Imaging Nanostructural Modifications Induced by Electronic Metal−Support Interaction Effects at Au||Cerium-Based Oxide Nanointerfaces

View Author Information
Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Río San Pedro, E-11510 Puerto Real (Cádiz), Spain
CEA-INAC/UJF-Grenoble1 UMR-E, SP2M, LEMMA, Minatec Grenoble F-38054, France
§ Laboratoire de Physique des Solides, UMR 850 University Paris Sud, 91405 Orsay, France
Departments of Chemistry and Physics, University of York, JEOL Nanocentre, Heslington, York YO10 5DD, United Kingdom
*Address correspondence [email protected]
Cite this: ACS Nano 2012, 6, 8, 6812–6820
Publication Date (Web):July 12, 2012
Copyright © 2012 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


A variety of advanced (scanning) transmission electron microscopy experiments, carried out in aberration-corrected equipment, provide direct evidence about subtle structural changes taking place at nanometer-sized Au||ceria oxide interfaces, which agrees with the occurrence of charge transfer effects between the reduced support and supported gold nanoparticles suggested by macroscopic techniques. Tighter binding of the gold nanoparticles onto the ceria oxide support when this is reduced is revealed by the structural analysis. This structural modification is accompanied by parallel deactivation of the CO chemisorption capacity of the gold nanoparticles, which is interpreted in exact quantitative terms as due to deactivation of the gold atoms at the perimeter of the Au||cerium oxide interface.

Supporting Information

Jump To

Additonal experimental details. This material is available free of charge via the Internet at

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

Cited By

This article is cited by 23 publications.

  1. Shuai Wei, Xin-Pu Fu, Wei-Wei Wang, Zhao Jin, Qi-Sheng Song, Chun-Jiang Jia. Au/TiO2 Catalysts for CO Oxidation: Effect of Gold State to Reactivity. The Journal of Physical Chemistry C 2018, 122 (9) , 4928-4936.
  2. Tiziano Montini, Michele Melchionna, Matteo Monai, and Paolo Fornasiero . Fundamentals and Catalytic Applications of CeO2-Based Materials. Chemical Reviews 2016, 116 (10) , 5987-6041.
  3. Miguel López-Haro, Kenta Yoshida, Eloy del Río, José A. Pérez-Omil, Edward D. Boyes, Susana Trasobares, Jian-Min Zuo, Pratibha L. Gai, and José J. Calvino . Strain Field in Ultrasmall Gold Nanoparticles Supported on Cerium-Based Mixed Oxides. Key Influence of the Support Redox State. Langmuir 2016, 32 (17) , 4313-4322.
  4. Wenpei Gao, Shankar Sivaramakrishnan, Jianguo Wen, and Jian-Min Zuo . Direct Observation of Interfacial Au Atoms on TiO2 in Three Dimensions. Nano Letters 2015, 15 (4) , 2548-2554.
  5. Gonzalo Prieto, Mozaffar Shakeri, Krijn P. de Jong, and Petra E. de Jongh . Quantitative Relationship between Support Porosity and the Stability of Pore-Confined Metal Nanoparticles Studied on CuZnO/SiO2 Methanol Synthesis Catalysts. ACS Nano 2014, 8 (3) , 2522-2531.
  6. Giovanni Agostini, Andrea Piovano, Luca Bertinetti, Riccardo Pellegrini, Giuseppe Leofanti, Elena Groppo, and Carlo Lamberti . Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C 2014, 118 (8) , 4085-4094.
  7. Liang Zhang, Hyun You Kim, and Graeme Henkelman . CO Oxidation at the Au–Cu Interface of Bimetallic Nanoclusters Supported on CeO2(111). The Journal of Physical Chemistry Letters 2013, 4 (17) , 2943-2947.
  8. Jie Zhao, Hui Chen, Jun Xu, and Jianyi Shen . Effect of Surface Acidic and Basic Properties of the Supported Nickel Catalysts on the Hydrogenation of Pyridine to Piperidine. The Journal of Physical Chemistry C 2013, 117 (20) , 10573-10580.
  9. Hyun You Kim and Graeme Henkelman . CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO2(111) Surface by the Mars–van Krevelen Mechanism. The Journal of Physical Chemistry Letters 2013, 4 (1) , 216-221.
  10. Edward D. Boyes, Alec P. LaGrow, Michael R. Ward, Thomas E. Martin, Pratibha L. Gai. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020, 378 (2186) , 20190605.
  11. Benfeng Lin, Zhao Lei, Feng Xu, Niancai Cheng, Shichun Mu. Poly(vinylpyrrolidone) tailored porous ceria as a carbon-free support for methanol electrooxidation. Electrochimica Acta 2018, 290 , 55-62.
  12. Yan Zhou, Chuanchuan Jin, Yong Li, Wenjie Shen. Dynamic behavior of metal nanoparticles for catalysis. Nano Today 2018, 20 , 101-120.
  13. Li-Wen Guo, Pei-Pei Du, Xin-Pu Fu, Chao Ma, Jie Zeng, Rui Si, Yu-Ying Huang, Chun-Jiang Jia, Ya-Wen Zhang, Chun-Hua Yan. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nature Communications 2016, 7 (1)
  14. E. del Río, A.B. Hungría, M. Tinoco, R. Manzorro, M.A. Cauqui, J.J. Calvino, J.A. Pérez-Omil. CeO2-modified Au/TiO2 catalysts with outstanding stability under harsh CO oxidation conditions. Applied Catalysis B: Environmental 2016, 197 , 86-94.
  15. Eleonora Aneggi, Marta Boaro, Sara Colussi, Carla de Leitenburg, Alessandro Trovarelli. Ceria-Based Materials in Catalysis. 2016,,, 209-242.
  16. Alberto Villa, Nikolaos Dimitratos, Carine E. Chan-Thaw, Ceri Hammond, Gabriel M. Veith, Di Wang, Maela Manzoli, Laura Prati, Graham J. Hutchings. Characterisation of gold catalysts. Chemical Society Reviews 2016, 45 (18) , 4953-4994.
  17. A. Queraltó, M. de la Mata, L. Martínez, C. Magén, M. Gibert, J. Arbiol, R. Hühne, X. Obradors, T. Puig. Orientation symmetry breaking in self-assembled Ce 1−x Gd x O 2−y nanowires derived from chemical solutions. RSC Advances 2016, 6 (99) , 97226-97236.
  18. Di Wang. Transmission Electron Microscopy on Au-Based Catalysts. 2015,,, 135-169.
  19. Frederic Cosandey. Epitaxy, interfacial energy and atomic structure of Au/TiO 2 interfaces. Philosophical Magazine 2013, 93 (10-12) , 1197-1218.
  20. Zhen-Xing Li, Wei Xue, Bing-Tao Guan, Fu-Bo Shi, Zhang-Jie Shi, Hong Jiang, Chun-Hua Yan. A conceptual translation of homogeneous catalysis into heterogeneous catalysis: homogeneous-like heterogeneous gold nanoparticle catalyst induced by ceria supporter. Nanoscale 2013, 5 (3) , 1213.
  21. Eloy del Río, Miguel López-Haro, José M. Cíes, Juan J. Delgado, José J. Calvino, Susana Trasobares, Ginesa Blanco, Miguel A. Cauqui, Serafín Bernal. Dramatic effect of redox pre-treatments on the CO oxidation activity of Au/Ce0.50Tb0.12Zr0.38O2−x catalysts prepared by deposition–precipitation with urea: a nano-analytical and nano-structural study. Chemical Communications 2013, 49 (60) , 6722.
  22. Na Ta, Jingyue (Jimmy) Liu, Santhosh Chenna, Peter A. Crozier, Yong Li, Aling Chen, Wenjie Shen. Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring. Journal of the American Chemical Society 2012, 134 (51) , 20585-20588.
  23. S. Turner, R. Egoavil, M. Batuk, A. A. Abakumov, J. Hadermann, J. Verbeeck, G. Van Tendeloo. Site-specific mapping of transition metal oxygen coordination in complex oxides. Applied Physics Letters 2012, 101 (24) , 241910.