustainable Chemistry & Engineering 2019, 7 (9) , 8853-8859. https://doi.org/10.1021/acssuschemeng.9b00852
  16. Qingfu Guo, Jingjing Li, Bin Zhang, Guangming Nie, Debao Wang. High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO2 Nanocomposites. ACS Applied Materials & Interfaces 2019, 11 (6) , 6491-6501. https://doi.org/10.1021/acsami.8b19505
  17. Ayon Das Mahapatra, Amaresh Das, Shuvaraj Ghosh, Durga Basak. Defect-Assisted Broad-Band Photosensitivity with High Responsivity in Au/Self-Seeded TiO2 NR/Au-Based Back-to-Back Schottky Junctions. ACS Omega 2019, 4 (1) , 1364-1374. https://doi.org/10.1021/acsomega.8b03084
  18. Zhirong Zhang, Zhongping Yao, Yanqiu Meng, Dongqi Li, Qixing Xia, Zhaohua Jiang. Construction of TiO2 Nanotubes/C/MnO2 Composite Films as a Binder-Free Electrode for a High-Performance Supercapacitor. Inorganic Chemistry 2019, 58 (2) , 1591-1598. https://doi.org/10.1021/acs.inorgchem.8b03094
  19. Siddheswar Rudra, Arpan Kumar Nayak, Sudipta Koley, Rishika Chakraborty, Pradip K. Maji, Mukul Pradhan. Redox-Mediated Shape Transformation of Fe3O4 Nanoflakes to Chemically Stable Au−Fe2O3 Composite Nanorods for a High-Performance Asymmetric Solid-State Supercapacitor Device. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 724-733. https://doi.org/10.1021/acssuschemeng.8b04300
  20. Yong Yan, Xing Cheng, Wanwan Zhang, Ge Chen, Hongyi Li, Alexander Konkin, Zaicheng Sun, Shaorui Sun, Dong Wang, Peter Schaaf. Plasma Hydrogenated TiO2/Nickel Foam as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Sustainable Chemistry & Engineering 2019, 7 (1) , 885-894. https://doi.org/10.1021/acssuschemeng.8b04496
  21. Yanrong Wang, Xiaolan Xue, Pingying Liu, Caixing Wang, Xu Yi, Yi Hu, Lianbo Ma, Guoyin Zhu, Renpeng Chen, Tao Chen, Jing Ma, Jie Liu, Zhong Jin. Atomic Substitution Enabled Synthesis of Vacancy-Rich Two-Dimensional Black TiO2–x Nanoflakes for High-Performance Rechargeable Magnesium Batteries. ACS Nano 2018, 12 (12) , 12492-12502. https://doi.org/10.1021/acsnano.8b06917
  22. Gan Wang, Sanpei Zhang, Rong Qian, Zhaoyin Wen. Atomic-Thick TiO2(B) Nanosheets Decorated with Ultrafine Co3O4 Nanocrystals As a Highly Efficient Catalyst for Lithium–Oxygen Battery. ACS Applied Materials & Interfaces 2018, 10 (48) , 41398-41406. https://doi.org/10.1021/acsami.8b15774
  23. Xiang Wang, Xiaoyu Li, Satoshi Aya, Fumito Araoka, Yasuhiro Ishida, Akiko Kikkawa, Markus Kriener, Yasujiro Taguchi, Yasuo Ebina, Takayoshi Sasaki, Shogo Koshiya, Koji Kimoto, Takuzo Aida. Reversible Switching of the Magnetic Orientation of Titanate Nanosheets by Photochemical Reduction and Autoxidation. Journal of the American Chemical Society 2018, 140 (48) , 16396-16401. https://doi.org/10.1021/jacs.8b09625
  24. Liaona She, Zhe Yan, Liping Kang, Xuexia He, Zhibin Lei, Feng Shi, Hua Xu, Jie Sun, Zong-Huai Liu. Nb2O5 Nanoparticles Anchored on an N-Doped Graphene Hybrid Anode for a Sodium-Ion Capacitor with High Energy Density. ACS Omega 2018, 3 (11) , 15943-15951. https://doi.org/10.1021/acsomega.8b02141
  25. Matthew J. Lawrence, Veronica Celorrio, Xiaobo Shi, Qi Wang, Alex Yanson, Nicholas J. E. Adkins, Meng Gu, Joaquín Rodríguez-López, Paramaconi Rodriguez. Electrochemical Synthesis of Nanostructured Metal-Doped Titanates and Investigation of Their Activity as Oxygen Evolution Photoanodes. ACS Applied Energy Materials 2018, 1 (10) , 5233-5244. https://doi.org/10.1021/acsaem.8b00873
  26. Sicong Ma, Si-Da Huang, Ya-Hui Fang, Zhi-Pan Liu. TiH Hydride Formed on Amorphous Black Titania: Unprecedented Active Species for Photocatalytic Hydrogen Evolution. ACS Catalysis 2018, 8 (10) , 9711-9721. https://doi.org/10.1021/acscatal.8b03077
  27. Yuanlong Shao, Maher F. El-Kady, Jingyu Sun, Yaogang Li, Qinghong Zhang, Meifang Zhu, Hongzhi Wang, Bruce Dunn, Richard B. Kaner. Design and Mechanisms of Asymmetric Supercapacitors. Chemical Reviews 2018, 118 (18) , 9233-9280. https://doi.org/10.1021/acs.chemrev.8b00252
  28. In Kyu Moon, Seonno Yoon, Bugeun Ki, Kerock Choi, Jungwoo Oh. Remarkable Enhancement of Electrochemical Performance by the Oxygen Vacancy and Nitrogen Doping in ZnCo2O4 Nanowire Arrays. ACS Applied Energy Materials 2018, 1 (9) , 4804-4813. https://doi.org/10.1021/acsaem.8b00892
  29. Xuemei Zhou, Ning Liu, Tadahiro Yokosawa, Andres Osvet, Matthias E. Miehlich, Karsten Meyer, Erdmann Spiecker, Patrik Schmuki. Intrinsically Activated SrTiO3: Photocatalytic H2 Evolution from Neutral Aqueous Methanol Solution in the Absence of Any Noble Metal Cocatalyst. ACS Applied Materials & Interfaces 2018, 10 (35) , 29532-29542. https://doi.org/10.1021/acsami.8b08564
  30. Tzu-Yuan Lee, Chi-Young Lee, Hsin-Tien Chiu. Enhanced Photocatalysis from Truncated Octahedral Bipyramids of Anatase TiO2 with Exposed {001}/{101} Facets. ACS Omega 2018, 3 (8) , 10225-10232. https://doi.org/10.1021/acsomega.8b01251
  31. Ediga Umeshbabu, Ponniah Justin, G. Ranga Rao. Tuning the Surface Morphology and Pseudocapacitance of MnO2 by a Facile Green Method Employing Organic Reducing Sugars. ACS Applied Energy Materials 2018, 1 (8) , 3654-3664. https://doi.org/10.1021/acsaem.8b00390
  32. Yang Ma, Na Wang, Jiang Chen, Changsong Chen, Haisheng San, Jige Chen, Zhengdong Cheng. Betavoltaic Enhancement Using Defect-Engineered TiO2 Nanotube Arrays through Electrochemical Reduction in Organic Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (26) , 22174-22181. https://doi.org/10.1021/acsami.8b05151
  33. Felipe F. Hudari, Guilherme G. Bessegato, Flávio C. Bedatty Fernandes, Maria V. B. Zanoni, Paulo R. Bueno. Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes. Analytical Chemistry 2018, 90 (12) , 7651-7658. https://doi.org/10.1021/acs.analchem.8b01501
  34. Chun Li, Zhuanpei Wang, Shengwen Li, Jianli Cheng, Yanning Zhang, Jingwen Zhou, Dan Yang, Dong-Ge Tong, Bin Wang. Interfacial Engineered Polyaniline/Sulfur-Doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors. ACS Applied Materials & Interfaces 2018, 10 (21) , 18390-18399. https://doi.org/10.1021/acsami.8b01160
  35. Fen Liu, Ningdong Feng, Longxiao Yang, Qiang Wang, Jun Xu, Feng Deng. Enhanced Photocatalytic Performance of Carbon-Coated TiO2–x with Surface-Active Carbon Species. The Journal of Physical Chemistry C 2018, 122 (20) , 10948-10955. https://doi.org/10.1021/acs.jpcc.8b02716
  36. Shaowen Cao, Han Li, Yao Li, Bicheng Zhu, Jiaguo Yu. Dependence of Exposed Facet of Pd on Photocatalytic H2-Production Activity. ACS Sustainable Chemistry & Engineering 2018, 6 (5) , 6478-6487. https://doi.org/10.1021/acssuschemeng.8b00259
  37. Sanpei Zhang, Gan Wang, Jun Jin, Linlin Zhang, Zhaoyin Wen, Jianhua Yang. Robust and Conductive Red MoSe2 for Stable and Fast Lithium Storage. ACS Nano 2018, 12 (4) , 4010-4018. https://doi.org/10.1021/acsnano.8b01703
  38. Kunlei Zhu, Yufeng Luo, Fei Zhao, Jiwei Hou, Xuewen Wang, He Ma, Hui Wu, Yuegang Zhang, Kaili Jiang, Shoushan Fan, Jiaping Wang, Kai Liu. Free-Standing, Binder-Free Titania/Super-Aligned Carbon Nanotube Anodes for Flexible and Fast-Charging Li-Ion Batteries. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3426-3433. https://doi.org/10.1021/acssuschemeng.7b03671
  39. Qingmeng Gan, Hanna He, Kuangmin Zhao, Zhen He, Suqin Liu, and Shuping Yang . Plasma-Induced Oxygen Vacancies in Urchin-Like Anatase Titania Coated by Carbon for Excellent Sodium-Ion Battery Anodes. ACS Applied Materials & Interfaces 2018, 10 (8) , 7031-7042. https://doi.org/10.1021/acsami.7b13760
  40. Xin Wang, Xiaotao Yuan, Dong Wang, Wujie Dong, Chenlong Dong, Yajing Zhang, Tianquan Lin, and Fuqiang Huang . Tunable Synthesis of Colorful Nitrogen-Doped Titanium Oxide and Its Application in Energy Storage. ACS Applied Energy Materials 2018, 1 (2) , 876-882. https://doi.org/10.1021/acsaem.7b00308
  41. C. Ros, C. Fàbrega, D. Monllor-Satoca, M. D. Hernández-Alonso, G. Penelas-Pérez, J. R. Morante, and T. Andreu . Hydrogenation and Structuration of TiO2 Nanorod Photoanodes: Doping Level and the Effect of Illumination in Trap-States Filling. The Journal of Physical Chemistry C 2018, 122 (6) , 3295-3304. https://doi.org/10.1021/acs.jpcc.7b12468
  42. Bhaskar Dudem, L. Krishna Bharat, Jung Woo Leem, Dong Hyun Kim, and Jae Su Yu . Hierarchical Ag/TiO2/Si Forest-Like Nano/Micro-Architectures as Antireflective, Plasmonic Photocatalytic, and Self-Cleaning Coatings. ACS Sustainable Chemistry & Engineering 2018, 6 (2) , 1580-1591. https://doi.org/10.1021/acssuschemeng.7b02220
  43. Francesca A. Scaramuzzo, Alessandro Dell’Era, Gabriele Tarquini, Ruggero Caminiti, Paolo Ballirano, and Mauro Pasquali . Phase Transition of TiO2 Nanotubes: An X-ray Study as a Function of Temperature. The Journal of Physical Chemistry C 2017, 121 (44) , 24871-24876. https://doi.org/10.1021/acs.jpcc.7b08297
  44. Hyungseob Lim, Jae Young Kim, Edward J. Evans, Amritesh Rai, Jun-Hyuk Kim, Bryan R. Wygant, and C. Buddie Mullins . Activation of a Nickel-Based Oxygen Evolution Reaction Catalyst on a Hematite Photoanode via Incorporation of Cerium for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2017, 9 (36) , 30654-30661. https://doi.org/10.1021/acsami.7b08239
  45. Ying Zhang, Yan Zhao, Shunsheng Cao, Zhengliang Yin, Li Cheng, and Limin Wu . Design and Synthesis of Hierarchical [email protected]/TiO2 Hollow Spheres for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (35) , 29982-29991. https://doi.org/10.1021/acsami.7b08776
  46. Chao Huang, Juncao Bian, and Rui-Qin Zhang . Role of Cl Ion Desorption in Photocurrent Enhancement of the Annealed Rutile Single-Crystalline TiO2 Nanorod Arrays. The Journal of Physical Chemistry C 2017, 121 (34) , 18892-18899. https://doi.org/10.1021/acs.jpcc.7b04071
  47. He Zhou, Xiaopeng Zou, Kaikai Zhang, Peng Sun, Md. Suzaul Islam, Jianyu Gong, Yanrong Zhang, and Jiakuan Yang . Molybdenum–Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors. ACS Applied Materials & Interfaces 2017, 9 (22) , 18699-18709. https://doi.org/10.1021/acsami.7b01871
  48. Zhubing Xiao, Zhi Yang, Liujiang Zhou, Linjie Zhang, and Ruihu Wang . Highly Conductive Porous Transition Metal Dichalcogenides via Water Steam Etching for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2017, 9 (22) , 18845-18855. https://doi.org/10.1021/acsami.7b04232
  49. Min Seok Koo, Kangwoo Cho, Jeyong Yoon, and Wonyong Choi . Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environmental Science & Technology 2017, 51 (11) , 6590-6598. https://doi.org/10.1021/acs.est.7b00774
  50. Jun Li, Jian Liu, Qian Sun, Mohammad Norouzi Banis, Xueliang Sun, and Tsun-Kong Sham . Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes. The Journal of Physical Chemistry C 2017, 121 (21) , 11773-11782. https://doi.org/10.1021/acs.jpcc.7b01106
  51. Xuemei Zhou, Ning Liu, and Patrik Schmuki . Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5) , 3210-3235. https://doi.org/10.1021/acscatal.6b03709
  52. Wen-Yi Zhou, Jin-Yun Liu, Jie-Yao Song, Jin-Jin Li, Jin-Huai Liu, and Xing-Jiu Huang . Surface-Electronic-State-Modulated, Single-Crystalline (001) TiO2 Nanosheets for Sensitive Electrochemical Sensing of Heavy-Metal Ions. Analytical Chemistry 2017, 89 (6) , 3386-3394. https://doi.org/10.1021/acs.analchem.6b04023
  53. Yogita Soni, Anumol Erumpukuthical Ashok Kumar, Chandrani Nayak, Francis Leonard Deepak, and C. P. Vinod . A Convenient Route for [email protected]–SiO2 Nanocatalyst Synthesis and Its Application for Room Temperature CO Oxidation. The Journal of Physical Chemistry C 2017, 121 (9) , 4946-4957. https://doi.org/10.1021/acs.jpcc.6b10202
  54. Ye Wang, Junfang Liu, Miao Wang, Cuijin Pei, Bin Liu, Yukun Yuan, Shengzhong Liu, and Heqing Yang . Enhancing the Sensing Properties of TiO2 Nanosheets with Exposed {001} Facets by a Hydrogenation and Sensing Mechanism. Inorganic Chemistry 2017, 56 (3) , 1504-1510. https://doi.org/10.1021/acs.inorgchem.6b02603
  55. Zhi-Yong Luo, Shu-Shen Lyu, Ya-Qiao Wang, and Dong-Chuan Mo . Fluorine-Induced Superhydrophilic Ti Foam with Surface Nanocavities for Effective Oil-in-Water Emulsion Separation. Industrial & Engineering Chemistry Research 2017, 56 (3) , 699-707. https://doi.org/10.1021/acs.iecr.6b04059
  56. Minki Baek, Donghyung Kim, and Kijung Yong . Simple but Effective Way To Enhance Photoelectrochemical Solar-Water-Splitting Performance of ZnO Nanorod Arrays: Charge-Trapping Zn(OH)2 Annihilation and Oxygen Vacancy Generation by Vacuum Annealing. ACS Applied Materials & Interfaces 2017, 9 (3) , 2317-2325. https://doi.org/10.1021/acsami.6b12555
  57. Kan Zhang and Jong Hyeok Park . Surface Localization of Defects in Black TiO2: Enhancing Photoactivity or Reactivity. The Journal of Physical Chemistry Letters 2017, 8 (1) , 199-207. https://doi.org/10.1021/acs.jpclett.6b02289
  58. Jesús Idígoras, Juan A. Anta, and Thomas Berger . Charge-Transfer Reductive in Situ Doping of Mesoporous TiO2 Photoelectrodes: Impact of Electrolyte Composition and Film Morphology. The Journal of Physical Chemistry C 2016, 120 (49) , 27882-27894. https://doi.org/10.1021/acs.jpcc.6b09926
  59. Haidong Bian, Yayuan Tian, Chris Lee, Muk-Fung Yuen, Wenjun Zhang, and Yang Yang Li . Mesoporous SnO2 Nanostructures of Ultrahigh Surface Areas by Novel Anodization. ACS Applied Materials & Interfaces 2016, 8 (42) , 28862-28871. https://doi.org/10.1021/acsami.6b09795
  60. Xujie Lü, Aiping Chen, Yongkang Luo, Ping Lu, Yaomin Dai, Erik Enriquez, Paul Dowden, Hongwu Xu, Paul G. Kotula, Abul K. Azad, Dmitry A. Yarotski, Rohit P. Prasankumar, Antoinette J. Taylor, Joe D. Thompson, and Quanxi Jia . Conducting Interface in Oxide Homojunction: Understanding of Superior Properties in Black TiO2. Nano Letters 2016, 16 (9) , 5751-5755. https://doi.org/10.1021/acs.nanolett.6b02454
  61. Ashutosh K. Singh, Debasish Sarkar, Keshab Karmakar, Kalyan Mandal, and Gobinda Gopal Khan . High-Performance Supercapacitor Electrode Based on Cobalt Oxide–Manganese Dioxide–Nickel Oxide Ternary 1D Hybrid Nanotubes. ACS Applied Materials & Interfaces 2016, 8 (32) , 20786-20792. https://doi.org/10.1021/acsami.6b05933
  62. Jing Zheng, Lei Liu, Guangbin Ji, Qifan Yang, Lirong Zheng, and Jing Zhang . Hydrogenated Anatase TiO2 as Lithium-Ion Battery Anode: Size–Reactivity Correlation. ACS Applied Materials & Interfaces 2016, 8 (31) , 20074-20081. https://doi.org/10.1021/acsami.6b05993
  63. Shidong Fu, Jiangfeng Ni, Yong Xu, Qiao Zhang, and Liang Li . Hydrogenation Driven Conductive Na2Ti3O7 Nanoarrays as Robust Binder-Free Anodes for Sodium-Ion Batteries. Nano Letters 2016, 16 (7) , 4544-4551. https://doi.org/10.1021/acs.nanolett.6b01805
  64. Jun Li, Chang-Hai Liu, Xia Li, Zhi-Qiang Wang, Yu-Cheng Shao, Sui-Dong Wang, Xue-Liang Sun, Way-Faung Pong, Jing-Hua Guo, and Tsun-Kong Sham . Unraveling the Origin of Visible Light Capture by Core–Shell TiO2 Nanotubes. Chemistry of Materials 2016, 28 (12) , 4467-4475. https://doi.org/10.1021/acs.chemmater.6b01673
  65. Han Gil Na, Sun-Woo Choi, Suyoung Park, Seon Jae Hwang, Myeong Soo Cho, Youngwook Noh, Hee Jung Kim, Dongjin Lee, and Changhyun Jin . One-to-One Correspondence Growth Mechanism of Gourd-like SiOx Nanotubes. Crystal Growth & Design 2016, 16 (6) , 3081-3086. https://doi.org/10.1021/acs.cgd.5b01473
  66. Yufei Zhao, Xiaodan Jia, Guangbo Chen, Lu Shang, Geoffrey I.N. Waterhouse, Li-Zhu Wu, Chen-Ho Tung, Dermot O’Hare, and Tierui Zhang . Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. Journal of the American Chemical Society 2016, 138 (20) , 6517-6524. https://doi.org/10.1021/jacs.6b01606
  67. Yangbin Ding, Wei Bai, Jinhua Sun, Yu Wu, Mushtaque A. Memon, Chao Wang, Chengbin Liu, Yong Huang, and Jianxin Geng . Cellulose Tailored Anatase TiO2 Nanospindles in Three-Dimensional Graphene Composites for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2016, 8 (19) , 12165-12175. https://doi.org/10.1021/acsami.6b02164
  68. V. C. Anitha, Arghya Narayan Banerjee, G. R. Dillip, Sang Woo Joo, and Bong Ki Min . Nonstoichiometry-Induced Enhancement of Electrochemical Capacitance in Anodic TiO2 Nanotubes with Controlled Pore Diameter. The Journal of Physical Chemistry C 2016, 120 (18) , 9569-9580. https://doi.org/10.1021/acs.jpcc.6b01171
  69. Hongwei Zhang, Owen Noonan, Xiaodan Huang, Yannan Yang, Chun Xu, Liang Zhou, and Chengzhong Yu . Surfactant-Free Assembly of Mesoporous Carbon Hollow Spheres with Large Tunable Pore Sizes. ACS Nano 2016, 10 (4) , 4579-4586. https://doi.org/10.1021/acsnano.6b00723
  70. Siyang Gao, Yong Yan, and Ge Chen . External Water-Free Approach toward TiO2 Nanoparticles Embedded in Biomass-Derived Nitrogen-Doped Carbon. ACS Sustainable Chemistry & Engineering 2016, 4 (3) , 844-850. https://doi.org/10.1021/acssuschemeng.5b00904
  71. Yongchuan Liu, Xiaofei Miao, Jianhui Fang, Xiangxin Zhang, Sujing Chen, Wei Li, Wendou Feng, Yuanqiang Chen, Wei Wang, and Yining Zhang . Layered-MnO2 Nanosheet Grown on Nitrogen-Doped Graphene Template as a Composite Cathode for Flexible Solid-State Asymmetric Supercapacitor. ACS Applied Materials & Interfaces 2016, 8 (8) , 5251-5260. https://doi.org/10.1021/acsami.5b10649
  72. Gowra Raghupathy Dillip, Arghya Narayan Banerjee, Veettikkunnu Chandran Anitha, Borelli Deva Prasad Raju, Sang Woo Joo, and Bong Ki Min . Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. ACS Applied Materials & Interfaces 2016, 8 (7) , 5025-5039. https://doi.org/10.1021/acsami.5b12322
  73. Muhammad-Sadeeq Balogun, Yikun Zhu, Weitao Qiu, Yang Luo, Yongchao Huang, Chaolun Liang, Xihong Lu, and Yexiang Tong . Chemically Lithiated TiO2 Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (46) , 25991-26003. https://doi.org/10.1021/acsami.5b09610
  74. Yong Liu, Yongfeng Luo, Ahmed A. Elzatahry, Wei Luo, Renchao Che, Jianwei Fan, Kun Lan, Abdullah M. Al-Enizi, Zhenkun Sun, Bin Li, Zhengwang Liu, Dengke Shen, Yun Ling, Chun Wang, Jingxiu Wang, Wenjun Gao, Chi Yao, Kaiping Yuan, Huisheng Peng, Yun Tang, Yonghui Deng, Gengfeng Zheng, Gang Zhou, and Dongyuan Zhao . Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. ACS Central Science 2015, 1 (7) , 400-408. https://doi.org/10.1021/acscentsci.5b00256
  75. Ning Liu, Volker Häublein, Xuemei Zhou, Umamaheswari Venkatesan, Martin Hartmann, Mirza Mačković, Tomohiko Nakajima, Erdmann Spiecker, Andres Osvet, Lothar Frey, and Patrik Schmuki . “Black” TiO2 Nanotubes Formed by High-Energy Proton Implantation Show Noble-Metal-co-Catalyst Free Photocatalytic H2-Evolution. Nano Letters 2015, 15 (10) , 6815-6820. https://doi.org/10.1021/acs.nanolett.5b02663
  76. Xiaodong Yan, Lihong Tian, Min He, and Xiaobo Chen . Three-Dimensional Crystalline/Amorphous Co/Co3O4 Core/Shell Nanosheets as Efficient Electrocatalysts for the Hydrogen Evolution Reaction. Nano Letters 2015, 15 (9) , 6015-6021. https://doi.org/10.1021/acs.nanolett.5b02205
  77. Shuhua Yang, Yuan Lin, Xuefeng Song, Peng Zhang, and Lian Gao . Covalently Coupled Ultrafine H-TiO2 Nanocrystals/Nitrogen-Doped Graphene Hybrid Materials for High-Performance Supercapacitor. ACS Applied Materials & Interfaces 2015, 7 (32) , 17884-17892. https://doi.org/10.1021/acsami.5b04368
  78. Gongming Wang, Xiangheng Xiao, Wenqing Li, Zhaoyang Lin, Zipeng Zhao, Chi Chen, Chen Wang, Yongjia Li, Xiaoqing Huang, Ling Miao, Changzhong Jiang, Yu Huang, and Xiangfeng Duan . Significantly Enhanced Visible Light Photoelectrochemical Activity in TiO2 Nanowire Arrays by Nitrogen Implantation. Nano Letters 2015, 15 (7) , 4692-4698. https://doi.org/10.1021/acs.nanolett.5b01547
  79. Nana Wang, Jie Yue, Liang Chen, Yitai Qian, and Jian Yang . Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (19) , 10348-10355. https://doi.org/10.1021/acsami.5b01208
  80. A. Hazra, B. Bhowmik, K. Dutta, P.P. Chattopadhyay, and P. Bhattacharyya . Stoichiometry, Length, and Wall Thickness Optimization of TiO2 Nanotube Array for Efficient Alcohol Sensing. ACS Applied Materials & Interfaces 2015, 7 (18) , 9336-9348. https://doi.org/10.1021/acsami.5b01785
  81. Choonsoo Kim, Seonghwan Kim, Jaehan Lee, Jiye Kim, and Jeyong Yoon . Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping. ACS Applied Materials & Interfaces 2015, 7 (14) , 7486-7491. https://doi.org/10.1021/acsami.5b00123
  82. Lei Zhu, Wenyi Wu, Yusong Zhu, Weiping Tang, and Yuping Wu . Composite of CoOOH Nanoplates with Multiwalled Carbon Nanotubes as Superior Cathode Material for Supercapacitors. The Journal of Physical Chemistry C 2015, 119 (13) , 7069-7075. https://doi.org/10.1021/acs.jpcc.5b01498
  83. Stephen DeWitt Katsuyo Thornton . Anodic Oxide Nanostructures and Their Applications in Energy Generation and Storage. 2015,,, 19-39. https://doi.org/10.1021/bk-2015-1213.ch002
  84. Yongchao Huang, Haibo Li, Muhammad-Sadeeq Balogun, Wenyue Liu, Yexiang Tong, Xihong Lu, and Hongbing Ji . Oxygen Vacancy Induced Bismuth Oxyiodide with Remarkably Increased Visible-Light Absorption and Superior Photocatalytic Performance. ACS Applied Materials & Interfaces 2014, 6 (24) , 22920-22927. https://doi.org/10.1021/am507641k
  85. Lei Liu and Xiaobo Chen . Titanium Dioxide Nanomaterials: Self-Structural Modifications. Chemical Reviews 2014, 114 (19) , 9890-9918. https://doi.org/10.1021/cr400624r
  86. Kiyoung Lee, Anca Mazare, and Patrik Schmuki . One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews 2014, 114 (19) , 9385-9454. https://doi.org/10.1021/cr500061m
  87. Haining Chen, Zhanhua Wei, Keyou Yan, Yang Bai, and Shihe Yang . Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO2 Nanowires and Their Influence on Photoelectrochemical Operation. The Journal of Physical Chemistry Letters 2014, 5 (16) , 2890-2896. https://doi.org/10.1021/jz5014505
  88. Cao Guan, Xinghui Wang, Qing Zhang, Zhanxi Fan, Hua Zhang, and Hong Jin Fan . Highly Stable and Reversible Lithium Storage in SnO2 Nanowires Surface Coated with a Uniform Hollow Shell by Atomic Layer Deposition. Nano Letters 2014, 14 (8) , 4852-4858. https://doi.org/10.1021/nl502192p
  89. Astam K. Patra, Arghya Dutta, and Asim Bhaumik . Synthesis of Cuboid-Shaped Single-Crystalline TiO2 Nanocrystals with High-Energy Facets {001} and Its Dye-Sensitized Solar Cell Application. The Journal of Physical Chemistry C 2014, 118 (30) , 16703-16709. https://doi.org/10.1021/jp412674g
  90. Myeongjin Kim and Jooheon Kim . Redox Deposition of Birnessite-Type Manganese Oxide on Silicon Carbide Microspheres for Use as Supercapacitor Electrodes. ACS Applied Materials & Interfaces 2014, 6 (12) , 9036-9045. https://doi.org/10.1021/am406032y
  91. Wei-Hsuan Hung, Tzu-Ming Chien, and Chuan-Ming Tseng . Enhanced Photocatalytic Water Splitting by Plasmonic TiO2–Fe2O3 Cocatalyst under Visible Light Irradiation. The Journal of Physical Chemistry C 2014, 118 (24) , 12676-12681. https://doi.org/10.1021/jp5033965
  92. Ning Liu, Christopher Schneider, Detlef Freitag, Martin Hartmann, Umamaheswari Venkatesan, Julian Müller, Erdmann Spiecker, and Patrik Schmuki . Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Letters 2014, 14 (6) , 3309-3313. https://doi.org/10.1021/nl500710j
  93. Yongcheng Wang, Jing Tang, Zheng Peng, Yuhang Wang, Dingsi Jia, Biao Kong, Ahmed A. Elzatahry, Dongyuan Zhao, and Gengfeng Zheng . Fully Solar-Powered Photoelectrochemical Conversion for Simultaneous Energy Storage and Chemical Sensing. Nano Letters 2014, 14 (6) , 3668-3673. https://doi.org/10.1021/nl5014579
  94. Zheng Liang, Guangyuan Zheng, Weiyang Li, Zhi Wei Seh, Hongbin Yao, Kai Yan, Desheng Kong, and Yi Cui . Sulfur Cathodes with Hydrogen Reduced Titanium Dioxide Inverse Opal Structure. ACS Nano 2014, 8 (5) , 5249-5256. https://doi.org/10.1021/nn501308m
  95. Jingxia Qiu, Sheng Li, Evan Gray, Hongwei Liu, Qin-Fen Gu, Chenghua Sun, Chao Lai, Huijun Zhao, and Shanqing Zhang . Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2014, 118 (17) , 8824-8830. https://doi.org/10.1021/jp501819p
  96. Weijia Zhou, Xiaojun Liu, Yuanhua Sang, Zhenhuan Zhao, Kai Zhou, Hong Liu, and Shaowei Chen . Enhanced Performance of Layered Titanate Nanowire-Based Supercapacitor Electrodes by Nickel Ion Exchange. ACS Applied Materials & Interfaces 2014, 6 (6) , 4578-4586. https://doi.org/10.1021/am500421r
  97. He Zhou and Yanrong Zhang . Electrochemically Self-Doped TiO2 Nanotube Arrays for Supercapacitors. The Journal of Physical Chemistry C 2014, 118 (11) , 5626-5636. https://doi.org/10.1021/jp4082883
  98. Xinhui Xia, Dongliang Chao, Zhanxi Fan, Cao Guan, Xiehong Cao, Hua Zhang, and Hong Jin Fan . A New Type of Porous Graphite Foams and Their Integrated Composites with Oxide/Polymer Core/Shell Nanowires for Supercapacitors: Structural Design, Fabrication, and Full Supercapacitor Demonstrations. Nano Letters 2014, 14 (3) , 1651-1658. https://doi.org/10.1021/nl5001778
  99. Qi Li, Xue-Feng Lu, Han Xu, Ye-Xiang Tong, and Gao-Ren Li . Carbon/MnO2 Double-Walled Nanotube Arrays with Fast Ion and Electron Transmission for High-Performance Supercapacitors. ACS Applied Materials & Interfaces 2014, 6 (4) , 2726-2733. https://doi.org/10.1021/am405271q
  100. H. B. Li, M. H. Yu, X. H. Lu, P. Liu, Y. Liang, J. Xiao, Y. X. Tong, and G. W. Yang . Amorphous Cobalt Hydroxide with Superior Pseudocapacitive Performance. ACS Applied Materials & Interfaces 2014, 6 (2) , 745-749. https://doi.org/10.1021/am404769z
Load more citations