Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite

View Author Information
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
Argonne−Northwestern Solar Energy Research (ANSER) Center, Argonne National Laboratory, Argonne, Illinois 60439, United States
§ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
Department of Chemical and Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, Connecticut 06520, United States
Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
*Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2013, 7, 3, 2396–2405
Publication Date (Web):February 12, 2013
https://doi.org/10.1021/nn305639z
Copyright © 2013 American Chemical Society
Article Views
5678
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Hematite photoanodes were coated with an ultrathin cobalt oxide layer by atomic layer deposition (ALD). The optimal coating—1 ALD cycle, which amounts to <1 monolayer of Co(OH)2/Co3O4—resulted in significantly enhanced photoelectrochemical water oxidation performance. A stable, 100–200 mV cathodic shift in the photocurrent onset potential was observed that is correlated to an order of magnitude reduction in the resistance to charge transfer at the Fe2O3/H2O interface. Furthermore, the optical transparency of the ultrathin Co(OH)2/Co3O4 coating establishes it as a particularly advantageous treatment for nanostructured water oxidation photoanodes. The photocurrent of catalyst-coated nanostructured inverse opal scaffold hematite photoanodes reached 0.81 and 2.1 mA/cm2 at 1.23 and 1.53 V, respectively.

Supporting Information

ARTICLE SECTIONS
Jump To

Additional UV–vis, J–E curves, and EIS data. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 223 publications.

  1. Haijiao Lu, Julie Tournet, Kamran Dastafkan, Yun Liu, Yun Hau Ng, Siva Krishna Karuturi, Chuan Zhao, Zongyou Yin. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews 2021, 121 (17) , 10271-10366. https://doi.org/10.1021/acs.chemrev.0c01328
  2. Yelin Hu, Florent Boudoire, Matthew T. Mayer, Songhak Yoon, Michael Graetzel, Artur Braun. Function and Electronic Structure of the SnO2 Buffer Layer between the α-Fe2O3 Water Oxidation Photoelectrode and the Transparent Conducting Oxide Current Collector. The Journal of Physical Chemistry C 2021, 125 (17) , 9158-9168. https://doi.org/10.1021/acs.jpcc.1c01809
  3. Parisa Shadabipour, Austin L. Raithel, Thomas W. Hamann. Charge-Carrier Dynamics at the CuWO4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (45) , 50592-50599. https://doi.org/10.1021/acsami.0c14705
  4. Anton Tsyganok, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni, Vadim Murzin, Wolfgang Caliebe, Avner Rothschild, David S. Ellis. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe2O3) Photoanodes for Solar Water Splitting. Langmuir 2020, 36 (39) , 11564-11572. https://doi.org/10.1021/acs.langmuir.0c02065
  5. Alessandro Ponti, Muhammad Hamid Raza, Fabiola Pantò, Anna Maria Ferretti, Claudia Triolo, Salvatore Patanè, Nicola Pinna, Saveria Santangelo. Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. Langmuir 2020, 36 (5) , 1305-1319. https://doi.org/10.1021/acs.langmuir.9b03587
  6. Ivan Garcia-Torregrosa, Jochem H. J. Wijten, Silvia Zanoni, Freddy E. Oropeza, Jan P. Hofmann, Emiel J. M. Hensen, Bert M. Weckhuysen. Template-Free Nanostructured Fluorine-Doped Tin Oxide Scaffolds for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (40) , 36485-36496. https://doi.org/10.1021/acsami.9b05176
  7. Tushar Kanta Sahu, Adit Kumar Shah, Avishek Banik, Mohammad Qureshi. Enhanced Surface and Bulk Recombination Kinetics by Virtue of Sequential Metal and Nonmetal Incorporation in Hematite-Based Photoanode for Superior Photoelectrochemical Water Oxidation. ACS Applied Energy Materials 2019, 2 (6) , 4325-4334. https://doi.org/10.1021/acsaem.9b00548
  8. Zhao Liang, Huilin Hou, Zhi Fang, Fengmei Gao, Lin Wang, Ding Chen, Weiyou Yang. Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (21) , 19167-19175. https://doi.org/10.1021/acsami.9b04059
  9. Hyung Jong Choi, Gwon Deok Han, Kiho Bae, Joon Hyung Shim. Highly Active Oxygen Evolution on Carbon Fiber Paper Coated with Atomic-Layer-Deposited Cobalt Oxide. ACS Applied Materials & Interfaces 2019, 11 (11) , 10608-10615. https://doi.org/10.1021/acsami.8b19064
  10. Richard Baochang Wang, Anders Hellman. Hybrid Functional Study of the Electro-oxidation of Water on Pristine and Defective Hematite (0001). The Journal of Physical Chemistry C 2019, 123 (5) , 2820-2827. https://doi.org/10.1021/acs.jpcc.8b06580
  11. Fang Song, Lichen Bai, Aliki Moysiadou, Seunghwa Lee, Chao Hu, Laurent Liardet, Xile Hu. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society 2018, 140 (25) , 7748-7759. https://doi.org/10.1021/jacs.8b04546
  12. Shabeeb Hussain, Mohammad Mahdi Tavakoli, Aashir Waleed, Umar Siddique Virk, Shihe Yang, Amir Waseem, Zhiyong Fan, Muhammad Arif Nadeem. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water. Langmuir 2018, 34 (12) , 3555-3564. https://doi.org/10.1021/acs.langmuir.7b02786
  13. Zhe Xu, Haoyu Wang, Yunzhou Wen, Wenchao Li, Chuyu Sun, Yuting He, Zhan Shi, Lang Pei, Yongda Chen, Shicheng Yan, and Zhigang Zou . Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (4) , 3624-3633. https://doi.org/10.1021/acsami.7b17348
  14. Mario Bärtsch, Marta Sarnowska, Olga Krysiak, Christoph Willa, Christian Huber, Lex Pillatsch, Sandra Reinhard, and Markus Niederberger . Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst. ACS Omega 2017, 2 (8) , 4531-4539. https://doi.org/10.1021/acsomega.7b00696
  15. Hamed Hajibabaei, Abraham R. Schon, and Thomas W. Hamann . Interface Control of Photoelectrochemical Water Oxidation Performance with Ni1–xFexOy Modified Hematite Photoanodes. Chemistry of Materials 2017, 29 (16) , 6674-6683. https://doi.org/10.1021/acs.chemmater.7b01149
  16. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442. https://doi.org/10.1021/acsomega.6b00448
  17. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688. https://doi.org/10.1021/acscatal.6b03107
  18. Amira Y. Ahmed, Mahmoud G. Ahmed, and Tarek A. Kandiel . Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting. The Journal of Physical Chemistry C 2016, 120 (41) , 23415-23420. https://doi.org/10.1021/acs.jpcc.6b08010
  19. Jianying Wang, LvLv Ji, and Zuofeng Chen . In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis 2016, 6 (10) , 6987-6992. https://doi.org/10.1021/acscatal.6b01837
  20. Jason R. Avila, Michael J. Katz, Omar K. Farha, and Joseph T. Hupp . Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. The Journal of Physical Chemistry C 2016, 120 (37) , 20922-20928. https://doi.org/10.1021/acs.jpcc.6b02651
  21. Maxime Rioult, Dana Stanescu, Emiliano Fonda, Antoine Barbier, and Hélène Magnan . Oxygen Vacancies Engineering of Iron Oxides Films for Solar Water Splitting. The Journal of Physical Chemistry C 2016, 120 (14) , 7482-7490. https://doi.org/10.1021/acs.jpcc.6b00552
  22. Ahmad W. Amer, Mostafa A. El-Sayed, and Nageh K. Allam . Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting. The Journal of Physical Chemistry C 2016, 120 (13) , 7025-7032. https://doi.org/10.1021/acs.jpcc.6b01144
  23. Jean-François Boily, Merve Yeşilbaş, Munshi Md. Musleh Uddin, Lu Baiqing, Yulia Trushkina, and Germàn Salazar-Alvarez . Thin Water Films at Multifaceted Hematite Particle Surfaces. Langmuir 2015, 31 (48) , 13127-13137. https://doi.org/10.1021/acs.langmuir.5b03167
  24. Erno Kemppainen, Janne Halme, and Peter Lund . Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119 (38) , 21747-21766. https://doi.org/10.1021/acs.jpcc.5b04764
  25. Xianglin Li, Prince Saurabh Bassi, Pablo P. Boix, Yanan Fang, and Lydia Helena Wong . Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (31) , 16960-16966. https://doi.org/10.1021/acsami.5b01394
  26. Carlos G. Morales-Guio, Matthew T. Mayer, Aswani Yella, S. David Tilley, Michael Grätzel, and Xile Hu . An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the American Chemical Society 2015, 137 (31) , 9927-9936. https://doi.org/10.1021/jacs.5b05544
  27. Jason R. Avila, Dong Wook Kim, Martino Rimoldi, Omar K. Farha, and Joseph T. Hupp . Fabrication of Thin Films of α-Fe2O3 via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Applied Materials & Interfaces 2015, 7 (30) , 16138-16142. https://doi.org/10.1021/acsami.5b04043
  28. Degao Wang, Huaican Chen, Guoliang Chang, Xiao Lin, Yuying Zhang, Ali Aldalbahi, Cheng Peng, Jianqiang Wang, and Chunhai Fan . Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (25) , 14072-14078. https://doi.org/10.1021/acsami.5b03298
  29. Michael E. A Warwick, Kimmo Kaunisto, Davide Barreca, Giorgio Carraro, Alberto Gasparotto, Chiara Maccato, Elza Bontempi, Cinzia Sada, Tero-Petri Ruoko, Stuart Turner, and Gustaaf Van Tendeloo . Vapor Phase Processing of α-Fe2O3 Photoelectrodes for Water Splitting: An Insight into the Structure/Property Interplay. ACS Applied Materials & Interfaces 2015, 7 (16) , 8667-8676. https://doi.org/10.1021/acsami.5b00919
  30. K. Shimizu and J.-F. Boily . Electrochemical Signatures of Crystallographic Orientation and Counterion Binding at the Hematite/Water Interface. The Journal of Physical Chemistry C 2015, 119 (11) , 5988-5994. https://doi.org/10.1021/jp511371c
  31. Pravin S. Shinde, Alagappan Annamalai, Jae Young Kim, Sun Hee Choi, Jae Sung Lee, and Jum Suk Jang . Fine-Tuning Pulse Reverse Electrodeposition for Enhanced Photoelectrochemical Water Oxidation Performance of α-Fe2O3 Photoanodes. The Journal of Physical Chemistry C 2015, 119 (10) , 5281-5292. https://doi.org/10.1021/jp5100186
  32. Katie L. Pickrahn, Aaron Garg, and Stacey F. Bent . ALD of Ultrathin Ternary Oxide Electrocatalysts for Water Splitting. ACS Catalysis 2015, 5 (3) , 1609-1616. https://doi.org/10.1021/cs501532b
  33. Anthony J. Abel, Ivan Garcia-Torregrosa, Anjli M. Patel, Borirak Opasanont, and Jason B. Baxter . SILAR-Deposited Hematite Films for Photoelectrochemical Water Splitting: Effects of Sn, Ti, Thickness, and Nanostructuring. The Journal of Physical Chemistry C 2015, 119 (9) , 4454-4465. https://doi.org/10.1021/jp510027u
  34. S. Chatman, P. Zarzycki, and K. M. Rosso . Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces. ACS Applied Materials & Interfaces 2015, 7 (3) , 1550-1559. https://doi.org/10.1021/am5067783
  35. Bin Huang, Wenjuan Yang, Yanwei Wen, Bin Shan, and Rong Chen . Co3O4-Modified TiO2 Nanotube Arrays via Atomic Layer Deposition for Improved Visible-Light Photoelectrochemical Performance. ACS Applied Materials & Interfaces 2015, 7 (1) , 422-431. https://doi.org/10.1021/am506392y
  36. Dong Wook Kim, Shannon C. Riha, Erica J. DeMarco, Alex B. F. Martinson, Omar K. Farha, and Joseph T. Hupp . Greenlighting Photoelectrochemical Oxidation of Water by Iron Oxide. ACS Nano 2014, 8 (12) , 12199-12207. https://doi.org/10.1021/nn503869n
  37. Ming Meng, Xinglong Wu, Xiaobin Zhu, Lun Yang, Zhixing Gan, Xiaoshu Zhu, Lizhe Liu, and Paul K. Chu . Cubic In2O3 Microparticles for Efficient Photoelectrochemical Oxygen Evolution. The Journal of Physical Chemistry Letters 2014, 5 (24) , 4298-4304. https://doi.org/10.1021/jz502316h
  38. Maytal Caspary Toroker . Theoretical Insights into the Mechanism of Water Oxidation on Nonstoichiometric and Titanium-Doped Fe2O3(0001). The Journal of Physical Chemistry C 2014, 118 (40) , 23162-23167. https://doi.org/10.1021/jp5073654
  39. Xiaogang Yang, Rui Liu, Chun Du, Pengcheng Dai, Zhi Zheng, and Dunwei Wang . Improving Hematite-based Photoelectrochemical Water Splitting with Ultrathin TiO2 by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2014, 6 (15) , 12005-12011. https://doi.org/10.1021/am500948t
  40. Sarath Ramadurgam, Tzu-Ging Lin, and Chen Yang . Aluminum Plasmonics for Enhanced Visible Light Absorption and High Efficiency Water Splitting in Core–Multishell Nanowire Photoelectrodes with Ultrathin Hematite Shells. Nano Letters 2014, 14 (8) , 4517-4522. https://doi.org/10.1021/nl501541s
  41. Naghmehalsadat Mirbagheri, Degao Wang, Cheng Peng, Jianqiang Wang, Qing Huang, Chunhai Fan, and Elena E. Ferapontova . Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catalysis 2014, 4 (6) , 2006-2015. https://doi.org/10.1021/cs500372v
  42. Benjamin Klahr and Thomas Hamann . Water Oxidation on Hematite Photoelectrodes: Insight into the Nature of Surface States through In Situ Spectroelectrochemistry. The Journal of Physical Chemistry C 2014, 118 (19) , 10393-10399. https://doi.org/10.1021/jp500543z
  43. Jinhui Yang, Karl Walczak, Eitan Anzenberg, Francesca M. Toma, Guangbi Yuan, Jeffrey Beeman, Adam Schwartzberg, Yongjing Lin, Mark Hettick, Ali Javey, Joel W. Ager, Junko Yano, Heinz Frei, and Ian D. Sharp . Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society 2014, 136 (17) , 6191-6194. https://doi.org/10.1021/ja501513t
  44. Mahmud Diab and Taleb Mokari . Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation. Inorganic Chemistry 2014, 53 (4) , 2304-2309. https://doi.org/10.1021/ic403027r
  45. Maxime Rioult, Hélène Magnan, Dana Stanescu, and Antoine Barbier . Single Crystalline Hematite Films for Solar Water Splitting: Ti-Doping and Thickness Effects. The Journal of Physical Chemistry C 2014, 118 (6) , 3007-3014. https://doi.org/10.1021/jp500290j
  46. Chong Liu, Neil P. Dasgupta, and Peidong Yang . Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials 2014, 26 (1) , 415-422. https://doi.org/10.1021/cm4023198
  47. Kevin Sivula . Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1624-1633. https://doi.org/10.1021/jz4002983
  48. Luca Bertoluzzi, Laura Badia-Bou, Francisco Fabregat-Santiago, Sixto Gimenez, and Juan Bisquert . Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1334-1339. https://doi.org/10.1021/jz400573t
  49. Xiaokang Wan, Yunbo Xu, Xianyun Wang, Xiangjiu Guan, Yanming Fu, Chao Hu, Haowei Hu, Nai Rong. Atomic layer deposition assisted surface passivation on bismuth vanadate photoanodes for enhanced solar water oxidation. Applied Surface Science 2022, 573 , 151492. https://doi.org/10.1016/j.apsusc.2021.151492
  50. Jan Plutnar, Martin Pumera. Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. Small 2021, 17 (39) , 2102088. https://doi.org/10.1002/smll.202102088
  51. Uday Dadwal, Rajendra Singh. Silicon-Silver Dendritic Nanostructures Enabled Photoelectrochemical Solar Water Splitting for Energy Applications. 2021,,https://doi.org/10.5772/intechopen.95934
  52. Maged N. Shaddad, Prabhakarn Arunachalam, Mahmoud Hezam, Norah M. AL-Saeedan, Sixto Gimenez, Juan Bisquert, Abdullah M. Al-Mayouf. Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy 2021, 46 (46) , 23702-23714. https://doi.org/10.1016/j.ijhydene.2021.04.184
  53. Nadiia Pastukhova, Andraž Mavrič, Yanbo Li. Atomic Layer Deposition for the Photoelectrochemical Applications. Advanced Materials Interfaces 2021, 8 (7) , 2002100. https://doi.org/10.1002/admi.202002100
  54. Rui Tang, Shujie Zhou, Zhenyu Zhang, Rongkun Zheng, Jun Huang. Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials 2021, 33 (17) , 2005389. https://doi.org/10.1002/adma.202005389
  55. K. Knemeyer, R. Baumgarten, P. Ingale, R. Naumann d’Alnoncourt, M. Driess, F. Rosowski. Toolbox for atomic layer deposition process development on high surface area powders. Review of Scientific Instruments 2021, 92 (2) , 025115. https://doi.org/10.1063/5.0037844
  56. Michaela Lammel, Kevin Geishendorf, Marisa A. Choffel, Danielle M. Hamann, David C. Johnson, Kornelius Nielsch, Andy Thomas. Fast Fourier transform and multi-Gaussian fitting of XRR data to determine the thickness of ALD grown thin films within the initial growth regime. Applied Physics Letters 2020, 117 (21) , 213106. https://doi.org/10.1063/5.0024991
  57. Dana Stanescu, Mekan Piriyev, Victoria Villard, Cristian Mocuta, Adrien Besson, Dris Ihiawakrim, Ovidiu Ersen, Jocelyne Leroy, Sorin G. Chiuzbaian, Adam P. Hitchcock, Stefan Stanescu. Characterizing surface states in hematite nanorod photoanodes, both beneficial and detrimental to solar water splitting efficiency. Journal of Materials Chemistry A 2020, 8 (39) , 20513-20530. https://doi.org/10.1039/D0TA06524B
  58. Marjan Saeidi, Amin Yourdkhani, Seyed Ali Seyed Ebrahimi, Reza Poursalehi. Candle flame-treatment as an effective strategy to enhance the photoelectrochemical properties of Ti-doped hematite thin films. Journal of Materials Chemistry C 2020, 8 (34) , 11950-11961. https://doi.org/10.1039/D0TC01795G
  59. Aizhen Liao, Huichao He, Yong Zhou, Zhigang Zou. Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors 2020, 41 (9) , 091709. https://doi.org/10.1088/1674-4926/41/9/091709
  60. Kristian Knemeyer, Mar Piernavieja Hermida, Piyush Ingale, Johannes Schmidt, Jutta Kröhnert, Raoul Naumann d’Alnoncourt, Matthias Driess, Frank Rosowski. Mechanistic studies of atomic layer deposition on oxidation catalysts – AlO x and PO x deposition. Physical Chemistry Chemical Physics 2020, 22 (32) , 17999-18006. https://doi.org/10.1039/D0CP02572K
  61. Qingsong Zhang, Yang Xiao, Yiming Li, Kaiyuan Zhao, Huifang Deng, Yongbing Lou, Jinxi Chen, Hui Yu, Lin Cheng. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4–decorated [email protected] core-shell structures. Chemical Engineering Journal 2020, 393 , 124681. https://doi.org/10.1016/j.cej.2020.124681
  62. Xiangyan Chen, Yanming Fu, Liu Hong, Tingting Kong, Xiaobo Shi, Guangxu Wang, Le Qu, Shaohua Shen. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. The Journal of Chemical Physics 2020, 152 (24) , 244707. https://doi.org/10.1063/5.0009072
  63. Hefeng Zhang, Yong Zhao, Huiyan Zhang, Haichuan Zhou, Hong Wang, Xu Zong, Heng Yin, Can Li. Establishing inorganic-biological hybrid photoelectrochemical platform towards sustainable conversion of α-chitin. Applied Catalysis B: Environmental 2020, 265 , 118558. https://doi.org/10.1016/j.apcatb.2019.118558
  64. Š. Kment, K. Sivula, A. Naldoni, S.P. Sarmah, H. Kmentová, M. Kulkarni, Y. Rambabu, P. Schmuki, R. Zbořil. FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science 2020, 110 , 100632. https://doi.org/10.1016/j.pmatsci.2019.100632
  65. Sarang Kim, Mahadeo A. Mahadik, Weon-Sik Chae, Jungho Ryu, Sun Hee Choi, Jum Suk Jang. Synthesis of transparent Zr-doped ZnFe2O4 nanocorals photoanode and its surface modification via Al2O3/Co–Pi for efficient solar water splitting. Applied Surface Science 2020, 513 , 145528. https://doi.org/10.1016/j.apsusc.2020.145528
  66. Yaejin Hong, Seung-Hwan Jeon, Hyukhyun Ryu, Won-Jae Lee. Effects of Growth Temperature on the Physicochemical and Photoelectrochemical Properties of a Modified Chemical Bath Deposited Fe2O3 Photoelectrode. Korean Journal of Metals and Materials 2020, 58 (4) , 263-271. https://doi.org/10.3365/KJMM.2020.58.4.263
  67. Waleed M.A. El Rouby, Manuel Antuch, Sheng-Mu You, Pierre Millet. Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation. Electrochimica Acta 2020, 339 , 135882. https://doi.org/10.1016/j.electacta.2020.135882
  68. Xun Cui, Sheng Lei, Aurelia Chi Wang, Likun Gao, Qing Zhang, Yingkui Yang, Zhiqun Lin. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70 , 104525. https://doi.org/10.1016/j.nanoen.2020.104525
  69. Amr A. Nada, Waleed M.A. El Rouby, Maged F. Bekheet, Manuel Antuch, Matthieu Weber, Philippe Miele, Roman Viter, Stéphanie Roualdes, Pierre Millet, Mikhael Bechelany. Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity. Applied Surface Science 2020, 505 , 144419. https://doi.org/10.1016/j.apsusc.2019.144419
  70. Fusheng Li, Ziqi Zhao, Hao Yang, Dinghua Zhou, Yilong Zhao, Yingzheng Li, Wenlong Li, Xiujuan Wu, Peili Zhang, Licheng Sun. Electrochemical and photoelectrochemical water splitting with a CoO x catalyst prepared by flame assisted deposition. Dalton Transactions 2020, 49 (3) , 588-592. https://doi.org/10.1039/C9DT03983J
  71. Yanming Fu, Ying-Rui Lu, Feng Ren, Zhuo Xing, Jie Chen, Penghui Guo, Way-Faung Pong, Chung-Li Dong, Liang Zhao, Shaohua Shen. Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation. Solar RRL 2020, 4 (1) , 1900349. https://doi.org/10.1002/solr.201900349
  72. Yanming Fu, Chung-Li Dong, Wu Zhou, Ying-Rui Lu, Yu-Cheng Huang, Ya Liu, Penghui Guo, Liang Zhao, Wu-Ching Chou, Shaohua Shen. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Applied Catalysis B: Environmental 2020, 260 , 118206. https://doi.org/10.1016/j.apcatb.2019.118206
  73. Halimeh-Sadat Sajjadizadeh, Elaheh K. Goharshadi, Hossein Ahmadzadeh. Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure. International Journal of Hydrogen Energy 2020, 45 (1) , 123-134. https://doi.org/10.1016/j.ijhydene.2019.10.161
  74. C.B. Nelson, H. Fang. Tight binding model of induced band shift in CoO nanoparticles. Canadian Journal of Physics 2020, 98 (1) , 39-44. https://doi.org/10.1139/cjp-2018-0974
  75. W.M.A. El Rouby, M. Antuch, S.-M. You, P. Beaunier, P. Millet. Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings. International Journal of Hydrogen Energy 2019, 44 (59) , 30949-30964. https://doi.org/10.1016/j.ijhydene.2019.08.220
  76. Guangwei Zheng, Jinshu Wang, Hu Liu, Vignesh Murugadoss, Guannan Zu, Haibing Che, Chen Lai, Hongyi Li, Tao Ding, Qiang Gao, Zhanhu Guo. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 2019, 11 (41) , 18968-18994. https://doi.org/10.1039/C9NR03474A
  77. PengYi Tang, Jordi Arbiol. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horizons 2019, 4 (6) , 1256-1276. https://doi.org/10.1039/C9NH00368A
  78. Zhongyuan Zhou, Shaolong Wu, Chenhong Xiao, Liujing Li, Weijia Shao, Hao Ding, Long Wen, Xiaofeng Li. Self-improvement of solar water oxidation for the continuously-irradiated hematite photoanode. Dalton Transactions 2019, 48 (40) , 15151-15159. https://doi.org/10.1039/C9DT03368H
  79. Linfeng Pan, Nick Vlachopoulos, Anders Hagfeldt. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (19) , 4337-4352. https://doi.org/10.1002/cssc.201900849
  80. Wooseok Yang, Rajiv Ramanujam Prabhakar, Jeiwan Tan, S. David Tilley, Jooho Moon. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews 2019, 48 (19) , 4979-5015. https://doi.org/10.1039/C8CS00997J
  81. Yumin He, Srinivas Vanka, Tianyue Gao, Da He, Jeremy Espano, Yanyan Zhao, Qi Dong, Chaochao Lang, Yongjie Wang, Thomas W. Hamann, Zetian Mi, Dunwei Wang. Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Research 2019, 12 (9) , 2378-2384. https://doi.org/10.1007/s12274-019-2346-3
  82. Asako Taniguchi, Takaaki Taniguchi, Hajime Wagata, Ken-ichi Katsumata, Kiyoshi Okada, Nobuhiro Matsushita. Liquid-phase atomic layer deposition of crystalline hematite without post-growth annealing. CrystEngComm 2019, 21 (28) , 4184-4191. https://doi.org/10.1039/C9CE00584F
  83. Alexander N. Bondarchuk, Iván Corrales-Mendoza, Sergio A. Tomás, Frank Marken. A hematite photoelectrode grown on porous and conductive SnO2 ceramics for solar-driven water splitting. International Journal of Hydrogen Energy 2019, 44 (36) , 19667-19675. https://doi.org/10.1016/j.ijhydene.2019.06.055
  84. Yasser GadelHak, Waleed M.A. El Rouby, Ahmed A. Farghali. Au-decorated 3D/1D titanium dioxide flower-like/rod bilayers for photoelectrochemical water oxidation. Electrochimica Acta 2019, 306 , 185-197. https://doi.org/10.1016/j.electacta.2019.03.118
  85. Jun Hu, Shuo Zhao, Xin Zhao, Zhong Chen. Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency. Coatings 2019, 9 (5) , 309. https://doi.org/10.3390/coatings9050309
  86. Yumin He, Thomas Hamann, Dunwei Wang. Thin film photoelectrodes for solar water splitting. Chemical Society Reviews 2019, 48 (7) , 2182-2215. https://doi.org/10.1039/C8CS00868J
  87. M. Antuch, W.M.A. El Rouby, P. Millet. A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: Insights from photo-electrochemical impedance spectroscopy. International Journal of Hydrogen Energy 2019, 44 (20) , 9970-9977. https://doi.org/10.1016/j.ijhydene.2018.11.214
  88. Laurent Liardet, Jordan E. Katz, Jingshan Luo, Michael Grätzel, Xile Hu. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes. Journal of Materials Chemistry A 2019, 7 (11) , 6012-6020. https://doi.org/10.1039/C8TA12295D
  89. Xiaohu Cao, Yifan Wang, Junqi Lin, Yong Ding. Ultrathin CoO x nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. Journal of Materials Chemistry A 2019, 7 (11) , 6294-6303. https://doi.org/10.1039/C8TA12330F
  90. Sha-Sha Yi, Ba-Ri Wulan, Jun-Min Yan, Qing Jiang. Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobalt-Phosphate-Loaded Co 3 O 4 /Fe 2 O 3 p-n Heterojunction Nanorod Arrays. Advanced Functional Materials 2019, 29 (11) , 1801902. https://doi.org/10.1002/adfm.201801902
  91. Vijay S. Sapner, Balaji B. Mulik, Renuka V. Digraskar, Shankar S. Narwade, Bhaskar R. Sathe. Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium. RSC Advances 2019, 9 (12) , 6444-6451. https://doi.org/10.1039/C8RA10286D
  92. Jiajia Cai, Song Li, Gaowu Qin. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Applied Surface Science 2019, 466 , 92-98. https://doi.org/10.1016/j.apsusc.2018.10.022
  93. Chunmei Li, Zhihui Chen, Weiyong Yuan, Qing-Hua Xu, Chang Ming Li. In situ growth of α-Fe 2 O 3 @Co 3 O 4 core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11 (3) , 1111-1122. https://doi.org/10.1039/C8NR07041E
  94. Pankaj Sharma, Ji‐Wook Jang, Jae Sung Lee. Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe 2 O 3 Photoanode. ChemCatChem 2019, 11 (1) , 157-179. https://doi.org/10.1002/cctc.201801187
  95. V. Di Palma, G. Zafeiropoulos, T. Goldsweer, W.M.M. Kessels, M.C.M. van de Sanden, M. Creatore, M.N. Tsampas. Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochemistry Communications 2019, 98 , 73-77. https://doi.org/10.1016/j.elecom.2018.11.021
  96. Kristjan Kalam, Helina Seemen, Mats Mikkor, Taivo Jõgiaas, Peeter Ritslaid, Aile Tamm, Kaupo Kukli, Aarne Kasikov, Joosep Link, Raivo Stern, Salvador Dueñas, Helena Castán. Electrical and magnetic properties of atomic layer deposited cobalt oxide and zirconium oxide nanolaminates. Thin Solid Films 2019, 669 , 294-300. https://doi.org/10.1016/j.tsf.2018.11.008
  97. Tianyu Liu, Martina Morelli, Yat Li. Hematite Materials for Solar-Driven Photoelectrochemical Cells. 2018,,, 159-218. https://doi.org/10.1002/9781119460008.ch5
  98. Alexander G. Hufnagel, Hamidreza Hajiyani, Siyuan Zhang, Tong Li, Olga Kasian, Baptiste Gault, Benjamin Breitbach, Thomas Bein, Dina Fattakhova-Rohlfing, Christina Scheu, Rossitza Pentcheva. Why Tin-Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting-The Full Picture. Advanced Functional Materials 2018, 28 (52) , 1804472. https://doi.org/10.1002/adfm.201804472
  99. Yujin Han, Keunsu Choi, Hyeonmyeong Oh, Chanseok Kim, Dasom Jeon, Cheolmin Lee, Jun Hee Lee, Jungki Ryu. Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation. Journal of Catalysis 2018, 367 , 212-220. https://doi.org/10.1016/j.jcat.2018.09.011
  100. Guanyu Liu, Siva Krishna Karuturi, Hongjun Chen, Leone Spiccia, Hark Hoe Tan, Chennupati Jagadish, Dunwei Wang, Alexandr N. Simonov, Antonio Tricoli. Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation: A physical and chemical synergistic approach. Nano Energy 2018, 53 , 745-752. https://doi.org/10.1016/j.nanoen.2018.09.048
Load more citations