Trap-Free Transport in Ordered and Disordered TiO2 Nanostructures

View Author Information
National Renewable Energy Laboratory, Golden, Colorado 80401-3393, United States
Cite this: Nano Lett. 2014, 14, 5, 2305–2309
Publication Date (Web):April 23, 2014
https://doi.org/10.1021/nl4046087
Copyright © 2014 American Chemical Society
Article Views
1796
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (862 KB)
Supporting Info (1)»

Abstract

Understanding the influence of different film structures on electron diffusion in nanoporous metal oxide films has been challenging. Because of the rate-limiting role that traps play in controlling the transport properties, the structural effects of different film architectures are largely obscured or reduced. We describe a general approach to probe the impact of structural order and disorder on the charge-carrier dynamics without the interference of transport-limiting traps. As an illustration of this approach, we explore the consequences of trap-free diffusion in vertically aligned nanotube structures and random nanoparticle networks in sensitized titanium dioxide solar cells. Values of the electron diffusion coefficients in the nanotubes approached those observed for the single crystal and were up to 2 orders of magnitude greater than those measured for nanoparticle films with various average crystallites sizes. Transport measurements together with modeling show that electron scattering at grain boundaries in particle networks limits trap-free diffusion. In presence of traps, transport was 103–105 times slower in nanoparticle films than in the single crystal. Understanding the link between structure and carrier dynamics is important for systematically altering and eventually controlling the electronic properties of nanoscaled materials.

Supporting Information

ARTICLE SECTIONS
Jump To

Experimental details and additional data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 49 publications.

  1. Dandan Wang, Zhenyao Ding, Hang Zhou, Liping Chen, Xinjian Feng. Au Nanoparticle-Decorated TiO2 Nanowires for Surface Plasmon Resonance-Based Photoelectrochemical Bioassays with a Solid–Liquid–Air Triphase Interface. ACS Applied Nano Materials 2021, 4 (9) , 9401-9408. https://doi.org/10.1021/acsanm.1c01899
  2. Julio Villanueva-Cab, Paul Olalde-Velasco, Alfredo Romero-Contreras, Zengqing Zhuo, Feng Pan, Sandra E. Rodil, Wanli Yang, Umapada Pal. Photocharging and Band Gap Narrowing Effects on the Performance of Plasmonic Photoelectrodes in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (37) , 31374-31383. https://doi.org/10.1021/acsami.8b10063
  3. Shuying Nong, Wujie Dong, Junwen Yin, Bowei Dong, Yue Lu, Xiaotao Yuan, Xin Wang, Kejun Bu, Mingyang Chen, Shangda Jiang, Li-Min Liu, Manling Sui, Fuqiang Huang. Well-Dispersed Ruthenium in Mesoporous Crystal TiO2 as an Advanced Electrocatalyst for Hydrogen Evolution Reaction. Journal of the American Chemical Society 2018, 140 (17) , 5719-5727. https://doi.org/10.1021/jacs.7b13736
  4. A. F. Gualdrón-Reyes, A. M. Meléndez, I. González, L. Lartundo-Rojas, and M. E. Niño-Gómez . Effect of Metal Substrate on Photo(electro)catalytic Activity of B-Doped Graphene Modified TiO2 Thin Films: Role of Iron Oxide Nanoparticles at Grain Boundaries of TiO2. The Journal of Physical Chemistry C 2018, 122 (1) , 297-306. https://doi.org/10.1021/acs.jpcc.7b08059
  5. Tao He, Haihua Wang, Libo Wang, Yuhua Zhao, Dong Han, Peiqing Zhang, Feng Luan, Jiazhu Li, and Jie Liu . What’s the Key Factor to Ensure the Photoactivity Enhancement of Fe2O3 Films with Ni(OH)2 Loading: Clues from a Structural Modification with Flagella Nanowires. The Journal of Physical Chemistry C 2017, 121 (45) , 25364-25371. https://doi.org/10.1021/acs.jpcc.7b09167
  6. Juan M. Jiménez, Gilles R. Bourret, Thomas Berger, and Keith P. McKenna . Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2. Journal of the American Chemical Society 2016, 138 (49) , 15956-15964. https://doi.org/10.1021/jacs.6b08636
  7. Wei-Tsung Chuang, Yan-Ming Hsu, En-Li Lin, I-Ming Lin, Ya-Sen Sun, Yeo-Wan Chiang, Chun-Jen Su, Yao-Chang Lee, and U-Ser Jeng . Live Templates of a Supramolecular Block Copolymer for the Synthesis of Ordered Nanostructured TiO2 Films via Guest Exchange. ACS Applied Materials & Interfaces 2016, 8 (48) , 33221-33229. https://doi.org/10.1021/acsami.6b12216
  8. Julio Villanueva-Cab, Jose Luis Montaño-Priede, and Umapada Pal . Effects of Plasmonic Nanoparticle Incorporation on Electrodynamics and Photovoltaic Performance of Dye Sensitized Solar Cells. The Journal of Physical Chemistry C 2016, 120 (19) , 10129-10136. https://doi.org/10.1021/acs.jpcc.6b01053
  9. Jiazang Chen, Liping Zhang, Zhenhui Lam, Hua Bing Tao, Zhiping Zeng, Hong Bin Yang, Jianqiang Luo, Lin Ma, Bo Li, Jianfeng Zheng, Suping Jia, Zhijian Wang, Zhenping Zhu, and Bin Liu . Tunneling Interlayer for Efficient Transport of Charges in Metal Oxide Electrodes. Journal of the American Chemical Society 2016, 138 (9) , 3183-3189. https://doi.org/10.1021/jacs.5b13464
  10. Suraj Nagpure, Saikat Das, Ravinder K. Garlapalli, Joseph Strzalka, and Stephen E. Rankin . In Situ GISAXS Investigation of Low-Temperature Aging in Oriented Surfactant-Mesostructured Titania Thin Films. The Journal of Physical Chemistry C 2015, 119 (40) , 22970-22984. https://doi.org/10.1021/acs.jpcc.5b06945
  11. Alesja Ivanova, Maria C. Fravventura, Dina Fattakhova-Rohlfing, Jiri Rathouský, Liana Movsesyan, Pirmin Ganter, Tom J. Savenije, and Thomas Bein . Nanocellulose-Templated Porous Titania Scaffolds Incorporating Presynthesized Titania Nanocrystals. Chemistry of Materials 2015, 27 (18) , 6205-6212. https://doi.org/10.1021/acs.chemmater.5b00770
  12. Jiazang Chen, Hong Bin Yang, Jianwei Miao, Hsin-Yi Wang, and Bin Liu . Thermodynamically Driven One-Dimensional Evolution of Anatase TiO2 Nanorods: One-Step Hydrothermal Synthesis for Emerging Intrinsic Superiority of Dimensionality. Journal of the American Chemical Society 2014, 136 (43) , 15310-15318. https://doi.org/10.1021/ja5080568
  13. Yikai Lu, Chenchen Liu, Shengjie Xu, Yu Liu, Deli Jiang, Jianjun Zhu. Facile synthesis of hierarchical NiCoP nanosheets/NiCoP nanocubes homojunction electrocatalyst for highly efficient and stable hydrogen evolution reaction. Applied Surface Science 2021, 565 , 150537. https://doi.org/10.1016/j.apsusc.2021.150537
  14. Wei Zhang, Yingying Lin, Rong Chen, Xun Zhu, Dingding Ye, Yang Yang, Jinwang Li, Youxu Yu, Qiang Liao. Self-doped TiO2 nanotube array photoanode for microfluidic all-vanadium photoelectrochemical flow battery. Journal of Electroanalytical Chemistry 2021, 897 , 115598. https://doi.org/10.1016/j.jelechem.2021.115598
  15. Zhijuan He, Yanyang Han, Shanshan Liu, Wei Cui, Yunping Qiao, Tao He, Qianxi Wang. Toward the Intrinsic Superiority of Aligned One‐Dimensional TiO 2 Nanostructures: the Role of Defect States in Electron Transport Process. ChemElectroChem 2020, 7 (21) , 4390-4397. https://doi.org/10.1002/celc.202001127
  16. José A. Freire, Guilherme A. Emidio. Do electrons diffusing in a nanostructured semiconductor have time to attain local equilibrium?. Solar Energy Materials and Solar Cells 2020, 215 , 110687. https://doi.org/10.1016/j.solmat.2020.110687
  17. Danli Zhang, Hanmin Tian, Shixiao Bu, Tingting Yan, Jinfeng Ge, Tao Lei, Wengang Bi, Like Huang, Ziyi Ge. Efficient planar heterojunction perovskite solar cells with enhanced FTO/SnO2 interface electronic coupling. Journal of Alloys and Compounds 2020, 831 , 154717. https://doi.org/10.1016/j.jallcom.2020.154717
  18. Manuel Rodríguez-Perez, Felipe Noh-Pat, Alfredo Romero-Contreras, Emigdio J. Reyes-Ramírez, Siva Kumar Krishnan, Jose L. Ortíz-Quiñonez, Joaquín Alvarado, Umapada Pal, Paul Olalde-Velasco, Julio Villanueva-Cab. Re-evaluating the role of phosphinic acid (DINHOP) adsorption at the photoanode surface in the performance of dye-sensitized solar cells. Physical Chemistry Chemical Physics 2020, 22 (3) , 1756-1766. https://doi.org/10.1039/C9CP05063A
  19. M. Zare, A. Shafiekhani, A. Mortezaali. Tuning the density distribution of deep localized states of TiO2 nanotube arrays through decoration with Pt and [email protected] Journal of Photochemistry and Photobiology A: Chemistry 2019, 380 , 111858. https://doi.org/10.1016/j.jphotochem.2019.111858
  20. Baoshun Liu, Xiujian Zhao, Jiaguo Yu, Ivan P. Parkin, Akira Fujishima, Kazuya Nakata. Intrinsic intermediate gap states of TiO2 materials and their roles in charge carrier kinetics. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2019, 39 , 1-57. https://doi.org/10.1016/j.jphotochemrev.2019.02.001
  21. Ershuai Jiang, Jin Yan, Yuqian Ai, Nan Li, Baojie Yan, Yuheng Zeng, Jiang Sheng, Jichun Ye. Defect engineering of oxygen vacancies in SnOx electron transporting layer for perovskite solar cells. Materials Today Energy 2019, 12 , 389-397. https://doi.org/10.1016/j.mtener.2019.03.005
  22. Ryan Kisslinger, Abdelrahman M Askar, Ujwal K Thakur, Saralyn Riddell, Darren Dahunsi, Yun Zhang, Sheng Zeng, Ankur Goswami, Karthik Shankar. Preferentially oriented TiO 2 nanotube arrays on non-native substrates and their improved performance as electron transporting layer in halide perovskite solar cells. Nanotechnology 2019, 30 (20) , 204003. https://doi.org/10.1088/1361-6528/aae9b6
  23. Mengyan Li, Hui Liu, Yanghang Song, Zhao Li. TiO2 homojunction with Au nanoparticles decorating as an efficient and stable electrocatalyst for hydrogen evolution reaction. Materials Characterization 2019, 151 , 286-291. https://doi.org/10.1016/j.matchar.2019.03.025
  24. Julian Kalb, Alena Folger, Christina Scheu, Lukas Schmidt-Mende. Non-equilibrium growth model of fibrous mesocrystalline rutile TiO2 nanorods. Journal of Crystal Growth 2019, 511 , 8-14. https://doi.org/10.1016/j.jcrysgro.2019.01.024
  25. Markus Diantoro, Solehudin, Arif Hidayat, Z. A. Imam Supardi, Setia Budi. Electron Diffusion Model Based on I-V Data Fitting as the Calculation Method for DSSC Internal Parameters. IOP Conference Series: Materials Science and Engineering 2019, 515 , 012016. https://doi.org/10.1088/1757-899X/515/1/012016
  26. Xia Sheng, Tao Xu, Xinjian Feng. Rational Design of Photoelectrodes with Rapid Charge Transport for Photoelectrochemical Applications. Advanced Materials 2019, 31 (11) , 1805132. https://doi.org/10.1002/adma.201805132
  27. Prabhakar Rai. Plasmonic noble [email protected] oxide core–shell nanoparticles for dye-sensitized solar cell applications. Sustainable Energy & Fuels 2019, 3 (1) , 63-91. https://doi.org/10.1039/C8SE00336J
  28. Liping Chen, Xia Sheng, Dandan Wang, Jie Liu, Ruize Sun, Lei Jiang, Xinjian Feng. High-Performance Triphase Bio-Photoelectrochemical Assay System Based on Superhydrophobic Substrate-Supported TiO 2 Nanowire Arrays. Advanced Functional Materials 2018, 28 (49) , 1801483. https://doi.org/10.1002/adfm.201801483
  29. P. Bindra, A. Hazra. Impedance behavior of n-type TiO 2 nanotubes porous layer in reducing vapor ambient. Vacuum 2018, 152 , 78-83. https://doi.org/10.1016/j.vacuum.2018.03.008
  30. Jiazang Chen, Hua Bing Tao, Bin Liu. Unraveling the Intrinsic Structures that Influence the Transport of Charges in TiO 2 Electrodes. Advanced Energy Materials 2017, 7 (23) , 1700886. https://doi.org/10.1002/aenm.201700886
  31. Jingjing Yang, Baoshun Liu, Xiujian Zhao. A visible-light-active Au-Cu(I)@Na 2 Ti 6 O 13 nanostructured hybrid pasmonic photocatalytic membrane for acetaldehyde elimination. Chinese Journal of Catalysis 2017, 38 (12) , 2048-2055. https://doi.org/10.1016/S1872-2067(17)62954-1
  32. Mohammad Javadi, Hadis Torbatiyan, Yaser Abdi. Ultra-low intensity UV detection using partitioned mesoporous TiO 2. Applied Physics Letters 2017, 111 (6) , 063113. https://doi.org/10.1063/1.4994888
  33. Yang Wang, Xueqin Liu, Zhen Li, Ya Cao, Yinchang Li, Xupo Liu, Songru Jia, Yanli Zhao. Ordered Single-Crystalline Anatase TiO 2 Nanorod Clusters Planted on Graphene for Fast Charge Transfer in Photoelectrochemical Solar Cells. Small 2017, 13 (28) , 1700793. https://doi.org/10.1002/smll.201700793
  34. Chang Woo Kim, So Hyun Ji, Dong In Kang, Young Soo Kang. Growth of Single Crystalline TiO2 Nanorods as a Photoanode for Dye-Sensitized Solar Cell. Materials Science Forum 2017, 893 , 144-150. https://doi.org/10.4028/www.scientific.net/MSF.893.144
  35. Jiawei Gong, K. Sumathy, Qiquan Qiao, Zhengping Zhou. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews 2017, 68 , 234-246. https://doi.org/10.1016/j.rser.2016.09.097
  36. Tao He, Libo Wang, Francisco Fabregat-Santiago, Guoqun Liu, Ying Li, Chong Wang, Rengui Guan. Electron trapping induced electrostatic adsorption of cations: a general factor leading to photoactivity decay of nanostructured TiO 2. Journal of Materials Chemistry A 2017, 5 (14) , 6455-6464. https://doi.org/10.1039/C7TA01132F
  37. Jiazang Chen, Hong Bin Yang, Hua Bing Tao, Liping Zhang, Jianwei Miao, Hsin-Yi Wang, Junze Chen, Hua Zhang, Bin Liu. Surface Rutilization of Anatase TiO 2 Nanorods for Creation of Synergistically Bridging and Fencing Electron Highways. Advanced Functional Materials 2016, 26 (3) , 456-465. https://doi.org/10.1002/adfm.201504105
  38. Xia Sheng, Liping Chen, Tao Xu, Kai Zhu, Xinjian Feng. Understanding and removing surface states limiting charge transport in TiO 2 nanowire arrays for enhanced optoelectronic device performance. Chemical Science 2016, 7 (3) , 1910-1913. https://doi.org/10.1039/C5SC04076K
  39. Meredith C.K. Sellers, Edmund G. Seebauer. Persistent illumination-induced changes in polycrystalline TiO2 majority carrier concentration. Materials Letters 2016, 162 , 20-23. https://doi.org/10.1016/j.matlet.2015.09.106
  40. Ching-Wei Tung, Ying-Ya Hsu, Yen-Ping Shen, Yixin Zheng, Ting-Shan Chan, Hwo-Shuenn Sheu, Yuan-Chung Cheng, Hao Ming Chen. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nature Communications 2015, 6 (1) https://doi.org/10.1038/ncomms9106
  41. Jung Sang Cho, Young Jun Hong, Yun Chan Kang. Electrochemical Properties of Fiber-in-Tube- and Filled-Structured TiO 2 Nanofiber Anode Materials for Lithium-Ion Batteries. Chemistry - A European Journal 2015, 21 (31) , 11082-11087. https://doi.org/10.1002/chem.201500729
  42. X. Z. Guo, W. Z. Shen. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency. Journal of Applied Physics 2015, 117 (22) , 225103. https://doi.org/10.1063/1.4922413
  43. Aijo John K, Johns Naduvath, Sudhanshu Mallick, Thoudinja Shripathi, Manju Thankamoniamma, Rachel Reena Philip. A novel cost effective fabrication technique for highly preferential oriented TiO 2 nanotubes. Nanoscale 2015, 7 (48) , 20386-20390. https://doi.org/10.1039/C5NR06328K
  44. Liujie Wang, Yi Wang, Yong Yang, Xiaodong Wen, Hongwei Xiang, Yongwang Li. Fabrication of different crystallographically oriented TiO 2 nanotube arrays used in dye-sensitized solar cells. RSC Advances 2015, 5 (51) , 41120-41124. https://doi.org/10.1039/C5RA04893A
  45. Su-Jin Ha, Dong Ha Kim, Jun Hyuk Moon. N-doped mesoporous inverse opal structures for visible-light photocatalysts. RSC Advances 2015, 5 (95) , 77716-77722. https://doi.org/10.1039/C5RA13198G
  46. Luca Passoni, Fabrizio Giordano, Shaik M. Zakeeruddin, Michael Grätzel, Fabio Di Fonzo. Hyperbranched self-assembled photoanode for high efficiency dye-sensitized solar cells. RSC Advances 2015, 5 (113) , 93180-93186. https://doi.org/10.1039/C5RA19542J
  47. Nazifah Islam, Mengjin Yang, Kai Zhu, Zhaoyang Fan. Mesoporous scaffolds based on TiO 2 nanorods and nanoparticles for efficient hybrid perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (48) , 24315-24321. https://doi.org/10.1039/C5TA06727H
  48. Jae-Yup Kim, Kyeong-Hwan Lee, Junyoung Shin, Sun Ha Park, Jin Soo Kang, Kyu Seok Han, Myung Mo Sung, Nicola Pinna, Yung-Eun Sung. Highly ordered and vertically oriented TiO 2 /Al 2 O 3 nanotube electrodes for application in dye-sensitized solar cells. Nanotechnology 2014, 25 (50) , 504003. https://doi.org/10.1088/0957-4484/25/50/504003
  49. Qunfang Gui, Zhen Xu, Haifeng Zhang, Chuanwei Cheng, Xufei Zhu, Min Yin, Ye Song, Linfeng Lu, Xiaoyuan Chen, Dongdong Li. Enhanced Photoelectrochemical Water Splitting Performance of Anodic TiO 2 Nanotube Arrays by Surface Passivation. ACS Applied Materials & Interfaces 2014, 6 (19) , 17053-17058. https://doi.org/10.1021/am504662w