High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer

View Author Information
School of Chemical Engineering and Department of Energy Science, Sungkyunkwan University, Suwon 440-746, Korea
Energy Research Institute, Nanyang Technological University, Nanyang Avenue, Singapore 639798
§ Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
*N.G.P.: Tel +82-31-290-7241, fax +82-31-290-7272, e-mail: [email protected]. S.M.: Tel +65-6790-4626, fax +65-6790-9081, e-mail [email protected]
Cite this: Nano Lett. 2013, 13, 6, 2412–2417
Publication Date (Web):May 14, 2013
https://doi.org/10.1021/nl400286w
Copyright © 2013 American Chemical Society
Article Views
16655
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

We report a highly efficient solar cell based on a submicrometer (∼0.6 μm) rutile TiO2 nanorod sensitized with CH3NH3PbI3 perovskite nanodots. Rutile nanorods were grown hydrothermally and their lengths were varied through the control of the reaction time. Infiltration of spiro-MeOTAD hole transport material into the perovskite-sensitized nanorod films demonstrated photocurrent density of 15.6 mA/cm2, voltage of 955 mV, and fill factor of 0.63, leading to a power conversion efficiency (PCE) of 9.4% under the simulated AM 1.5G one sun illumination. Photovoltaic performance was significantly dependent on the length of the nanorods, where both photocurrent and voltage decreased with increasing nanorod lengths. A continuous drop of voltage with increasing nanorod length correlated with charge generation efficiency rather than recombination kinetics with impedance spectroscopic characterization displaying similar recombination regardless of the nanorod length.

Supporting Information

ARTICLE SECTIONS
Jump To

Roughness factor calculation, UV–vis spectra of CH3NH3PbI3-sentized nanorod films, evaluation of pore filling fraction, transient photocurrent and photovoltage measurement, and impedance spectroscopy characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 798 publications.

  1. Mi-Hee Jung. Highly Stable Thiophene Perovskite Enabled by an Oxygen-Containing Moiety for Efficient Photovoltaics. The Journal of Physical Chemistry C 2021, 125 (46) , 25430-25445. https://doi.org/10.1021/acs.jpcc.1c08095
  2. Qingchen He, Haiming Zhang, Siqi Han, Rufeng Wang, Yujie Li, Xianjing Zhang, Yuwen Xing. Improvement of Thiourea (Lewis Base)-Modified SnO2 Electron-Transport Layer for Carbon-Based CsPbIBr2 Perovskite Solar Cells. ACS Applied Energy Materials 2021, 4 (10) , 10958-10967. https://doi.org/10.1021/acsaem.1c01918
  3. Mai-Phuong La, Jia-Wei Shiu, Tun-Fun Way, Syang-Peng Rwei. Synthesis and Characterization of Size-Controlled Titania Nanorods through Double Surfactants. Inorganic Chemistry 2021, 60 (11) , 7952-7960. https://doi.org/10.1021/acs.inorgchem.1c00463
  4. Ke Wang, Zhaobin Zhang, Ling Wang, Koucheng Chen, Lu Tao, Yinxi Zhang, Xingfu Zhou. Commercial Carbon-Based all-Inorganic Perovskite Solar Cells with a High Efficiency of 13.81%: Interface Engineering and Photovoltaic Performance. ACS Applied Energy Materials 2021, 4 (4) , 3255-3264. https://doi.org/10.1021/acsaem.0c03036
  5. James. A. Quirk, Vlado K. Lazarov, Keith P. McKenna. First-Principles Modeling of Oxygen-Deficient Anatase TiO2 Nanoparticles. The Journal of Physical Chemistry C 2020, 124 (43) , 23637-23647. https://doi.org/10.1021/acs.jpcc.0c06052
  6. Jian Liu, Dongjie Wang, Kun Chen, Bin She, Baichen Liu, Yu Huang, Wenfa Xie, Jian Zhang, Hailiang Zhang. Improved Pore-Filling and Passivation of Defects in Hole-Conductor-Free, Fully Printable Mesoscopic Perovskite Solar Cells Based on d-Sorbitol Hexaacetate-Modified MAPbI3. ACS Applied Materials & Interfaces 2020, 12 (42) , 47677-47683. https://doi.org/10.1021/acsami.0c15554
  7. Ahmed Mourtada Elseman, Ayman H. Zaki, Ahmed Esmail Shalan, Mohamed Mohamed Rashad, Qun Liang Song. TiO2 Nanotubes: An Advanced Electron Transport Material for Enhancing the Efficiency and Stability of Perovskite Solar Cells. Industrial & Engineering Chemistry Research 2020, 59 (41) , 18549-18557. https://doi.org/10.1021/acs.iecr.0c03415
  8. Wanxian Cai, Yanqi Lv, Koucheng Chen, Zhaobin Zhang, Yuanzeng Jin, Xingfu Zhou. Carbon-Based All-Inorganic CsPbI2Br Perovskite Solar Cells Using TiO2 Nanorod Arrays: Interface Modification and the Enhanced Photovoltaic Performance. Energy & Fuels 2020, 34 (9) , 11670-11678. https://doi.org/10.1021/acs.energyfuels.0c01821
  9. Jin Young Kim, Jin-Wook Lee, Hyun Suk Jung, Hyunjung Shin, Nam-Gyu Park. High-Efficiency Perovskite Solar Cells. Chemical Reviews 2020, 120 (15) , 7867-7918. https://doi.org/10.1021/acs.chemrev.0c00107
  10. Jie Liu, Xingtian Yin, Yuxiao Guo, Meidan Que, Jing Chen, Zhong Chen, Wenxiu Que. Influence of Hole Transport Layers/Perovskite Interfaces on the Hysteresis Behavior of Inverted Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (7) , 6391-6399. https://doi.org/10.1021/acsaem.0c00612
  11. Mohammed Nazim, Jae Hyun Kim. Controlled Size Growth of Thermally Stable Organometallic Halide Perovskite Microrods: Synergistic Effect of Dual-Doping, Lattice Strain Engineering, Antisolvent Crystallization, and Band Gap Tuning Properties. ACS Omega 2020, 5 (26) , 16106-16119. https://doi.org/10.1021/acsomega.0c01667
  12. Jingjing Yan, Zhichao Lin, Qingbin Cai, Xiaoning Wen, Cheng Mu. Choline Chloride-Modified SnO2 Achieving High Output Voltage in MAPbI3 Perovskite Solar Cells. ACS Applied Energy Materials 2020, 3 (4) , 3504-3511. https://doi.org/10.1021/acsaem.0c00038
  13. Alexandria R. C. Bredar, Amanda L. Chown, Andricus R. Burton, Byron H. Farnum. Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications. ACS Applied Energy Materials 2020, 3 (1) , 66-98. https://doi.org/10.1021/acsaem.9b01965
  14. Fatemeh Ansari, Masoud Salavati-Niasari, Omid Amiri, Noshin Mir, Bahram Abdollahi Nejand, Vahid Ahmadi. Magnetite as Inorganic Hole Transport Material for Lead Halide Perovskite-Based Solar Cells with Enhanced Stability. Industrial & Engineering Chemistry Research 2020, 59 (2) , 743-750. https://doi.org/10.1021/acs.iecr.9b05173
  15. Daocheng Hong, Weiqing Yang, Yuxi Tian. Distinguish the Quenching and Degradation of CH3NH3PbI3 Perovskite by Simultaneous Absorption and Photoluminescence Measurements. The Journal of Physical Chemistry C 2020, 124 (1) , 1207-1213. https://doi.org/10.1021/acs.jpcc.9b09955
  16. Jin Hyuck Heo, Kyungmin Im, Jinsoo Kim, Sang Hyuk Im. Efficient Metal Halide Perovskite Solar Cells Prepared by Reproducible Electrospray Coating on Vertically Aligned TiO2 Nanorod Electrodes. ACS Applied Materials & Interfaces 2020, 12 (1) , 886-892. https://doi.org/10.1021/acsami.9b19121
  17. Mi-Hee Jung. Stacking of Layered Halide Perovskite from Incorporating a Diammonium Cation into Three-Dimensional Perovskites. Langmuir 2019, 35 (50) , 16444-16458. https://doi.org/10.1021/acs.langmuir.9b02524
  18. Zibo Li, Henan Li, Ke Jiang, Dong Ding, Jieni Li, Chun Ma, Shangchi Jiang, Ye Wang, Thomas D. Anthopoulos, Yumeng Shi. Self-Powered Perovskite/CdS Heterostructure Photodetectors. ACS Applied Materials & Interfaces 2019, 11 (43) , 40204-40213. https://doi.org/10.1021/acsami.9b11835
  19. Jiaming Liu, Liqun Zhu, Sisi Xiang, Hailiang Wang, Huicong Liu, Weiping Li, Haining Chen. Cs-Doped TiO2 Nanorod Array Enhances Electron Injection and Transport in Carbon-Based CsPbI3 Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16927-16932. https://doi.org/10.1021/acssuschemeng.9b04772
  20. Tufan Paul, Soumen Maiti, Nripen Besra, Biplab Kr Chatterjee, Bikram Kumar Das, Subhasish Thakur, Saikat Sarkar, Nirmalya Sankar Das, Kalyan Kumar Chattopadhyay. Tailored CsPbX3 Nanorods for Electron-Emission Nanodevices. ACS Applied Nano Materials 2019, 2 (9) , 5942-5951. https://doi.org/10.1021/acsanm.9b01379
  21. Bingbing Cao, Haoran Liu, Longkai Yang, Xin Li, Hu Liu, Pei Dong, Xianmin Mai, Chuanxin Hou, Ning Wang, Jiaoxia Zhang, Jincheng Fan, Qiang Gao, Zhanhu Guo. Interfacial Engineering for High-Efficiency Nanorod Array-Structured Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (37) , 33770-33780. https://doi.org/10.1021/acsami.9b07610
  22. Ajay Singh, Eros Radicchi, Simona Fantacci, Francesca Nunzi, Filippo De Angelis, Alessio Gagliardi. Interface Electrostatics of Solid-State Dye-Sensitized Solar Cells: A Joint Drift-Diffusion and Density Functional Theory Study. The Journal of Physical Chemistry C 2019, 123 (24) , 14955-14963. https://doi.org/10.1021/acs.jpcc.9b03658
  23. Shan Cong, Guifu Zou, Yanhui Lou, Hao Yang, Ying Su, Jie Zhao, Cheng Zhang, Peipei Ma, Zheng Lu, Hongyou Fan, Zhifeng Huang. Fabrication of Nickel Oxide Nanopillar Arrays on Flexible Electrodes for Highly Efficient Perovskite Solar Cells. Nano Letters 2019, 19 (6) , 3676-3683. https://doi.org/10.1021/acs.nanolett.9b00760
  24. Tingting Wu, Chao Zhen, Huaze Zhu, Jinbo Wu, Chunxu Jia, Lianzhou Wang, Gang Liu, Nam-Gyu Park, Hui-Ming Cheng. Gradient Sn-Doped Heteroepitaxial Film of Faceted Rutile TiO2 as an Electron Selective Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (21) , 19638-19646. https://doi.org/10.1021/acsami.9b04308
  25. Yutong Wang, Jinlu He, Yaochun Yang, Zhenkui Zhang, Run Long. Chlorine Passivation of Grain Boundary Suppresses Electron–Hole Recombination in CsPbBr3 Perovskite by Nonadiabatic Molecular Dynamics Simulation. ACS Applied Energy Materials 2019, 2 (5) , 3419-3426. https://doi.org/10.1021/acsaem.9b00220
  26. Tian-Yuan Zhu, Da-Jun Shu. Role of Ionic Charge Accumulation in Perovskite Solar Cell: Carrier Transfer in Bulk and Extraction at Interface. The Journal of Physical Chemistry C 2019, 123 (9) , 5312-5320. https://doi.org/10.1021/acs.jpcc.9b01059
  27. Chao Zhen, Tingting Wu, Runze Chen, Lianzhou Wang, Gang Liu, Hui-Ming Cheng. Strategies for Modifying TiO2 Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (5) , 4586-4618. https://doi.org/10.1021/acssuschemeng.8b06580
  28. Jianjun Zhang, Liuyang Zhang, Xiaohe Li, Xinyi Zhu, Jiaguo Yu, Ke Fan. Binary Solvent Engineering for High-Performance Two-Dimensional Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 3487-3495. https://doi.org/10.1021/acssuschemeng.8b05734
  29. Joshua Bauer, Leo Scott Quintanar, Kai Wang, Alexander A. Puretzky, Kai Xiao, David B. Geohegan, Abdelaziz Boulesbaa. Ultrafast Exciton Dissociation at the 2D-WS2 Monolayer/Perovskite Interface. The Journal of Physical Chemistry C 2018, 122 (50) , 28910-28917. https://doi.org/10.1021/acs.jpcc.8b08183
  30. Lu Qiao, Wei-Hai Fang, Run Long. Dopant Control of Electron–Hole Recombination in Cesium–Titanium Halide Double Perovskite by Time Domain Ab Initio Simulation: Codoping Supersedes Monodoping. The Journal of Physical Chemistry Letters 2018, 9 (23) , 6907-6914. https://doi.org/10.1021/acs.jpclett.8b03356
  31. Jianqiang Qin, Zhenlong Zhang, Wenjia Shi, Yuefeng Liu, Huiping Gao, Yanli Mao. Enhanced Performance of Perovskite Solar Cells by Using Ultrathin BaTiO3 Interface Modification. ACS Applied Materials & Interfaces 2018, 10 (42) , 36067-36074. https://doi.org/10.1021/acsami.8b16358
  32. Yuqing Xiao, Changlei Wang, Kiran Kumar Kondamareddy, Nian Cheng, Pei Liu, Yunhang Qiu, Fei Qi, Sen Kong, Wei Liu, Xing-Zhong Zhao. Efficient Electron Transport Scaffold Made up of Submicron TiO2 Spheres for High-Performance Hole-Transport Material Free Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (10) , 5453-5462. https://doi.org/10.1021/acsaem.8b01038
  33. Yingze Zhang, Mingjie Rong, Xiaoyun Yan, Xinlong Wang, Yanli Chen, Xiyou Li, Ruimin Zhu. Surface Modification of Methylamine Lead Halide Perovskite with Aliphatic Amine Hydroiodide. Langmuir 2018, 34 (32) , 9507-9515. https://doi.org/10.1021/acs.langmuir.8b01650
  34. Chuan-Jia Tong, Linqiu Li, Li-Min Liu, Oleg V. Prezhdo. Long Carrier Lifetimes in PbI2-Rich Perovskites Rationalized by Ab Initio Nonadiabatic Molecular Dynamics. ACS Energy Letters 2018, 3 (8) , 1868-1874. https://doi.org/10.1021/acsenergylett.8b00961
  35. Xiaolei Wang, Xiao Xia Han, Hao Ma, Peng Li, Xueliang Li, Yasutaka Kitahama, Bing Zhao, Yukihiro Ozaki. Reduced Charge-Transfer Threshold in Dye-Sensitized Solar Cells with an [email protected]/N3/n-TiO2 Structure As Revealed by Surface-Enhanced Raman Scattering. The Journal of Physical Chemistry C 2018, 122 (24) , 12748-12760. https://doi.org/10.1021/acs.jpcc.8b02197
  36. Xin Li, Xingyue Zhao, Feng Hao, Xuewen Yin, Zhibo Yao, Yu Zhou, Heping Shen, Hong Lin. Bifacial Modified Charge Transport Materials for Highly Efficient and Stable Inverted Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (21) , 17861-17870. https://doi.org/10.1021/acsami.8b02035
  37. Yoshitaka Sanehira, Youhei Numata, Masashi Ikegami, Tsutomu Miyasaka. Spontaneous Synthesis of Highly Crystalline TiO2 Compact/Mesoporous Stacked Films by a Low-Temperature Steam-Annealing Method for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (20) , 17195-17202. https://doi.org/10.1021/acsami.8b03532
  38. Daocheng Hong, Yipeng Zhou, Sushu Wan, Xixi Hu, Daiqian Xie, Yuxi Tian. Nature of Photoinduced Quenching Traps in Methylammonium Lead Triiodide Perovskite Revealed by Reversible Photoluminescence Decline. ACS Photonics 2018, 5 (5) , 2034-2043. https://doi.org/10.1021/acsphotonics.7b01537
  39. Young Mi Lee, Jinwoo Park, Byung Deok Yu, Suklyun Hong, Min-Cherl Jung, Masakazu Nakamura. Surface Instability of Sn-Based Hybrid Perovskite Thin Film, CH3NH3SnI3: The Origin of Its Material Instability. The Journal of Physical Chemistry Letters 2018, 9 (9) , 2293-2297. https://doi.org/10.1021/acs.jpclett.8b00494
  40. Shufang Wu, Chi Chen, Jinming Wang, Jiangrong Xiao, Tianyou Peng. Controllable Preparation of Rutile TiO2 Nanorod Array for Enhanced Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (4) , 1649-1657. https://doi.org/10.1021/acsaem.8b00106
  41. Didac Pitarch-Tena, Thi Tuyen Ngo, Marta Vallés-Pelarda, Thierry Pauporté, Iván Mora-Seró. Impedance Spectroscopy Measurements in Perovskite Solar Cells: Device Stability and Noise Reduction. ACS Energy Letters 2018, 3 (4) , 1044-1048. https://doi.org/10.1021/acsenergylett.8b00465
  42. Zhaosheng Zhang, Wei-Hai Fang, Marina V. Tokina, Run Long, Oleg V. Prezhdo. Rapid Decoherence Suppresses Charge Recombination in Multi-Layer 2D Halide Perovskites: Time-Domain Ab Initio Analysis. Nano Letters 2018, 18 (4) , 2459-2466. https://doi.org/10.1021/acs.nanolett.8b00035
  43. Wendy J. Nimens, Jonathan Ogle, Anna Caruso, Mckenzie Jonely, Charles Simon, Detlef Smilgies, Rodrigo Noriega, Michael Scarpulla, and Luisa Whittaker-Brooks . Morphology and Optoelectronic Variations Underlying the Nature of the Electron Transport Layer in Perovskite Solar Cells. ACS Applied Energy Materials 2018, 1 (2) , 602-615. https://doi.org/10.1021/acsaem.7b00147
  44. Atthaporn Ariyarit, Ryohei Yoshikawa, Issei Takenaka, Frédéric Gillot, and Seimei Shiratori . Improvement of the Dynamic Spin-Washing Effect with an Optimized Process of a Perovskite Solar Cell in Ambient Air by the Kriging Method. Industrial & Engineering Chemistry Research 2017, 56 (39) , 11142-11150. https://doi.org/10.1021/acs.iecr.7b02515
  45. Lin Song, Weijia Wang, Stephan Pröller, Daniel Moseguí González, Johannes Schlipf, Christoph J. Schaffer, Kristina Peters, Eva M. Herzig, Sigrid Bernstorff, Thomas Bein, Dina Fattakhova-Rohlfing, and Peter Müller-Buschbaum . In Situ Study of Degradation in P3HT–Titania-Based Solid-State Dye-Sensitized Solar Cells. ACS Energy Letters 2017, 2 (5) , 991-997. https://doi.org/10.1021/acsenergylett.7b00117
  46. Qi Chen, Lei Chen, Fengye Ye, Ting Zhao, Feng Tang, Adharsh Rajagopal, Zheng Jiang, Shenlong Jiang, Alex K.-Y. Jen, Yi Xie, Jinhua Cai, and Liwei Chen . Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Letters 2017, 17 (5) , 3231-3237. https://doi.org/10.1021/acs.nanolett.7b00847
  47. Guannan Yin, Jiaxin Ma, Hong Jiang, Juan Li, Dong Yang, Fei Gao, Jinghui Zeng, Zhike Liu, and Shengzhong Frank Liu . Enhancing Efficiency and Stability of Perovskite Solar Cells through Nb-Doping of TiO2 at Low Temperature. ACS Applied Materials & Interfaces 2017, 9 (12) , 10752-10758. https://doi.org/10.1021/acsami.7b01063
  48. Milos Krbal, Hanna Sopha, Veronika Podzemna, Sayantan Das, Jan Prikryl, and Jan M. Macak . TiO2 Nanotube/Chalcogenide-Based Photoelectrochemical Cell: Nanotube Diameter Dependence Study. The Journal of Physical Chemistry C 2017, 121 (11) , 6065-6071. https://doi.org/10.1021/acs.jpcc.6b11283
  49. Xiaoguang Liang, Heng Zhang, Ho-Wa Li, Lei Shu, HoYuen Cheung, Dapan Li, SenPo Yip, Qing Dan Yang, Chun-Yuen Wong, Sai-Wing Tsang, and Johnny C. Ho . Enhanced Self-Assembly of Crystalline, Large-Area, and Periodicity-Tunable TiO2 Nanotube Arrays on Various Substrates. ACS Applied Materials & Interfaces 2017, 9 (7) , 6265-6272. https://doi.org/10.1021/acsami.6b12474
  50. Joanna Jankowska and Oleg V. Prezhdo . Ferroelectric Alignment of Organic Cations Inhibits Nonradiative Electron–Hole Recombination in Hybrid Perovskites: Ab Initio Nonadiabatic Molecular Dynamics. The Journal of Physical Chemistry Letters 2017, 8 (4) , 812-818. https://doi.org/10.1021/acs.jpclett.7b00008
  51. Antonio Agresti, Sara Pescetelli, Alessandro L. Palma, Antonio E. Del Rio Castillo, Dimitrios Konios, George Kakavelakis, Stefano Razza, Lucio Cinà, Emmanuel Kymakis, Francesco Bonaccorso, and Aldo Di Carlo . Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area. ACS Energy Letters 2017, 2 (1) , 279-287. https://doi.org/10.1021/acsenergylett.6b00672
  52. Jun Shao, Songwang Yang, Lei Lei, Qipeng Cao, Yu Yu, and Yan Liu . Pore Size Dependent Hysteresis Elimination in Perovskite Solar Cells Based on Highly Porous TiO2 Films with Widely Tunable Pores of 15–34 nm. Chemistry of Materials 2016, 28 (19) , 7134-7144. https://doi.org/10.1021/acs.chemmater.6b03445
  53. Jiang-Jun Li, Jing-Yuan Ma, Jin-Song Hu, Dong Wang, and Li-Jun Wan . Influence of N,N-Dimethylformamide Annealing on the Local Electrical Properties of Organometal Halide Perovskite Solar Cells: an Atomic Force Microscopy Investigation. ACS Applied Materials & Interfaces 2016, 8 (39) , 26002-26007. https://doi.org/10.1021/acsami.6b07647
  54. Shen Wang, Mahsa Sina, Pritesh Parikh, Taylor Uekert, Brian Shahbazian, Arun Devaraj, and Ying Shirley Meng . Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano Letters 2016, 16 (9) , 5594-5600. https://doi.org/10.1021/acs.nanolett.6b02158
  55. Xin Li, Si-Min Dai, Pei Zhu, Lin-Long Deng, Su-Yuan Xie, Qian Cui, Hong Chen, Ning Wang, and Hong Lin . Efficient Perovskite Solar Cells Depending on TiO2 Nanorod Arrays. ACS Applied Materials & Interfaces 2016, 8 (33) , 21358-21365. https://doi.org/10.1021/acsami.6b05971
  56. Fei Li, Zhiguo Xia, and Quanlin Liu . Insight into the Controlled Synthesis of Cu2Zn(Ge,Sn)S4 Nanoparticles with Selective Grain Size. The Journal of Physical Chemistry C 2016, 120 (30) , 16969-16976. https://doi.org/10.1021/acs.jpcc.6b05894
  57. Kai-Lin Ou, Ramanan Ehamparam, Gordon MacDonald, Tobias Stubhan, Xin Wu, R. Clayton Shallcross, Robin Richards, Christoph J. Brabec, S. Scott Saavedra, and Neal R. Armstrong . Characterization of ZnO Interlayers for Organic Solar Cells: Correlation of Electrochemical Properties with Thin-Film Morphology and Device Performance. ACS Applied Materials & Interfaces 2016, 8 (30) , 19787-19798. https://doi.org/10.1021/acsami.6b02792
  58. Jincheol Kim, Jae S. Yun, Xiaoming Wen, Arman Mahboubi Soufiani, Cho Fai Jonathan Lau, Benjamin Wilkinson, Jan Seidel, Martin A. Green, Shujuan Huang, and Anita W. Y. Ho-Baillie . Nucleation and Growth Control of HC(NH2)2PbI3 for Planar Perovskite Solar Cell. The Journal of Physical Chemistry C 2016, 120 (20) , 11262-11267. https://doi.org/10.1021/acs.jpcc.6b02443
  59. Chih-Chun Chung, Chang Soo Lee, Efat Jokar, Jong Hak Kim, and Eric Wei-Guang Diau . Well-Organized Mesoporous TiO2 Photoanode by Using Amphiphilic Graft Copolymer for Efficient Perovskite Solar Cells. The Journal of Physical Chemistry C 2016, 120 (18) , 9619-9627. https://doi.org/10.1021/acs.jpcc.6b01980
  60. Joaquin Resasco, Hao Zhang, Nikolay Kornienko, Nigel Becknell, Hyunbok Lee, Jinghua Guo, Alejandro L. Briseno, and Peidong Yang . TiO2/BiVO4 Nanowire Heterostructure Photoanodes Based on Type II Band Alignment. ACS Central Science 2016, 2 (2) , 80-88. https://doi.org/10.1021/acscentsci.5b00402
  61. Tony E. Karam, Noureen Siraj, Isiah M. Warner, and Louis H. Haber . Anomalous Size-Dependent Excited-State Relaxation Dynamics of NanoGUMBOS. The Journal of Physical Chemistry C 2015, 119 (50) , 28206-28213. https://doi.org/10.1021/acs.jpcc.5b09729
  62. Devendra Khatiwada, Swaminathan Venkatesan, Nirmal Adhikari, Ashish Dubey, Abu Farzan Mitul, Lal Mohammad, Anastasiia Iefanova, Seth B. Darling, and Qiquan Qiao . Efficient Perovskite Solar Cells by Temperature Control in Single and Mixed Halide Precursor Solutions and Films. The Journal of Physical Chemistry C 2015, 119 (46) , 25747-25753. https://doi.org/10.1021/acs.jpcc.5b08294
  63. Shen Wang, Wen Yuan, and Ying Shirley Meng . Spectrum-Dependent Spiro-OMeTAD Oxidization Mechanism in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (44) , 24791-24798. https://doi.org/10.1021/acsami.5b07703
  64. Gill Sang Han, Young Hyun Song, Young Un Jin, Jin-Wook Lee, Nam-Gyu Park, Bong Kyun Kang, Jung-Kun Lee, In Sun Cho, Dae Ho Yoon, and Hyun Suk Jung . Reduced Graphene Oxide/Mesoporous TiO2 Nanocomposite Based Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (42) , 23521-23526. https://doi.org/10.1021/acsami.5b06171
  65. Bahram Abdollahi Nejand, Vahid Ahmadi, and Hamid Reza Shahverdi . New Physical Deposition Approach for Low Cost Inorganic Hole Transport Layer in Normal Architecture of Durable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (39) , 21807-21818. https://doi.org/10.1021/acsami.5b05477
  66. Hasyiya Karimah Adli, Takashi Harada, Wilman Septina, Shuji Hozan, Seigo Ito, and Shigeru Ikeda . Effects of Porosity and Amount of Surface Hydroxyl Groups of a Porous TiO2 Layer on the Performance of a CH3NH3PbI3 Perovskite Photovoltaic Cell. The Journal of Physical Chemistry C 2015, 119 (39) , 22304-22309. https://doi.org/10.1021/acs.jpcc.5b05986
  67. Jino Im, Constantinos C. Stoumpos, Hosub Jin, Arthur J. Freeman, and Mercouri G. Kanatzidis . Antagonism between Spin–Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1–xPbxI3. The Journal of Physical Chemistry Letters 2015, 6 (17) , 3503-3509. https://doi.org/10.1021/acs.jpclett.5b01738
  68. Giovanna Pellegrino, Silvia Colella, Ioannis Deretzis, Guglielmo G. Condorelli, Emanuele Smecca, Giuseppe Gigli, Antonino La Magna, and Alessandra Alberti . Texture of MAPbI3 Layers Assisted by Chloride on Flat TiO2 Substrates. The Journal of Physical Chemistry C 2015, 119 (34) , 19808-19816. https://doi.org/10.1021/acs.jpcc.5b04496
  69. Azhar Fakharuddin, Francesco Di Giacomo, Alessandro L. Palma, Fabio Matteocci, Irfan Ahmed, Stefano Razza, Alessandra D’Epifanio, Silvia Licoccia, Jamil Ismail, Aldo Di Carlo, Thomas M. Brown, and Rajan Jose . Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. ACS Nano 2015, 9 (8) , 8420-8429. https://doi.org/10.1021/acsnano.5b03265
  70. Mark T. Weller, Oliver J. Weber, Jarvist M. Frost, and Aron Walsh . Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K. The Journal of Physical Chemistry Letters 2015, 6 (16) , 3209-3212. https://doi.org/10.1021/acs.jpclett.5b01432
  71. Mei Lv, Jun Zhu, Yang Huang, Yi Li, Zhipeng Shao, Yafeng Xu, and Songyuan Dai . Colloidal CuInS2 Quantum Dots as Inorganic Hole-Transporting Material in Perovskite Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (31) , 17482-17488. https://doi.org/10.1021/acsami.5b05104
  72. Dae-Yong Son, Kyeong-Hui Bae, Hui-Seon Kim, and Nam-Gyu Park . Effects of Seed Layer on Growth of ZnO Nanorod and Performance of Perovskite Solar Cell. The Journal of Physical Chemistry C 2015, 119 (19) , 10321-10328. https://doi.org/10.1021/acs.jpcc.5b03276
  73. Sujin Sung, Sungjun Park, Won-June Lee, Jongho Son, Chang-Hyun Kim, Yoonhee Kim, Do Young Noh, and Myung-Han Yoon . Low-Voltage Flexible Organic Electronics Based on High-Performance Sol–Gel Titanium Dioxide Dielectric. ACS Applied Materials & Interfaces 2015, 7 (14) , 7456-7461. https://doi.org/10.1021/acsami.5b00281
  74. Ming Cheng, Cheng Chen, Xichuan Yang, Jing Huang, Fuguo Zhang, Bo Xu, and Licheng Sun . Novel Small Molecular Materials Based on Phenoxazine Core Unit for Efficient Bulk Heterojunction Organic Solar Cells and Perovskite Solar Cells. Chemistry of Materials 2015, 27 (5) , 1808-1814. https://doi.org/10.1021/acs.chemmater.5b00001
  75. Sawanta S. Mali, Chang Su Shim, Hui Kyung Park, Jaeyeong Heo, Pramod S. Patil, and Chang Kook Hong . Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells. Chemistry of Materials 2015, 27 (5) , 1541-1551. https://doi.org/10.1021/cm504558g
  76. Kai Wang, Yantao Shi, Qingshun Dong, Yu Li, Shufeng Wang, Xufeng Yu, Mengyao Wu, and Tingli Ma . Low-Temperature and Solution-Processed Amorphous WOX as Electron-Selective Layer for Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2015, 6 (5) , 755-759. https://doi.org/10.1021/acs.jpclett.5b00010
  77. Yanhao Yu, Jianye Li, Dalong Geng, Jialiang Wang, Lushuai Zhang, Trisha L. Andrew, Michael S. Arnold, and Xudong Wang . Development of Lead Iodide Perovskite Solar Cells Using Three-Dimensional Titanium Dioxide Nanowire Architectures. ACS Nano 2015, 9 (1) , 564-572. https://doi.org/10.1021/nn5058672
  78. Chang Liu, Kai Wang, Pengcheng Du, Tianyu Meng, Xinfei Yu, Stephen Z. D. Cheng, and Xiong Gong . High Performance Planar Heterojunction Perovskite Solar Cells with Fullerene Derivatives as the Electron Transport Layer. ACS Applied Materials & Interfaces 2015, 7 (2) , 1153-1159. https://doi.org/10.1021/am506869k
  79. Radi A. Jishi, Oliver B. Ta, and Adel A. Sharif . Modeling of Lead Halide Perovskites for Photovoltaic Applications. The Journal of Physical Chemistry C 2014, 118 (49) , 28344-28349. https://doi.org/10.1021/jp5050145
  80. Yixin Zhao and Kai Zhu . Solution Chemistry Engineering toward High-Efficiency Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2014, 5 (23) , 4175-4186. https://doi.org/10.1021/jz501983v
  81. Feng Hao, Constantinos C. Stoumpos, Zhao Liu, Robert P. H. Chang, and Mercouri G. Kanatzidis . Controllable Perovskite Crystallization at a Gas–Solid Interface for Hole Conductor-Free Solar Cells with Steady Power Conversion Efficiency over 10%. Journal of the American Chemical Society 2014, 136 (46) , 16411-16419. https://doi.org/10.1021/ja509245x
  82. Amalie Dualeh, Peng Gao, Sang Il Seok, Mohammad Khaja Nazeeruddin, and Michael Grätzel . Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chemistry of Materials 2014, 26 (21) , 6160-6164. https://doi.org/10.1021/cm502468k
  83. Xudong Wang, Zhaodong Li, Jian Shi, and Yanhao Yu . One-Dimensional Titanium Dioxide Nanomaterials: Nanowires, Nanorods, and Nanobelts. Chemical Reviews 2014, 114 (19) , 9346-9384. https://doi.org/10.1021/cr400633s
  84. Ke Sun, Shaohua Shen, Yongqi Liang, Paul E. Burrows, Samuel S. Mao, and Deli Wang . Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17) , 8662-8719. https://doi.org/10.1021/cr300459q
  85. Xi Zhu, Haibin Su, Rudolph A. Marcus, and Maria E. Michel-Beyerle . Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. The Journal of Physical Chemistry Letters 2014, 5 (17) , 3061-3065. https://doi.org/10.1021/jz501174e
  86. Dae-Yong Son, Jeong-Hyeok Im, Hui-Seon Kim, and Nam-Gyu Park . 11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System. The Journal of Physical Chemistry C 2014, 118 (30) , 16567-16573. https://doi.org/10.1021/jp412407j
  87. James A. Dorman, Jonas Weickert, Julian B. Reindl, Martin Putnik, Andreas Wisnet, Matthias Noebels, Christina Scheu, and Lukas Schmidt-Mende . Control of Recombination Pathways in TiO2 Nanowire Hybrid Solar Cells Using Sn4+ Dopants. The Journal of Physical Chemistry C 2014, 118 (30) , 16672-16679. https://doi.org/10.1021/jp412650r
  88. Arpita Sarkar, Nam Joong Jeon, Jun Hong Noh, and Sang Il Seok . Well-Organized Mesoporous TiO2 Photoelectrodes by Block Copolymer-Induced Sol–Gel Assembly for Inorganic–Organic Hybrid Perovskite Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16688-16693. https://doi.org/10.1021/jp412655p
  89. Zhen Li, Sneha A. Kulkarni, Pablo P. Boix, Enzheng Shi, Anyuan Cao, Kunwu Fu, Sudip K. Batabyal, Jun Zhang, Qihua Xiong, Lydia Helena Wong, Nripan Mathews, and Subodh G. Mhaisalkar . Laminated Carbon Nanotube Networks for Metal Electrode-Free Efficient Perovskite Solar Cells. ACS Nano 2014, 8 (7) , 6797-6804. https://doi.org/10.1021/nn501096h
  90. Idan Hod and Arie Zaban . Materials and Interfaces in Quantum Dot Sensitized Solar Cells: Challenges, Advances and Prospects. Langmuir 2014, 30 (25) , 7264-7273. https://doi.org/10.1021/la403768j
  91. Yaoguang Rong, Zhiliang Ku, Anyi Mei, Tongfa Liu, Mi Xu, Songguk Ko, Xiong Li, and Hongwei Han . Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes. The Journal of Physical Chemistry Letters 2014, 5 (12) , 2160-2164. https://doi.org/10.1021/jz500833z
  92. Feng Hao, Constantinos C. Stoumpos, Robert P. H. Chang, and Mercouri G. Kanatzidis . Anomalous Band Gap Behavior in Mixed Sn and Pb Perovskites Enables Broadening of Absorption Spectrum in Solar Cells. Journal of the American Chemical Society 2014, 136 (22) , 8094-8099. https://doi.org/10.1021/ja5033259
  93. Aswani Yella, Leo-Philipp Heiniger, Peng Gao, Mohammad Khaja Nazeeruddin, and Michael Grätzel . Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano Letters 2014, 14 (5) , 2591-2596. https://doi.org/10.1021/nl500399m
  94. Yuzhuan Xu, Jiangjian Shi, Songtao Lv, Lifeng Zhu, Juan Dong, Huijue Wu, Yin Xiao, Yanhong Luo, Shirong Wang, Dongmei Li, Xianggao Li, and Qingbo Meng . Simple Way to Engineer Metal–Semiconductor Interface for Enhanced Performance of Perovskite Organic Lead Iodide Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (8) , 5651-5656. https://doi.org/10.1021/am5001773
  95. Jongseob Kim, Sung-Hoon Lee, Jung Hoon Lee, and Ki-Ha Hong . The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. The Journal of Physical Chemistry Letters 2014, 5 (8) , 1312-1317. https://doi.org/10.1021/jz500370k
  96. Luis K. Ono, Philip Schulz, James J. Endres, Gueorgui O. Nikiforov, Yuichi Kato, Antoine Kahn, and Yabing Qi . Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films. The Journal of Physical Chemistry Letters 2014, 5 (8) , 1374-1379. https://doi.org/10.1021/jz500414m
  97. Ilya A. Shkrob and Timothy W. Marin . Charge Trapping in Photovoltaically Active Perovskites and Related Halogenoplumbate Compounds. The Journal of Physical Chemistry Letters 2014, 5 (7) , 1066-1071. https://doi.org/10.1021/jz5004022
  98. Hui-Seon Kim, Sang Hyuk Im, and Nam-Gyu Park . Organolead Halide Perovskite: New Horizons in Solar Cell Research. The Journal of Physical Chemistry C 2014, 118 (11) , 5615-5625. https://doi.org/10.1021/jp409025w
  99. Jacob Tse-Wei Wang, James M. Ball, Eva M. Barea, Antonio Abate, Jack A. Alexander-Webber, Jian Huang, Michael Saliba, Iván Mora-Sero, Juan Bisquert, Henry J. Snaith, and Robin J. Nicholas . Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Letters 2014, 14 (2) , 724-730. https://doi.org/10.1021/nl403997a
  100. Yixin Zhao, Alexandre M. Nardes, and Kai Zhu . Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells: Charge Transport, Recombination, and Diffusion Length. The Journal of Physical Chemistry Letters 2014, 5 (3) , 490-494. https://doi.org/10.1021/jz500003v
Load more citations