Atomic Layer Deposition of a Submonolayer Catalyst for the Enhanced Photoelectrochemical Performance of Water Oxidation with Hematite

View Author Information
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
Argonne−Northwestern Solar Energy Research (ANSER) Center, Argonne National Laboratory, Argonne, Illinois 60439, United States
§ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
Department of Chemical and Environmental Engineering, School of Engineering & Applied Science, Yale University, New Haven, Connecticut 06520, United States
Nanoscience and Technology Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
*Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2013, 7, 3, 2396–2405
Publication Date (Web):February 12, 2013
Copyright © 2013 American Chemical Society
Article Views
Read OnlinePDF (3 MB)
Supporting Info (1)»


Hematite photoanodes were coated with an ultrathin cobalt oxide layer by atomic layer deposition (ALD). The optimal coating—1 ALD cycle, which amounts to <1 monolayer of Co(OH)2/Co3O4—resulted in significantly enhanced photoelectrochemical water oxidation performance. A stable, 100–200 mV cathodic shift in the photocurrent onset potential was observed that is correlated to an order of magnitude reduction in the resistance to charge transfer at the Fe2O3/H2O interface. Furthermore, the optical transparency of the ultrathin Co(OH)2/Co3O4 coating establishes it as a particularly advantageous treatment for nanostructured water oxidation photoanodes. The photocurrent of catalyst-coated nanostructured inverse opal scaffold hematite photoanodes reached 0.81 and 2.1 mA/cm2 at 1.23 and 1.53 V, respectively.

Supporting Information

Jump To

Additional UV–vis, J–E curves, and EIS data. This material is available free of charge via the Internet at

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system:

Cited By

This article is cited by 223 publications.

  1. Haijiao Lu, Julie Tournet, Kamran Dastafkan, Yun Liu, Yun Hau Ng, Siva Krishna Karuturi, Chuan Zhao, Zongyou Yin. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews 2021, 121 (17) , 10271-10366.
  2. Yelin Hu, Florent Boudoire, Matthew T. Mayer, Songhak Yoon, Michael Graetzel, Artur Braun. Function and Electronic Structure of the SnO2 Buffer Layer between the α-Fe2O3 Water Oxidation Photoelectrode and the Transparent Conducting Oxide Current Collector. The Journal of Physical Chemistry C 2021, 125 (17) , 9158-9168.
  3. Parisa Shadabipour, Austin L. Raithel, Thomas W. Hamann. Charge-Carrier Dynamics at the CuWO4/Electrocatalyst Interface for Photoelectrochemical Water Oxidation. ACS Applied Materials & Interfaces 2020, 12 (45) , 50592-50599.
  4. Anton Tsyganok, Paolo Ghigna, Alessandro Minguzzi, Alberto Naldoni, Vadim Murzin, Wolfgang Caliebe, Avner Rothschild, David S. Ellis. Operando X-ray Absorption Spectroscopy (XAS) Observation of Photoinduced Oxidation in FeNi (Oxy)hydroxide Overlayers on Hematite (α-Fe2O3) Photoanodes for Solar Water Splitting. Langmuir 2020, 36 (39) , 11564-11572.
  5. Alessandro Ponti, Muhammad Hamid Raza, Fabiola Pantò, Anna Maria Ferretti, Claudia Triolo, Salvatore Patanè, Nicola Pinna, Saveria Santangelo. Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. Langmuir 2020, 36 (5) , 1305-1319.
  6. Ivan Garcia-Torregrosa, Jochem H. J. Wijten, Silvia Zanoni, Freddy E. Oropeza, Jan P. Hofmann, Emiel J. M. Hensen, Bert M. Weckhuysen. Template-Free Nanostructured Fluorine-Doped Tin Oxide Scaffolds for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (40) , 36485-36496.
  7. Tushar Kanta Sahu, Adit Kumar Shah, Avishek Banik, Mohammad Qureshi. Enhanced Surface and Bulk Recombination Kinetics by Virtue of Sequential Metal and Nonmetal Incorporation in Hematite-Based Photoanode for Superior Photoelectrochemical Water Oxidation. ACS Applied Energy Materials 2019, 2 (6) , 4325-4334.
  8. Zhao Liang, Huilin Hou, Zhi Fang, Fengmei Gao, Lin Wang, Ding Chen, Weiyou Yang. Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (21) , 19167-19175.
  9. Hyung Jong Choi, Gwon Deok Han, Kiho Bae, Joon Hyung Shim. Highly Active Oxygen Evolution on Carbon Fiber Paper Coated with Atomic-Layer-Deposited Cobalt Oxide. ACS Applied Materials & Interfaces 2019, 11 (11) , 10608-10615.
  10. Richard Baochang Wang, Anders Hellman. Hybrid Functional Study of the Electro-oxidation of Water on Pristine and Defective Hematite (0001). The Journal of Physical Chemistry C 2019, 123 (5) , 2820-2827.
  11. Fang Song, Lichen Bai, Aliki Moysiadou, Seunghwa Lee, Chao Hu, Laurent Liardet, Xile Hu. Transition Metal Oxides as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Solutions: An Application-Inspired Renaissance. Journal of the American Chemical Society 2018, 140 (25) , 7748-7759.
  12. Shabeeb Hussain, Mohammad Mahdi Tavakoli, Aashir Waleed, Umar Siddique Virk, Shihe Yang, Amir Waseem, Zhiyong Fan, Muhammad Arif Nadeem. Nanotextured Spikes of α-Fe2O3/NiFe2O4 Composite for Efficient Photoelectrochemical Oxidation of Water. Langmuir 2018, 34 (12) , 3555-3564.
  13. Zhe Xu, Haoyu Wang, Yunzhou Wen, Wenchao Li, Chuyu Sun, Yuting He, Zhan Shi, Lang Pei, Yongda Chen, Shicheng Yan, and Zhigang Zou . Balancing Catalytic Activity and Interface Energetics of Electrocatalyst-Coated Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2018, 10 (4) , 3624-3633.
  14. Mario Bärtsch, Marta Sarnowska, Olga Krysiak, Christoph Willa, Christian Huber, Lex Pillatsch, Sandra Reinhard, and Markus Niederberger . Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The Role of the Oxygen Evolution Catalyst. ACS Omega 2017, 2 (8) , 4531-4539.
  15. Hamed Hajibabaei, Abraham R. Schon, and Thomas W. Hamann . Interface Control of Photoelectrochemical Water Oxidation Performance with Ni1–xFexOy Modified Hematite Photoanodes. Chemistry of Materials 2017, 29 (16) , 6674-6683.
  16. Sung Ki Cho and Jinho Chang . Electrochemically Identified Ultrathin Water-Oxidation Catalyst in Neutral pH Solution Containing Ni2+ and Its Combination with Photoelectrode. ACS Omega 2017, 2 (2) , 432-442.
  17. Chunmei Ding, Jingying Shi, Zhiliang Wang, and Can Li . Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis 2017, 7 (1) , 675-688.
  18. Amira Y. Ahmed, Mahmoud G. Ahmed, and Tarek A. Kandiel . Modification of Hematite Photoanode with Cobalt Based Oxygen Evolution Catalyst via Bifunctional Linker Approach for Efficient Water Splitting. The Journal of Physical Chemistry C 2016, 120 (41) , 23415-23420.
  19. Jianying Wang, LvLv Ji, and Zuofeng Chen . In Situ Rapid Formation of a Nickel–Iron-Based Electrocatalyst for Water Oxidation. ACS Catalysis 2016, 6 (10) , 6987-6992.
  20. Jason R. Avila, Michael J. Katz, Omar K. Farha, and Joseph T. Hupp . Barrier-Layer-Mediated Electron Transfer from Semiconductor Electrodes to Molecules in Solution: Sensitivity of Mechanism to Barrier-Layer Thickness. The Journal of Physical Chemistry C 2016, 120 (37) , 20922-20928.
  21. Maxime Rioult, Dana Stanescu, Emiliano Fonda, Antoine Barbier, and Hélène Magnan . Oxygen Vacancies Engineering of Iron Oxides Films for Solar Water Splitting. The Journal of Physical Chemistry C 2016, 120 (14) , 7482-7490.
  22. Ahmad W. Amer, Mostafa A. El-Sayed, and Nageh K. Allam . Tuning The Photoactivity of Zirconia Nanotubes-Based Photoanodes via Ultrathin Layers of ZrN: An Effective Approach toward Visible-Light Water Splitting. The Journal of Physical Chemistry C 2016, 120 (13) , 7025-7032.
  23. Jean-François Boily, Merve Yeşilbaş, Munshi Md. Musleh Uddin, Lu Baiqing, Yulia Trushkina, and Germàn Salazar-Alvarez . Thin Water Films at Multifaceted Hematite Particle Surfaces. Langmuir 2015, 31 (48) , 13127-13137.
  24. Erno Kemppainen, Janne Halme, and Peter Lund . Physical Modeling of Photoelectrochemical Hydrogen Production Devices. The Journal of Physical Chemistry C 2015, 119 (38) , 21747-21766.
  25. Xianglin Li, Prince Saurabh Bassi, Pablo P. Boix, Yanan Fang, and Lydia Helena Wong . Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (31) , 16960-16966.
  26. Carlos G. Morales-Guio, Matthew T. Mayer, Aswani Yella, S. David Tilley, Michael Grätzel, and Xile Hu . An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting. Journal of the American Chemical Society 2015, 137 (31) , 9927-9936.
  27. Jason R. Avila, Dong Wook Kim, Martino Rimoldi, Omar K. Farha, and Joseph T. Hupp . Fabrication of Thin Films of α-Fe2O3 via Atomic Layer Deposition Using Iron Bisamidinate and Water under Mild Growth Conditions. ACS Applied Materials & Interfaces 2015, 7 (30) , 16138-16142.
  28. Degao Wang, Huaican Chen, Guoliang Chang, Xiao Lin, Yuying Zhang, Ali Aldalbahi, Cheng Peng, Jianqiang Wang, and Chunhai Fan . Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (25) , 14072-14078.
  29. Michael E. A Warwick, Kimmo Kaunisto, Davide Barreca, Giorgio Carraro, Alberto Gasparotto, Chiara Maccato, Elza Bontempi, Cinzia Sada, Tero-Petri Ruoko, Stuart Turner, and Gustaaf Van Tendeloo . Vapor Phase Processing of α-Fe2O3 Photoelectrodes for Water Splitting: An Insight into the Structure/Property Interplay. ACS Applied Materials & Interfaces 2015, 7 (16) , 8667-8676.
  30. K. Shimizu and J.-F. Boily . Electrochemical Signatures of Crystallographic Orientation and Counterion Binding at the Hematite/Water Interface. The Journal of Physical Chemistry C 2015, 119 (11) , 5988-5994.
  31. Pravin S. Shinde, Alagappan Annamalai, Jae Young Kim, Sun Hee Choi, Jae Sung Lee, and Jum Suk Jang . Fine-Tuning Pulse Reverse Electrodeposition for Enhanced Photoelectrochemical Water Oxidation Performance of α-Fe2O3 Photoanodes. The Journal of Physical Chemistry C 2015, 119 (10) , 5281-5292.
  32. Katie L. Pickrahn, Aaron Garg, and Stacey F. Bent . ALD of Ultrathin Ternary Oxide Electrocatalysts for Water Splitting. ACS Catalysis 2015, 5 (3) , 1609-1616.
  33. Anthony J. Abel, Ivan Garcia-Torregrosa, Anjli M. Patel, Borirak Opasanont, and Jason B. Baxter . SILAR-Deposited Hematite Films for Photoelectrochemical Water Splitting: Effects of Sn, Ti, Thickness, and Nanostructuring. The Journal of Physical Chemistry C 2015, 119 (9) , 4454-4465.
  34. S. Chatman, P. Zarzycki, and K. M. Rosso . Spontaneous Water Oxidation at Hematite (α-Fe2O3) Crystal Faces. ACS Applied Materials & Interfaces 2015, 7 (3) , 1550-1559.
  35. Bin Huang, Wenjuan Yang, Yanwei Wen, Bin Shan, and Rong Chen . Co3O4-Modified TiO2 Nanotube Arrays via Atomic Layer Deposition for Improved Visible-Light Photoelectrochemical Performance. ACS Applied Materials & Interfaces 2015, 7 (1) , 422-431.
  36. Dong Wook Kim, Shannon C. Riha, Erica J. DeMarco, Alex B. F. Martinson, Omar K. Farha, and Joseph T. Hupp . Greenlighting Photoelectrochemical Oxidation of Water by Iron Oxide. ACS Nano 2014, 8 (12) , 12199-12207.
  37. Ming Meng, Xinglong Wu, Xiaobin Zhu, Lun Yang, Zhixing Gan, Xiaoshu Zhu, Lizhe Liu, and Paul K. Chu . Cubic In2O3 Microparticles for Efficient Photoelectrochemical Oxygen Evolution. The Journal of Physical Chemistry Letters 2014, 5 (24) , 4298-4304.
  38. Maytal Caspary Toroker . Theoretical Insights into the Mechanism of Water Oxidation on Nonstoichiometric and Titanium-Doped Fe2O3(0001). The Journal of Physical Chemistry C 2014, 118 (40) , 23162-23167.
  39. Xiaogang Yang, Rui Liu, Chun Du, Pengcheng Dai, Zhi Zheng, and Dunwei Wang . Improving Hematite-based Photoelectrochemical Water Splitting with Ultrathin TiO2 by Atomic Layer Deposition. ACS Applied Materials & Interfaces 2014, 6 (15) , 12005-12011.
  40. Sarath Ramadurgam, Tzu-Ging Lin, and Chen Yang . Aluminum Plasmonics for Enhanced Visible Light Absorption and High Efficiency Water Splitting in Core–Multishell Nanowire Photoelectrodes with Ultrathin Hematite Shells. Nano Letters 2014, 14 (8) , 4517-4522.
  41. Naghmehalsadat Mirbagheri, Degao Wang, Cheng Peng, Jianqiang Wang, Qing Huang, Chunhai Fan, and Elena E. Ferapontova . Visible Light Driven Photoelectrochemical Water Oxidation by Zn- and Ti-Doped Hematite Nanostructures. ACS Catalysis 2014, 4 (6) , 2006-2015.
  42. Benjamin Klahr and Thomas Hamann . Water Oxidation on Hematite Photoelectrodes: Insight into the Nature of Surface States through In Situ Spectroelectrochemistry. The Journal of Physical Chemistry C 2014, 118 (19) , 10393-10399.
  43. Jinhui Yang, Karl Walczak, Eitan Anzenberg, Francesca M. Toma, Guangbi Yuan, Jeffrey Beeman, Adam Schwartzberg, Yongjing Lin, Mark Hettick, Ali Javey, Joel W. Ager, Junko Yano, Heinz Frei, and Ian D. Sharp . Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society 2014, 136 (17) , 6191-6194.
  44. Mahmud Diab and Taleb Mokari . Thermal Decomposition Approach for the Formation of α-Fe2O3 Mesoporous Photoanodes and an α-Fe2O3/CoO Hybrid Structure for Enhanced Water Oxidation. Inorganic Chemistry 2014, 53 (4) , 2304-2309.
  45. Maxime Rioult, Hélène Magnan, Dana Stanescu, and Antoine Barbier . Single Crystalline Hematite Films for Solar Water Splitting: Ti-Doping and Thickness Effects. The Journal of Physical Chemistry C 2014, 118 (6) , 3007-3014.
  46. Chong Liu, Neil P. Dasgupta, and Peidong Yang . Semiconductor Nanowires for Artificial Photosynthesis. Chemistry of Materials 2014, 26 (1) , 415-422.
  47. Kevin Sivula . Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. The Journal of Physical Chemistry Letters 2013, 4 (10) , 1624-1633.
  48. Luca Bertoluzzi, Laura Badia-Bou, Francisco Fabregat-Santiago, Sixto Gimenez, and Juan Bisquert . Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. The Journal of Physical Chemistry Letters 2013, 4 (8) , 1334-1339.
  49. Xiaokang Wan, Yunbo Xu, Xianyun Wang, Xiangjiu Guan, Yanming Fu, Chao Hu, Haowei Hu, Nai Rong. Atomic layer deposition assisted surface passivation on bismuth vanadate photoanodes for enhanced solar water oxidation. Applied Surface Science 2022, 573 , 151492.
  50. Jan Plutnar, Martin Pumera. Applications of Atomic Layer Deposition in Design of Systems for Energy Conversion. Small 2021, 17 (39) , 2102088.
  51. Uday Dadwal, Rajendra Singh. Silicon-Silver Dendritic Nanostructures Enabled Photoelectrochemical Solar Water Splitting for Energy Applications. 2021,,
  52. Maged N. Shaddad, Prabhakarn Arunachalam, Mahmoud Hezam, Norah M. AL-Saeedan, Sixto Gimenez, Juan Bisquert, Abdullah M. Al-Mayouf. Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy 2021, 46 (46) , 23702-23714.
  53. Nadiia Pastukhova, Andraž Mavrič, Yanbo Li. Atomic Layer Deposition for the Photoelectrochemical Applications. Advanced Materials Interfaces 2021, 8 (7) , 2002100.
  54. Rui Tang, Shujie Zhou, Zhenyu Zhang, Rongkun Zheng, Jun Huang. Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Advanced Materials 2021, 33 (17) , 2005389.
  55. K. Knemeyer, R. Baumgarten, P. Ingale, R. Naumann d’Alnoncourt, M. Driess, F. Rosowski. Toolbox for atomic layer deposition process development on high surface area powders. Review of Scientific Instruments 2021, 92 (2) , 025115.
  56. Michaela Lammel, Kevin Geishendorf, Marisa A. Choffel, Danielle M. Hamann, David C. Johnson, Kornelius Nielsch, Andy Thomas. Fast Fourier transform and multi-Gaussian fitting of XRR data to determine the thickness of ALD grown thin films within the initial growth regime. Applied Physics Letters 2020, 117 (21) , 213106.
  57. Dana Stanescu, Mekan Piriyev, Victoria Villard, Cristian Mocuta, Adrien Besson, Dris Ihiawakrim, Ovidiu Ersen, Jocelyne Leroy, Sorin G. Chiuzbaian, Adam P. Hitchcock, Stefan Stanescu. Characterizing surface states in hematite nanorod photoanodes, both beneficial and detrimental to solar water splitting efficiency. Journal of Materials Chemistry A 2020, 8 (39) , 20513-20530.
  58. Marjan Saeidi, Amin Yourdkhani, Seyed Ali Seyed Ebrahimi, Reza Poursalehi. Candle flame-treatment as an effective strategy to enhance the photoelectrochemical properties of Ti-doped hematite thin films. Journal of Materials Chemistry C 2020, 8 (34) , 11950-11961.
  59. Aizhen Liao, Huichao He, Yong Zhou, Zhigang Zou. Typical strategies to facilitate charge transfer for enhanced oxygen evolution reaction: Case studies on hematite. Journal of Semiconductors 2020, 41 (9) , 091709.
  60. Kristian Knemeyer, Mar Piernavieja Hermida, Piyush Ingale, Johannes Schmidt, Jutta Kröhnert, Raoul Naumann d’Alnoncourt, Matthias Driess, Frank Rosowski. Mechanistic studies of atomic layer deposition on oxidation catalysts – AlO x and PO x deposition. Physical Chemistry Chemical Physics 2020, 22 (32) , 17999-18006.
  61. Qingsong Zhang, Yang Xiao, Yiming Li, Kaiyuan Zhao, Huifang Deng, Yongbing Lou, Jinxi Chen, Hui Yu, Lin Cheng. Efficient photocatalytic overall water splitting by synergistically enhancing bulk charge separation and surface reaction kinetics in Co3O4–decorated [email protected] core-shell structures. Chemical Engineering Journal 2020, 393 , 124681.
  62. Xiangyan Chen, Yanming Fu, Liu Hong, Tingting Kong, Xiaobo Shi, Guangxu Wang, Le Qu, Shaohua Shen. Interface and surface engineering of hematite photoanode for efficient solar water oxidation. The Journal of Chemical Physics 2020, 152 (24) , 244707.
  63. Hefeng Zhang, Yong Zhao, Huiyan Zhang, Haichuan Zhou, Hong Wang, Xu Zong, Heng Yin, Can Li. Establishing inorganic-biological hybrid photoelectrochemical platform towards sustainable conversion of α-chitin. Applied Catalysis B: Environmental 2020, 265 , 118558.
  64. Š. Kment, K. Sivula, A. Naldoni, S.P. Sarmah, H. Kmentová, M. Kulkarni, Y. Rambabu, P. Schmuki, R. Zbořil. FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science 2020, 110 , 100632.
  65. Sarang Kim, Mahadeo A. Mahadik, Weon-Sik Chae, Jungho Ryu, Sun Hee Choi, Jum Suk Jang. Synthesis of transparent Zr-doped ZnFe2O4 nanocorals photoanode and its surface modification via Al2O3/Co–Pi for efficient solar water splitting. Applied Surface Science 2020, 513 , 145528.
  66. Yaejin Hong, Seung-Hwan Jeon, Hyukhyun Ryu, Won-Jae Lee. Effects of Growth Temperature on the Physicochemical and Photoelectrochemical Properties of a Modified Chemical Bath Deposited Fe2O3 Photoelectrode. Korean Journal of Metals and Materials 2020, 58 (4) , 263-271.
  67. Waleed M.A. El Rouby, Manuel Antuch, Sheng-Mu You, Pierre Millet. Surface sensitization of TiO2 nanorod mats by electrodeposition of ZIF-67 for water photo-oxidation. Electrochimica Acta 2020, 339 , 135882.
  68. Xun Cui, Sheng Lei, Aurelia Chi Wang, Likun Gao, Qing Zhang, Yingkui Yang, Zhiqun Lin. Emerging covalent organic frameworks tailored materials for electrocatalysis. Nano Energy 2020, 70 , 104525.
  69. Amr A. Nada, Waleed M.A. El Rouby, Maged F. Bekheet, Manuel Antuch, Matthieu Weber, Philippe Miele, Roman Viter, Stéphanie Roualdes, Pierre Millet, Mikhael Bechelany. Highly textured boron/nitrogen co-doped TiO2 with honeycomb structure showing enhanced visible-light photoelectrocatalytic activity. Applied Surface Science 2020, 505 , 144419.
  70. Fusheng Li, Ziqi Zhao, Hao Yang, Dinghua Zhou, Yilong Zhao, Yingzheng Li, Wenlong Li, Xiujuan Wu, Peili Zhang, Licheng Sun. Electrochemical and photoelectrochemical water splitting with a CoO x catalyst prepared by flame assisted deposition. Dalton Transactions 2020, 49 (3) , 588-592.
  71. Yanming Fu, Ying-Rui Lu, Feng Ren, Zhuo Xing, Jie Chen, Penghui Guo, Way-Faung Pong, Chung-Li Dong, Liang Zhao, Shaohua Shen. Surface Electronic Structure Reconfiguration of Hematite Nanorods for Efficient Photoanodic Water Oxidation. Solar RRL 2020, 4 (1) , 1900349.
  72. Yanming Fu, Chung-Li Dong, Wu Zhou, Ying-Rui Lu, Yu-Cheng Huang, Ya Liu, Penghui Guo, Liang Zhao, Wu-Ching Chou, Shaohua Shen. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Applied Catalysis B: Environmental 2020, 260 , 118206.
  73. Halimeh-Sadat Sajjadizadeh, Elaheh K. Goharshadi, Hossein Ahmadzadeh. Photoelectrochemical water splitting by engineered multilayer TiO2/GQDs photoanode with cascade charge transfer structure. International Journal of Hydrogen Energy 2020, 45 (1) , 123-134.
  74. C.B. Nelson, H. Fang. Tight binding model of induced band shift in CoO nanoparticles. Canadian Journal of Physics 2020, 98 (1) , 39-44.
  75. W.M.A. El Rouby, M. Antuch, S.-M. You, P. Beaunier, P. Millet. Novel nano-architectured water splitting photoanodes based on TiO2-nanorod mats surface sensitized by ZIF-67 coatings. International Journal of Hydrogen Energy 2019, 44 (59) , 30949-30964.
  76. Guangwei Zheng, Jinshu Wang, Hu Liu, Vignesh Murugadoss, Guannan Zu, Haibing Che, Chen Lai, Hongyi Li, Tao Ding, Qiang Gao, Zhanhu Guo. Tungsten oxide nanostructures and nanocomposites for photoelectrochemical water splitting. Nanoscale 2019, 11 (41) , 18968-18994.
  77. PengYi Tang, Jordi Arbiol. Engineering surface states of hematite based photoanodes for boosting photoelectrochemical water splitting. Nanoscale Horizons 2019, 4 (6) , 1256-1276.
  78. Zhongyuan Zhou, Shaolong Wu, Chenhong Xiao, Liujing Li, Weijia Shao, Hao Ding, Long Wen, Xiaofeng Li. Self-improvement of solar water oxidation for the continuously-irradiated hematite photoanode. Dalton Transactions 2019, 48 (40) , 15151-15159.
  79. Linfeng Pan, Nick Vlachopoulos, Anders Hagfeldt. Directly Photoexcited Oxides for Photoelectrochemical Water Splitting. ChemSusChem 2019, 12 (19) , 4337-4352.
  80. Wooseok Yang, Rajiv Ramanujam Prabhakar, Jeiwan Tan, S. David Tilley, Jooho Moon. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews 2019, 48 (19) , 4979-5015.
  81. Yumin He, Srinivas Vanka, Tianyue Gao, Da He, Jeremy Espano, Yanyan Zhao, Qi Dong, Chaochao Lang, Yongjie Wang, Thomas W. Hamann, Zetian Mi, Dunwei Wang. Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Research 2019, 12 (9) , 2378-2384.
  82. Asako Taniguchi, Takaaki Taniguchi, Hajime Wagata, Ken-ichi Katsumata, Kiyoshi Okada, Nobuhiro Matsushita. Liquid-phase atomic layer deposition of crystalline hematite without post-growth annealing. CrystEngComm 2019, 21 (28) , 4184-4191.
  83. Alexander N. Bondarchuk, Iván Corrales-Mendoza, Sergio A. Tomás, Frank Marken. A hematite photoelectrode grown on porous and conductive SnO2 ceramics for solar-driven water splitting. International Journal of Hydrogen Energy 2019, 44 (36) , 19667-19675.
  84. Yasser GadelHak, Waleed M.A. El Rouby, Ahmed A. Farghali. Au-decorated 3D/1D titanium dioxide flower-like/rod bilayers for photoelectrochemical water oxidation. Electrochimica Acta 2019, 306 , 185-197.
  85. Jun Hu, Shuo Zhao, Xin Zhao, Zhong Chen. Strategies of Anode Materials Design towards Improved Photoelectrochemical Water Splitting Efficiency. Coatings 2019, 9 (5) , 309.
  86. Yumin He, Thomas Hamann, Dunwei Wang. Thin film photoelectrodes for solar water splitting. Chemical Society Reviews 2019, 48 (7) , 2182-2215.
  87. M. Antuch, W.M.A. El Rouby, P. Millet. A comparison of water photo-oxidation and photo-reduction using photoelectrodes surface-modified by deposition of co-catalysts: Insights from photo-electrochemical impedance spectroscopy. International Journal of Hydrogen Energy 2019, 44 (20) , 9970-9977.
  88. Laurent Liardet, Jordan E. Katz, Jingshan Luo, Michael Grätzel, Xile Hu. An ultrathin cobalt–iron oxide catalyst for water oxidation on nanostructured hematite photoanodes. Journal of Materials Chemistry A 2019, 7 (11) , 6012-6020.
  89. Xiaohu Cao, Yifan Wang, Junqi Lin, Yong Ding. Ultrathin CoO x nanolayers derived from polyoxometalate for enhanced photoelectrochemical performance of hematite photoanodes. Journal of Materials Chemistry A 2019, 7 (11) , 6294-6303.
  90. Sha-Sha Yi, Ba-Ri Wulan, Jun-Min Yan, Qing Jiang. Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobalt-Phosphate-Loaded Co 3 O 4 /Fe 2 O 3 p-n Heterojunction Nanorod Arrays. Advanced Functional Materials 2019, 29 (11) , 1801902.
  91. Vijay S. Sapner, Balaji B. Mulik, Renuka V. Digraskar, Shankar S. Narwade, Bhaskar R. Sathe. Enhanced oxygen evolution reaction on amine functionalized graphene oxide in alkaline medium. RSC Advances 2019, 9 (12) , 6444-6451.
  92. Jiajia Cai, Song Li, Gaowu Qin. Interface engineering of Co3O4 loaded CaFe2O4/Fe2O3 heterojunction for photoelectrochemical water oxidation. Applied Surface Science 2019, 466 , 92-98.
  93. Chunmei Li, Zhihui Chen, Weiyong Yuan, Qing-Hua Xu, Chang Ming Li. In situ growth of α-Fe 2 O 3 @Co 3 O 4 core–shell wormlike nanoarrays for a highly efficient photoelectrochemical water oxidation reaction. Nanoscale 2019, 11 (3) , 1111-1122.
  94. Pankaj Sharma, Ji‐Wook Jang, Jae Sung Lee. Key Strategies to Advance the Photoelectrochemical Water Splitting Performance of α‐Fe 2 O 3 Photoanode. ChemCatChem 2019, 11 (1) , 157-179.
  95. V. Di Palma, G. Zafeiropoulos, T. Goldsweer, W.M.M. Kessels, M.C.M. van de Sanden, M. Creatore, M.N. Tsampas. Atomic layer deposition of cobalt phosphate thin films for the oxygen evolution reaction. Electrochemistry Communications 2019, 98 , 73-77.
  96. Kristjan Kalam, Helina Seemen, Mats Mikkor, Taivo Jõgiaas, Peeter Ritslaid, Aile Tamm, Kaupo Kukli, Aarne Kasikov, Joosep Link, Raivo Stern, Salvador Dueñas, Helena Castán. Electrical and magnetic properties of atomic layer deposited cobalt oxide and zirconium oxide nanolaminates. Thin Solid Films 2019, 669 , 294-300.
  97. Tianyu Liu, Martina Morelli, Yat Li. Hematite Materials for Solar-Driven Photoelectrochemical Cells. 2018,,, 159-218.
  98. Alexander G. Hufnagel, Hamidreza Hajiyani, Siyuan Zhang, Tong Li, Olga Kasian, Baptiste Gault, Benjamin Breitbach, Thomas Bein, Dina Fattakhova-Rohlfing, Christina Scheu, Rossitza Pentcheva. Why Tin-Doping Enhances the Efficiency of Hematite Photoanodes for Water Splitting-The Full Picture. Advanced Functional Materials 2018, 28 (52) , 1804472.
  99. Yujin Han, Keunsu Choi, Hyeonmyeong Oh, Chanseok Kim, Dasom Jeon, Cheolmin Lee, Jun Hee Lee, Jungki Ryu. Cobalt polyoxometalate-derived CoWO4 oxygen-evolving catalysts for efficient electrochemical and photoelectrochemical water oxidation. Journal of Catalysis 2018, 367 , 212-220.
  100. Guanyu Liu, Siva Krishna Karuturi, Hongjun Chen, Leone Spiccia, Hark Hoe Tan, Chennupati Jagadish, Dunwei Wang, Alexandr N. Simonov, Antonio Tricoli. Tuning the morphology and structure of disordered hematite photoanodes for improved water oxidation: A physical and chemical synergistic approach. Nano Energy 2018, 53 , 745-752.
Load more citations