Dominant Factors Governing the Rate Capability of a TiO2 Nanotube Anode for High Power Lithium Ion Batteries

View Author Information
Department of Materials Science & Engineering and WCU Department of Energy Engineering, Hanyang University, Seoul 133-791, Korea
§ Energy Lab, Samsung Advanced Institute of Technology, Samsung Electronics Co. Ltd., Suwon 440-600, Korea
School of Nano and Advanced Materials Engineering, Changwon National University, Changwon 641-773, Korea
*Address correspondence to [email protected]
Cite this: ACS Nano 2012, 6, 9, 8308–8315
Publication Date (Web):August 30, 2012
https://doi.org/10.1021/nn303002u
Copyright © 2012 American Chemical Society
Article Views
4450
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Titanium dioxide (TiO2) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO2-based electrode. The vertically aligned TiO2 nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO2 nanotubes electrodes were prepared for this study. The vertically aligned TiO2 nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO2 nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.

Supporting Information

ARTICLE SECTIONS
Jump To

Tables S1–S4 and Figures S1–S10 as described in the text. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 158 publications.

  1. Xinyu Zhang, Pongsakorn Kantichaimongkol, Songjie Cao, Chakrit Sriprachuabwong, Jiaqian Qin, Riping Liu. High-Performance and Binder-Free Anodized ZrTiAlV Alloy Anode Material for Lithium Ion Microbatteires. ACS Applied Energy Materials 2020, 3 (11) , 11326-11332. https://doi.org/10.1021/acsaem.0c02263
  2. Wei Wei, Charlotte Ihrfors, Fredrik Björefors, Leif Nyholm. Capacity Limiting Effects for Freestanding, Monolithic TiO2 Nanotube Electrodes with High Mass Loadings. ACS Applied Energy Materials 2020, 3 (5) , 4638-4649. https://doi.org/10.1021/acsaem.0c00298
  3. Yaoting Li, Mao-sung Chen, Junfang Cheng, Wenwu Fu, Yanjie Hu, Bingheng Liu, Ming Zhang, Zhongrong Shen. Two-Dimensional Layered Ultrathin Carbon/TiO2 Nanosheet Composites for Superior Pseudocapacitive Lithium Storage. Langmuir 2020, 36 (9) , 2255-2263. https://doi.org/10.1021/acs.langmuir.9b03889
  4. Weigang Wang, Meng Wu, Peng Han, Yu Liu, Liang He, Qinghong Huang, Jing Wang, Wensheng Yan, Lijun Fu, Yuping Wu. Understanding the Behavior and Mechanism of Oxygen-Deficient Anatase TiO2 toward Sodium Storage. ACS Applied Materials & Interfaces 2019, 11 (3) , 3061-3069. https://doi.org/10.1021/acsami.8b19288
  5. Jianchao Ye, Patrick Shea, Andreas C. Baumgaertel, Stanimir A. Bonev, Monika M. Biener, Michael Bagge-Hansen, Y. Morris Wang, Juergen Biener, Brandon C. Wood. Amorphization as a Pathway to Fast Charging Kinetics in Atomic Layer Deposition-Derived Titania Films for Lithium Ion Batteries. Chemistry of Materials 2018, 30 (24) , 8871-8882. https://doi.org/10.1021/acs.chemmater.8b04002
  6. Hanna Sopha, Girish D. Salian, Raul Zazpe, Jan Prikryl, Ludek Hromadko, Thierry Djenizian, and Jan M. Macak . ALD Al2O3-Coated TiO2 Nanotube Layers as Anodes for Lithium-Ion Batteries. ACS Omega 2017, 2 (6) , 2749-2756. https://doi.org/10.1021/acsomega.7b00463
  7. Wenji Zheng, Zhijun Yan, Yan Dai, Naixu Du, Xiaobin Jiang, Hailing Dai, Xiangcun Li, and Gaohong He . Interpenetrated Networks between Graphitic Carbon Infilling and Ultrafine TiO2 Nanocrystals with Patterned Macroporous Structure for High-Performance Lithium Ion Batteries. ACS Applied Materials & Interfaces 2017, 9 (24) , 20491-20500. https://doi.org/10.1021/acsami.7b02345
  8. Yan Luo, Jiao Li, and Jianguo Huang . Bioinspired Hierarchical Nanofibrous Silver-Nanoparticle/Anatase–Rutile-Titania Composite as an Anode Material for Lithium-Ion Batteries. Langmuir 2016, 32 (47) , 12338-12343. https://doi.org/10.1021/acs.langmuir.6b01556
  9. Qiulai Huang, Shiliang Wang, Yan Zhang, Bowen Yu, Lizhen Hou, Geng Su, Songshan Ma, Jin Zou, and Han Huang . Hollow Carbon Nanospheres with Extremely Small Size as Anode Material in Lithium-Ion Batteries with Outstanding Cycling Stability. The Journal of Physical Chemistry C 2016, 120 (6) , 3139-3144. https://doi.org/10.1021/acs.jpcc.5b10455
  10. Muhammad-Sadeeq Balogun, Yikun Zhu, Weitao Qiu, Yang Luo, Yongchao Huang, Chaolun Liang, Xihong Lu, and Yexiang Tong . Chemically Lithiated TiO2 Heterostructured Nanosheet Anode with Excellent Rate Capability and Long Cycle Life for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (46) , 25991-26003. https://doi.org/10.1021/acsami.5b09610
  11. Subrahmanyam Goriparti, Ermanno Miele, Mirko Prato, Alice Scarpellini, Sergio Marras, Simone Monaco, Andrea Toma, Gabriele C. Messina, Alessandro Alabastri, Francesco De Angelis, Liberato Manna, Claudio Capiglia, and Remo Proietti Zaccaria . Direct Synthesis of Carbon-Doped TiO2–Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (45) , 25139-25146. https://doi.org/10.1021/acsami.5b06426
  12. Huiqiao Liu, Kangzhe Cao, Xiaohong Xu, Lifang Jiao, Yijing Wang, and Huatang Yuan . Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (21) , 11239-11245. https://doi.org/10.1021/acsami.5b02724
  13. M. Madian, L. Giebeler, M. Klose, T. Jaumann, M. Uhlemann, A. Gebert, S. Oswald, N. Ismail, A. Eychmüller, and J. Eckert . Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry & Engineering 2015, 3 (5) , 909-919. https://doi.org/10.1021/acssuschemeng.5b00026
  14. Kyung Jae Lee, Woojeong Bak, Jung-Joon Kim, Mark A. Snyder, Won Cheol Yoo, and Yung-Eun Sung . How Pore Parameters Affect Li Ion Depletion in Mesoporous Materials for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2015, 119 (14) , 7604-7613. https://doi.org/10.1021/acs.jpcc.5b00128
  15. Hao Ren, Ranbo Yu, Jiangyan Wang, Quan Jin, Mei Yang, Dan Mao, David Kisailus, Huijun Zhao, and Dan Wang . Multishelled TiO2 Hollow Microspheres as Anodes with Superior Reversible Capacity for Lithium Ion Batteries. Nano Letters 2014, 14 (11) , 6679-6684. https://doi.org/10.1021/nl503378a
  16. Qin Hao, Liang Chen, and Caixia Xu . Facile Fabrication of a Three-Dimensional Cross-Linking TiO2 Nanowire Network and Its Long-Term Cycling Life for Lithium Storage. ACS Applied Materials & Interfaces 2014, 6 (13) , 10107-10112. https://doi.org/10.1021/am5010305
  17. Wei Zhang, Weidong Zhou, Jasper H. Wright, Young Nam Kim, Dawei Liu, and Xingcheng Xiao . Mn-Doped TiO2 Nanosheet-Based Spheres as Anode Materials for Lithium-Ion Batteries with High Performance at Elevated Temperatures. ACS Applied Materials & Interfaces 2014, 6 (10) , 7292-7300. https://doi.org/10.1021/am500604p
  18. Sangkyu Lee, Jaehwan Ha, Junghyun Choi, Taeseup Song, Jung Woo Lee, and Ungyu Paik . 3D Cross-Linked Nanoweb Architecture of Binder-Free TiO2 Electrodes for Lithium Ion Batteries. ACS Applied Materials & Interfaces 2013, 5 (22) , 11525-11529. https://doi.org/10.1021/am404082h
  19. M. V. Reddy, G. V. Subba Rao, and B. V. R. Chowdari . Metal Oxides and Oxysalts as Anode Materials for Li Ion Batteries. Chemical Reviews 2013, 113 (7) , 5364-5457. https://doi.org/10.1021/cr3001884
  20. Xing Xin, Xufeng Zhou, Jinghua Wu, Xiayin Yao, and Zhaoping Liu . Scalable Synthesis of TiO2/Graphene Nanostructured Composite with High-Rate Performance for Lithium Ion Batteries. ACS Nano 2012, 6 (12) , 11035-11043. https://doi.org/10.1021/nn304725m
  21. Hanna Sopha, Clement Ghigo, Siowwoon Ng, Mahnaz Alijani, Ludek Hromadko, Jan Michalicka, Thierry Djenizian, Jan M. Macak. TiO2 nanotube layers decorated by titania nanoparticles as anodes for Li-ion microbatteries. Materials Chemistry and Physics 2022, 276 , 125337. https://doi.org/10.1016/j.matchemphys.2021.125337
  22. Suzhe Liang, Xiaoyan Wang, Ya-Jun Cheng, Yonggao Xia, Peter Müller-Buschbaum. Anatase Titanium Dioxide as Rechargeable Ion Battery Electrode – A Chronological Review. Energy Storage Materials 2021, 575 https://doi.org/10.1016/j.ensm.2021.11.023
  23. Xiaofeng Shi, Zhengwang Liu, Xiao Li, Wenbin You, Zhengzhong Shao, Renchao Che. Enhanced dielectric polarization from disorder-engineered [email protected] TiO2-x heterostructure for broadband microwave absorption. Chemical Engineering Journal 2021, 419 , 130020. https://doi.org/10.1016/j.cej.2021.130020
  24. Lvchao Qiu, Ke Fang, Yubo Li, Shutao Huang, Guanxing Li, Songda Li, Hu He, Wentao Yuan, Hangsheng Yang, Wei Tian, Yong Wang. Array of single crystalline anatase TiO2 nanotubes with significant enhancement of photoresponse. Progress in Natural Science: Materials International 2021, 31 (4) , 536-540. https://doi.org/10.1016/j.pnsc.2021.06.003
  25. Song-Zhu Kure-Chu, Xuewen Chen, Hikaru Kaai, Yongda Ye, Takashi Matsubara, Yukihisa Moriguchi, Takehiko Hihara, Hitoshi Yashiro. Direct fabrication of SnO2- and MoO3-modified nanoporous TiO2–TiO–TiN composite films by hybrid anodization for high-safety lithium-ion battery anodes. Electrochimica Acta 2021, 387 , 138549. https://doi.org/10.1016/j.electacta.2021.138549
  26. Shiqi Wang, Zeling Zhang, Wenyi Huo, Xuhai Zhang, Feng Fang, Zonghan Xie, Jianqing Jiang. Single-crystal-like black Zr-TiO2 nanotube array film: An efficient photocatalyst for fast reduction of Cr(VI). Chemical Engineering Journal 2021, 403 , 126331. https://doi.org/10.1016/j.cej.2020.126331
  27. Lihu Liu, Zixuan Chen, Tingting Lu, Qin Xu, Huiyuan Sun. Preparation and dielectric properties of order nanoporous TiO2/PAA film. Journal of Materials Science: Materials in Electronics 2020, 31 (23) , 21617-21622. https://doi.org/10.1007/s10854-020-04674-z
  28. Jun Chen, Yanlong Fu, Fang Sun, Zhengguang Hu, Xing Wang, Ting Zhang, Fengshou Zhang, Xiaoling Wu, Haisheng Chen, Guoan Cheng, Ruiting Zheng. Oxygen vacancies and phase tuning of self-supported black TiO2-X nanotube arrays for enhanced sodium storage. Chemical Engineering Journal 2020, 400 , 125784. https://doi.org/10.1016/j.cej.2020.125784
  29. Agilan Perumal, Rahul Kanumuri, Suresh Kumar Rayala, Rajendran Nallaiyan. Fabrication of bioactive corrosion-resistant polyaniline/TiO2 nanotubes nanocomposite and their application in orthopedics. Journal of Materials Science 2020, 55 (32) , 15602-15620. https://doi.org/10.1007/s10853-020-05079-3
  30. Bo Zhao, Qianqian Liu, Yujie Chen, Qian Liu, Qian Yu, Hao Bin Wu. Interface‐Induced Pseudocapacitance in Nonporous Heterogeneous Particles for High Volumetric Sodium Storage. Advanced Functional Materials 2020, 30 (42) , 2002019. https://doi.org/10.1002/adfm.202002019
  31. Mahmoud Madian, Zhenyu Wang, Ignacio Gonzalez-Martinez, Steffen Oswald, Lars Giebeler, Daria Mikhailova. Ordered Ti-Fe-O nanotubes as additive-free anodes for lithium ion batteries. Applied Materials Today 2020, 20 , 100676. https://doi.org/10.1016/j.apmt.2020.100676
  32. Yunxiang Li, Shengli Zhu, Akihisa Inoue, Yanqin Liang, Chuntao Chang, Shuiyuan Luo, Zhenduo Cui. Preparation of nanoporous Sn-doped TiO2 anode material for lithium-ion batteries by a simple dealloying method. Ionics 2020, 26 (9) , 4363-4372. https://doi.org/10.1007/s11581-020-03588-4
  33. Umer Farooq, Faheem Ahmed, Syed Atif Pervez, Sarish Rehman, Michael A. Pope, Maximilian Fichtner, Edward P. L. Roberts. A stable TiO 2 –graphene nanocomposite anode with high rate capability for lithium-ion batteries. RSC Advances 2020, 10 (50) , 29975-29982. https://doi.org/10.1039/D0RA05300G
  34. Jun Wang, Jinke Li, Xin He, Xiaofei Zhang, Bo Yan, Xu Hou, Leilei Du, Tobias Placke, Martin Winter, Jie Li. A three-dimensional TiO2-Graphene architecture with superior Li ion and Na ion storage performance. Journal of Power Sources 2020, 461 , 228129. https://doi.org/10.1016/j.jpowsour.2020.228129
  35. Yu Wang, Na Li, Chuanxin Hou, Biao He, Jiajia Li, Feng Dang, Jun Wang, Yuqi Fan. Nanowires embedded porous [email protected] nanocomposite anodes for enhanced stable lithium and sodium ion battery performance. Ceramics International 2020, 46 (7) , 9119-9128. https://doi.org/10.1016/j.ceramint.2019.12.161
  36. Dongheun Kim, Sun Hae Ra Shin, Yeonhoo Kim, Kenneth Crossley, Yerim Kim, Hyungkyu Han, Jinkyoung Yoo. Hierarchical assembly of ZnO nanowire trunks decorated with ZnO nanosheets for lithium ion battery anodes. RSC Advances 2020, 10 (23) , 13655-13661. https://doi.org/10.1039/D0RA00372G
  37. Shuaifeng Lou, Yang Zhao, Jiajun Wang, Geping Yin, Chunyu Du, Xueliang Sun. Ti‐Based Oxide Anode Materials for Advanced Electrochemical Energy Storage: Lithium/Sodium Ion Batteries and Hybrid Pseudocapacitors. Small 2019, 15 (52) , 1904740. https://doi.org/10.1002/smll.201904740
  38. Rohan B. Ambade, Ki Hwan Koh, Swapnil B. Ambade, Wonsik Eom, Sung Hyun Noh, Chong Min Koo, Seong Hun Kim, Tae Hee Han. Kinetically controlled low-temperature solution-processed mesoporous rutile TiO2 for high performance lithium-ion batteries. Journal of Industrial and Engineering Chemistry 2019, 80 , 667-676. https://doi.org/10.1016/j.jiec.2019.08.047
  39. Zhidan Diao, Daming Zhao, Chunxiao Lv, Hongli Liu, Dongjiang Yang, Shaohua Shen. Ultrafine polycrystalline titania nanofibers for superior sodium storage. Journal of Energy Chemistry 2019, 38 , 153-161. https://doi.org/10.1016/j.jechem.2018.12.009
  40. Tianhui Zhao, Mengyuan Fang, Zhi Tang, Xiaoli Zhao, Fengchang Wu, John P. Giesy. Adsorption, aggregation and sedimentation of titanium dioxide nanoparticles and nanotubes in the presence of different sources of humic acids. Science of The Total Environment 2019, 692 , 660-668. https://doi.org/10.1016/j.scitotenv.2019.07.312
  41. Shengyun Zhu, Junqing Liu, Jiaming Sun. Precise growth of Al2O3/SnO2/CNTs composites by a two-step atomic layer deposition and their application as an improved anode for lithium ion batteries. Electrochimica Acta 2019, 319 , 490-498. https://doi.org/10.1016/j.electacta.2019.07.027
  42. Charles A. Hall, Aleksandar Ignjatovic, Yu Jiang, Patrick A. Burr, Alison Lennon. Time domain modelling of concurrent insertion and capacitive storage using Laplace domain representations of impedance. Journal of Electroanalytical Chemistry 2019, 850 , 113379. https://doi.org/10.1016/j.jelechem.2019.113379
  43. Hyungkyu Han, Frantisek Karlicky, Sudhagar Pitchaimuthu, Sun Hae Ra Shin, Aiping Chen. Highly Ordered N‐Doped Carbon Dots Photosensitizer on Metal–Organic Framework‐Decorated ZnO Nanotubes for Improved Photoelectrochemical Water Splitting. Small 2019, 15 (40) , 1902771. https://doi.org/10.1002/smll.201902771
  44. Neng Yu, Lixia Zou, Chong Li, Kai Guo. In-situ growth of binder-free hierarchical carbon coated CoSe2 as a high performance lithium ion battery anode. Applied Surface Science 2019, 483 , 85-90. https://doi.org/10.1016/j.apsusc.2019.03.258
  45. Narasimharao Kitchamsetti, Ramchandra S. Kalubarme, Parameshwar R. Chikate, Chan‐Jin Park, Yuan‐Ron Ma, Parashram M. Shirage, Rupesh S. Devan. An Investigation on the Effect of Li–Ion Cycling on the Vertically Aligned Brookite TiO 2 Nanostructure. ChemistrySelect 2019, 4 (21) , 6620-6626. https://doi.org/10.1002/slct.201900395
  46. Hao Ren, Ranbo Yu, Jian Qi, Lijuan Zhang, Quan Jin, Dan Wang. Hollow Multishelled Heterostructured Anatase/TiO 2 (B) with Superior Rate Capability and Cycling Performance. Advanced Materials 2019, 31 (10) , 1805754. https://doi.org/10.1002/adma.201805754
  47. Juhui Jiang, Shengnan Liu, Yuanyuan Wang, Yang Liu, Jing Fan, Xiangdong Lou, Xiaobing Wang, Hua Zhang, Lin Yang. Auto-adjustment of structure and SnO2 content of SnO2/TiO2 microspheres for lithium-ion batteries. Chemical Engineering Journal 2019, 359 , 746-754. https://doi.org/10.1016/j.cej.2018.11.190
  48. Yunqing Zhu, Tian Wang, Tao Xu, Yingxuan Li, Chuanyi Wang. Size effect of Pt co-catalyst on photocatalytic efficiency of g-C3N4 for hydrogen evolution. Applied Surface Science 2019, 464 , 36-42. https://doi.org/10.1016/j.apsusc.2018.09.061
  49. Guanglei Wu, Zirui Jia, Yonghong Cheng, Hongxia Zhang, Xinfeng Zhou, Hongjing Wu. Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Applied Surface Science 2019, 464 , 472-478. https://doi.org/10.1016/j.apsusc.2018.09.115
  50. Saida Mehraz, Peerawas Kongsong, Abdelhafed Taleb, Nahed Dokhane, Lek Sikong. Large scale and facile synthesis of Sn doped TiO2 aggregates using hydrothermal synthesis. Solar Energy Materials and Solar Cells 2019, 189 , 254-262. https://doi.org/10.1016/j.solmat.2017.06.048
  51. Wenxing Liu, Tianhao Yao, Sanmu Xie, Yiyi She, Hongkang Wang. Integrating TiO2/SiO2 into Electrospun Carbon Nanofibers towards Superior Lithium Storage Performance. Nanomaterials 2019, 9 (1) , 68. https://doi.org/10.3390/nano9010068
  52. C. Busson, M.-A. Blin, P. Guichard, P. Soudan, O. Crosnier, D. Guyomard, B. Lestriez. A primed current collector for high performance carbon-coated LiFePO4 electrodes with no carbon additive. Journal of Power Sources 2018, 406 , 7-17. https://doi.org/10.1016/j.jpowsour.2018.10.018
  53. Guannan Zu, Hongyi Li, Shaojing Liu, Dandan Li, Jinshu Wang, Jianling Zhao. Highly efficient mass determination of TiO2 nanotube arrays and its application in lithium-ion batteries. Sustainable Materials and Technologies 2018, 18 , e00079. https://doi.org/10.1016/j.susmat.2018.e00079
  54. Jijian Xu, Wei Ding, Guoheng Yin, Zhangliu Tian, Shaoning Zhang, Zhanglian Hong, Fuqiang Huang. Capacitive lithium storage of lithiated mesoporous titania. Materials Today Energy 2018, 9 , 240-246. https://doi.org/10.1016/j.mtener.2018.05.016
  55. H Chen, Y H Ding, X Q Tang, W Zhang, J R Yin, P Zhang, Y Jiang. Effect of oxygen vacancies on Li-storage of anatase $$\hbox {TiO}_{2}$$ TiO 2 (001) facets: a first principles study. Bulletin of Materials Science 2018, 41 (2) https://doi.org/10.1007/s12034-018-1571-9
  56. Qili Wu, Shiman He, Xianfeng Yang, Jingling Yang, Gaoren Li, Yuying Meng, Shengfu Tong, Liqiang Mai, Mingmei Wu. Ultrathin nanobelts-assembled Chinese knot-like 3D TiO2 for fast and stable lithium storage. Nano Research 2018, 11 (4) , 2116-2128. https://doi.org/10.1007/s12274-017-1829-3
  57. Yongzheng Shi, Dongzhi Yang, Ruomeng Yu, Yaxin Liu, Shu-Meng Hao, Shiyi Zhang, Jin Qu, Zhong-Zhen Yu. Robust binder-free anodes assembled with ultralong mischcrystal TiO2 nanowires and reduced graphene oxide for high-rate and long cycle life lithium-ion storage. Journal of Power Sources 2018, 383 , 115-123. https://doi.org/10.1016/j.jpowsour.2018.02.046
  58. Mahmoud Madian, Alexander Eychmüller, Lars Giebeler. Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4 (1) , 7. https://doi.org/10.3390/batteries4010007
  59. Dongdong Wang, Guanghui Zhang, Zhongqiang Shan, Tianyong Zhang, Jianhua Tian. Hierarchically Micro-/Nanostructured TiO 2 /Micron Carbon Fibers Composites for Long-Life and Fast-Charging Lithium-Ion Batteries. ChemElectroChem 2018, 5 (3) , 540-545. https://doi.org/10.1002/celc.201700946
  60. Igor E. Uflyand, Gulzhian I. Dzhardimalieva. Application of Nanomaterials Prepared by Thermolysis of Metal Chelates. 2018,,, 459-541. https://doi.org/10.1007/978-3-319-93405-1_7
  61. Seoni Kim, Jiye Kim, Seonghwan Kim, Jaehan Lee, Jeyong Yoon. Electrochemical lithium recovery and organic pollutant removal from industrial wastewater of a battery recycling plant. Environmental Science: Water Research & Technology 2018, 4 (2) , 175-182. https://doi.org/10.1039/C7EW00454K
  62. Guanglei Liu, Zhanyu Wang, Lianhai Zu, Yan Zhang, Yutong Feng, Shihe Yang, Yu Jia, Songyou Wang, Chi Zhang, Jinhu Yang. Hydrogen evolution reactions boosted by bridge bonds between electrocatalysts and electrodes. Nanoscale 2018, 10 (8) , 4068-4076. https://doi.org/10.1039/C7NR08999F
  63. Heechae Choi, Seong-I Moon, Teaseup Song, Seungchul Kim. Hydrogen-free defects in hydrogenated black TiO 2. Physical Chemistry Chemical Physics 2018, 20 (30) , 19871-19876. https://doi.org/10.1039/C8CP02467G
  64. Andreas I. Savva, Kassiopeia A. Smith, Matthew Lawson, Sterling R. Croft, Ariel E. Weltner, Chris D. Jones, Hailey Bull, Paul J. Simmonds, Lan Li, Hui Xiong. Defect generation in TiO 2 nanotube anodes via heat treatment in various atmospheres for lithium-ion batteries. Physical Chemistry Chemical Physics 2018, 20 (35) , 22537-22546. https://doi.org/10.1039/C8CP04368J
  65. Wangsuo Weng, Jun Lin, Yichen Du, Xufang Ge, Xiaosi Zhou, Jianchun Bao. Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. Journal of Materials Chemistry A 2018, 6 (22) , 10168-10175. https://doi.org/10.1039/C8TA03161D
  66. Hui Huang, Jiage Yu, Yongping Gan, Yang Xia, Chu Liang, Jun Zhang, Xinyong Tao, Wenkui Zhang. Hybrid nanoarchitecture of TiO 2 nanotubes and graphene sheet for advanced lithium ion batteries. Materials Research Bulletin 2017, 96 , 425-430. https://doi.org/10.1016/j.materresbull.2017.05.009
  67. Zhen Wang, Qiang Ru, Xiaoqiu Chen, Qing Guo, Bei Wang, Xianhua Hou, Shejun Hu. Solvothermal Fabrication of Hollow Nanobarrel-Like ZnCo 2 O 4 Towards Enhancing the Electrochemical Performance of Rechargeable Lithium-Ion Batteries. ChemElectroChem 2017, 4 (9) , 2218-2224. https://doi.org/10.1002/celc.201700420
  68. Yanli Zhou, Qian Zhu, Jian Tian, Fuyi Jiang. TiO2 [email protected] Composites as Promising Anode Materials for Lithium and Sodium Ion Batteries. Nanomaterials 2017, 7 (9) , 252. https://doi.org/10.3390/nano7090252
  69. Jeong-Hoon Jean, Hoyoung Kwak, Won-Sik Kim, Hong-Chan Kim, Kyu-Young Park, Honggu Kim, Ho-Sung Yang, Woong-Ryeol Yu, Kisuk Kang, Seong-Hyeon Hong. [email protected]@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry 2017, 21 (8) , 2365-2371. https://doi.org/10.1007/s10008-017-3584-5
  70. Boyang Liu, Yingfeng Shao, Xin Xiang, Jiayuan Ren, Wenge Li. Low-temperature one-step solid-phase synthesis of carbon-encapsulated TiO2 nanocrystals as anode materials for lithium-ion batteries. Ionics 2017, 23 (8) , 2013-2024. https://doi.org/10.1007/s11581-017-2053-6
  71. Bingqing Xu, Yidong Luo, Ting Liu, Qinghua Zhang, Yuan-Hua Lin, Ce-Wen Nan, Yang Shen, Rujun Chen, Hong Xu, Jingwei Li. Ultrathin N-doped carbon-coated TiO 2 coaxial nanofibers as anodes for lithium ion batteries. Journal of the American Ceramic Society 2017, 100 (7) , 2939-2947. https://doi.org/10.1111/jace.14822
  72. Soumyadip Choudhury, Manfred Stamm. Hybrid Nanostructured Materials for Advanced Lithium Batteries. 2017,,, 1-78. https://doi.org/10.1002/9781119160380.ch1
  73. Ying Wu, Yu Jiang, Jinan Shi, Lin Gu, Yan Yu. Multichannel Porous TiO 2 Hollow Nanofibers with Rich Oxygen Vacancies and High Grain Boundary Density Enabling Superior Sodium Storage Performance. Small 2017, 13 (22) , 1700129. https://doi.org/10.1002/smll.201700129
  74. Mahmoud Madian, Raghunandan Ummethala, Ahmed Osama Abo El Naga, Nahla Ismail, Mark Hermann Rümmeli, Alexander Eychmüller, Lars Giebeler. Ternary [email protected]/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries. Materials 2017, 10 (6) , 678. https://doi.org/10.3390/ma10060678
  75. Dongling Jia, Yunhua Chen, Jianguo Huang. A Bioinspired Nanofibrous Titania/Silicon Composite as an Anode Material for Lithium-Ion Batteries. ChemNanoMat 2017, 3 (2) , 120-129. https://doi.org/10.1002/cnma.201600332
  76. Stepan Kment, Francesca Riboni, Sarka Pausova, Lei Wang, Lingyun Wang, Hyungkyu Han, Zdenek Hubicka, Josef Krysa, Patrik Schmuki, Radek Zboril. Photoanodes based on TiO 2 and α-Fe 2 O 3 for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews 2017, 46 (12) , 3716-3769. https://doi.org/10.1039/C6CS00015K
  77. Hyungkyu Han, Francesca Riboni, Frantisek Karlicky, Stepan Kment, Anandarup Goswami, Pitchaimuthu Sudhagar, Jeongeun Yoo, Lei Wang, Ondrej Tomanec, Martin Petr, Ondrej Haderka, Chiaki Terashima, Akira Fujishima, Patrik Schmuki, Radek Zboril. α-Fe 2 O 3 /TiO 2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale 2017, 9 (1) , 134-142. https://doi.org/10.1039/C6NR06908H
  78. Deepa T.D, Subhalaxmi Mohapatra, Shantikumar V. Nair, A. Sreekumaran Nair, Alok Kumar Rai. Surfactant-assisted synthesis of porous TiO 2 nanofibers as an anode material for secondary lithium ion batteries. Sustainable Energy & Fuels 2017, 1 (1) , 138-144. https://doi.org/10.1039/C6SE00030D
  79. Hamideh Kashani, Hussein Gharibi, Soheila Javadian, Jamal Kakemam. Study of counter electrodes as an effective controlling factor of crystal orientation of TiO 2 nanoarrays used as the anode in lithium-ion batteries. New J. Chem. 2017, 41 (21) , 12442-12450. https://doi.org/10.1039/C7NJ01467H
  80. Tandeep S. Chadha, Bharatkumar Suthar, Derek Rife, Venkat R. Subramanian, Pratim Biswas. Model Based Analysis of One-Dimensional Oriented Lithium-Ion Battery Electrodes. Journal of The Electrochemical Society 2017, 164 (11) , E3114-E3121. https://doi.org/10.1149/2.0141711jes
  81. Woo-Jin Song, Seungmin Yoo, Jung-In Lee, Jung-Gu Han, Yeonguk Son, Sun-I Kim, Myoungsoo Shin, Sinho Choi, Ji-Hyun Jang, Jaephil Cho, Nam-Soon Choi, Soojin Park. Zinc-Reduced Mesoporous TiO x Li-Ion Battery Anodes with Exceptional Rate Capability and Cycling Stability. Chemistry - An Asian Journal 2016, 11 (23) , 3382-3388. https://doi.org/10.1002/asia.201601061
  82. Wenjing Yu, Yumin Liu, Nian Cheng, Bo Cai, Kiran Kumar Kondamareddy, Sen Kong, Sheng Xu, Wei Liu, Xing-Zhong Zhao. Ultra-thin anatase TiO 2 nanosheets with admirable structural stability for advanced reversible lithium storage and cycling performance. Electrochimica Acta 2016, 220 , 398-404. https://doi.org/10.1016/j.electacta.2016.10.125
  83. Hongjing Wu, Yiqun Wang, Chenhui Zheng, Jinmeng Zhu, Guanglei Wu, Xuanhua Li. Multi-shelled NiO hollow spheres: Easy hydrothermal synthesis and lithium storage performances. Journal of Alloys and Compounds 2016, 685 , 8-14. https://doi.org/10.1016/j.jallcom.2016.05.264
  84. Jie Ding, Zhennan Huang, Jihao Zhu, Shengzhong Kou, Xiaobin Zhang, Hangsheng Yang. Low-temperature synthesis of high-ordered anatase TiO2 nanotube array films coated with exposed {001} nanofacets. Scientific Reports 2016, 5 (1) https://doi.org/10.1038/srep17773
  85. Lei Li, Caitian Gao, Anton Kovalchuk, Zhiwei Peng, Gedeng Ruan, Yang Yang, Huilong Fei, Qifeng Zhong, Yilun Li, James M. Tour. Sandwich structured graphene-wrapped FeS-graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Research 2016, 9 (10) , 2904-2911. https://doi.org/10.1007/s12274-016-1175-x
  86. Juan Xiang, Xin-Yao Yu, Ungyu Paik. General synthesis of vanadium-based mixed metal oxides hollow nanofibers for high performance lithium-ion batteries. Journal of Power Sources 2016, 329 , 190-196. https://doi.org/10.1016/j.jpowsour.2016.08.079
  87. Kaifu Huo, Xingxing Li, Biao Gao, Lei Wang, Qingwei Li, Xiang Peng, Xuming Zhang, Jijiang Fu, Paul K. Chu. Self-Supporting and Binder-Free Anode Film Composed of Beaded Stream-Like Li 4 Ti 5 O 12 Nanoparticles for High-Performance Lithium-Ion Batteries. ChemElectroChem 2016, 3 (9) , 1301-1305. https://doi.org/10.1002/celc.201600215
  88. Dianyun Zhao, Qin Hao, Caixia Xu. Nanoporous TiO2/Co3O4 Composite as an Anode Material for Lithium-Ion Batteries. Electrochimica Acta 2016, 211 , 83-91. https://doi.org/10.1016/j.electacta.2016.06.043
  89. Svetlozar Ivanov, Adriana Barylyak, Khrystyna Besaha, Anna Dimitrova, Stefan Krischok, Andreas Bund, Jaroslav Bobitski. Enhanced lithium ion storage in TiO2 nanoparticles, induced by sulphur and carbon co-doping. Journal of Power Sources 2016, 326 , 270-278. https://doi.org/10.1016/j.jpowsour.2016.06.116
  90. Hyungkyu Han, Stepan Kment, Anandarup Goswami, Ondrej Haderka, Radek Zboril. Directly grown TiO2 nanotubes on carbon nanofibers for photoelectrochemical water splitting. MRS Advances 2016, 1 (46) , 3145-3150. https://doi.org/10.1557/adv.2016.401
  91. Xiaobing Wang, Qiuxia Meng, Yuanyuan Wang, Huijun Liang, Zhengyu Bai, Kui Wang, Xiangdong Lou, Bibo Cai, Lin Yang. TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Applied Energy 2016, 175 , 488-494. https://doi.org/10.1016/j.apenergy.2016.04.066
  92. Dong-Yang Feng, Yu Song, Zi-Hang Huang, Xin-Xin Xu, Xiao-Xia Liu. Rate capability improvement of polypyrrole via integration with functionalized commercial carbon cloth for pseudocapacitor. Journal of Power Sources 2016, 324 , 788-797. https://doi.org/10.1016/j.jpowsour.2016.05.112
  93. Zhiliang Xiu, Muhammad Hilmy Alfaruqi, Jihyeon Gim, Jinju Song, Sungjin Kim, Pham Tung Duong, Joseph Paul Baboo, Vinod Mathew, Jaekook Kim. MOF-derived mesoporous anatase TiO2 as anode material for lithium–ion batteries with high rate capability and long cycle stability. Journal of Alloys and Compounds 2016, 674 , 174-178. https://doi.org/10.1016/j.jallcom.2016.02.238
  94. Peipei Zhang, Shasha Zhu, Zhishun He, Kai Wang, Huiqing Fan, Yuan Zhong, Ling Chang, Haibo Shao, Jianming Wang, Jianqing Zhang, Chu-nan Cao. Photochemical synthesis of SnO2/TiO2 composite nanotube arrays with enhanced lithium storage performance. Journal of Alloys and Compounds 2016, 674 , 1-8. https://doi.org/10.1016/j.jallcom.2016.03.041
  95. Guolin Hou, Benli Cheng, Yuebin Cao, Mingshui Yao, Baoqiang Li, Chao Zhang, Qunhong Weng, Xi Wang, Yoshio Bando, Dmitri Golberg, Fangli Yuan. Scalable production of 3D plum-pudding-like Si/C spheres: Towards practical application in Li-ion batteries. Nano Energy 2016, 24 , 111-120. https://doi.org/10.1016/j.nanoen.2016.04.014
  96. Yang Xu, Min Zhou, Yong Lei. Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries. Advanced Energy Materials 2016, 6 (10) , 1502514. https://doi.org/10.1002/aenm.201502514
  97. Xinxin Fu, Lin Shi, Chenyao Fan, Siqi Yu, Guodong Qian, Zhiyu Wang. TiO2 mesoporous single crystals with controllable architectures and TiO2/graphene oxide nanocomposites for high-performance lithium ion battery anodes. Electrochimica Acta 2016, 190 , 25-32. https://doi.org/10.1016/j.electacta.2015.12.120
  98. Xiao Yan, Wei Liu, Wenchao Yan, Deye Sun, Yongcheng Jin, Jing Wang, Lan Xiang, Hirokazu Munakata, Kiyoshi Kanamura. Effect of Anatase TiO2 on Electrochemical Properties of Elongated Bending TiO2-Bronze nanowires for Lithium Ion Batteries. Electrochimica Acta 2016, 191 , 661-668. https://doi.org/10.1016/j.electacta.2016.01.136
  99. Christian Julien, Alain Mauger, Ashok Vijh, Karim Zaghib. Anodes for Li-Ion Batteries. 2016,,, 323-429. https://doi.org/10.1007/978-3-319-19108-9_10
  100. Xue Bai, Tao Li, Yong-Xin Qi, Yan-Xiang Wang, Long-Wei Yin, Hui Li, Ning Lun, Yu-Jun Bai. One-step fabricating nitrogen-doped TiO2 nanoparticles coated with carbon to achieve excellent high-rate lithium storage performance. Electrochimica Acta 2016, 187 , 389-396. https://doi.org/10.1016/j.electacta.2015.11.094
Load all citations