Removal of Thiol Ligands from Surface-Confined Nanoparticles without Particle Growth or Desorption

View Author Information
Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
*Address correspondence to [email protected]
Cite this: ACS Nano 2015, 9, 3, 3050–3059
Publication Date (Web):March 1, 2015
https://doi.org/10.1021/nn5072528
Copyright © 2015 American Chemical Society
Article Views
2701
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Size-dependent properties of surface-confined inorganic nanostructures are of interest for applications ranging from sensing to catalysis and energy production. Ligand-stabilized nanoparticles are attractive precursors for producing such nanostructures because the stabilizing ligands may be used to direct assembly of thoroughly characterized nanoparticles on the surface. Upon assembly; however, the ligands block the active surface of the nanoparticle. Methods used to remove these ligands typically result in release of nanoparticles from the surface or cause undesired growth of the nanoparticle core. Here, we demonstrate that mild chemical oxidation (50 ppm of ozone in nitrogen) oxidizes the thiolate headgroups, lowering the ligand’s affinity for the gold nanoparticle surface and permitting the removal of the ligands at room temperature by rinsing with water. XPS and TEM measurements, performed using a custom planar analysis platform that permits detailed imaging and chemical analysis, provide insight into the mechanism of ligand removal and show that the particles retain their core size and remain tethered on the surface core during treatment. By varying the ozone exposure time, it is possible to control the amount of ligand removed. Catalytic carbon monoxide oxidation was used as a functional assay to demonstrate ligand removal from the gold surface for nanoparticles assembled on a high surface area support (fumed silica).

Supporting Information

ARTICLE SECTIONS
Jump To

Representative TEM micrographs of AuNPs during ozone treatment, additional XPS data with oxidized to reduced sulfur ratios throughout ligand removal and ligand shell restoration, and data demonstrating background removal from the S2p region. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 54 publications.

  1. Shuangyue Wang, Jing-Kai Huang, Mengyao Li, Ashraful Azam, Xiaotao Zu, Liang Qiao, Jack Yang, Sean Li. Growth of High-Quality Monolayer Transition Metal Dichalcogenide Nanocrystals by Chemical Vapor Deposition and Their Photoluminescence and Electrocatalytic Properties. ACS Applied Materials & Interfaces 2021, 13 (40) , 47962-47971. https://doi.org/10.1021/acsami.1c14136
  2. Houssein O. Nasrallah, Yuanyuan Min, Emmanuel Lerayer, Tuan-Anh Nguyen, Didier Poinsot, Julien Roger, Stéphane Brandès, Olivier Heintz, Pierre Roblin, Franck Jolibois, Romuald Poteau, Yannick Coppel, Myrtil L. Kahn, Iann C. Gerber, M. Rosa Axet, Philippe Serp, Jean-Cyrille Hierso. Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks. JACS Au 2021, 1 (2) , 187-200. https://doi.org/10.1021/jacsau.0c00062
  3. Yannick T. Guntern, Valery Okatenko, James Pankhurst, Seyedeh Behnaz Varandili, Pranit Iyengar, Cedric Koolen, Dragos Stoian, Jan Vavra, Raffaella Buonsanti. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis 2021, 11 (3) , 1248-1295. https://doi.org/10.1021/acscatal.0c04403
  4. Badri P. Mainali, Dhruba K. Pattadar, Francis P. Zamborini. Reverse Size-Dependent Electrooxidation of Gold Nanoparticles Coated with Alkanethiol Self-Assembled Monolayers. The Journal of Physical Chemistry C 2021, 125 (4) , 2719-2728. https://doi.org/10.1021/acs.jpcc.0c10173
  5. Christopher M. Nguyen, Laysa M. Frias Batista, Mallory G. John, Collin J. Rodrigues, Katharine Moore Tibbetts. Mechanism of Gold–Silver Alloy Nanoparticle Formation by Laser Coreduction of Gold and Silver Ions in Solution. The Journal of Physical Chemistry B 2021, 125 (3) , 907-917. https://doi.org/10.1021/acs.jpcb.0c10096
  6. Sarah Neumann, Hans Hannes Doebler, Simona Keil, Alexandra J. Erdt, Christian Gutsche, Holger Borchert, Joanna Kolny-Olesiak, Jürgen Parisi, Marcus Bäumer, Sebastian Kunz. Effects of Particle Size on Strong Metal–Support Interactions Using Colloidal “Surfactant-Free” Pt Nanoparticles Supported on Fe3O4. ACS Catalysis 2020, 10 (7) , 4136-4150. https://doi.org/10.1021/acscatal.9b04367
  7. Dhruba K. Pattadar, Francis P. Zamborini. Effect of Size, Coverage, and Dispersity on the Potential-Controlled Ostwald Ripening of Metal Nanoparticles. Langmuir 2019, 35 (50) , 16416-16426. https://doi.org/10.1021/acs.langmuir.9b02421
  8. Zhongyue Luan, Trenton Salk, Alex Abelson, Stephanie Jean, Matt Law. Reversible Aggregation of Covalently Cross-Linked Gold Nanocrystals by Linker Oxidation. The Journal of Physical Chemistry C 2019, 123 (38) , 23643-23654. https://doi.org/10.1021/acs.jpcc.9b06976
  9. Qingquan Guo, Jingguo Li, Tiankai Chen, Qiaofeng Yao, Jianping Xie. Antimicrobial Thin-Film Composite Membranes with Chemically Decorated Ultrasmall Silver Nanoclusters. ACS Sustainable Chemistry & Engineering 2019, 7 (17) , 14848-14855. https://doi.org/10.1021/acssuschemeng.9b02929
  10. Laysa M. Frias Batista, Victoria Kathryn Meader, Katherine Romero, Karli Kunzler, Fariha Kabir, Amazin Bullock, Katharine Moore Tibbetts. Kinetic Control of [AuCl4]− Photochemical Reduction and Gold Nanoparticle Size with Hydroxyl Radical Scavengers. The Journal of Physical Chemistry B 2019, 123 (33) , 7204-7213. https://doi.org/10.1021/acs.jpcb.9b04643
  11. Samantha L. Young, James E. Hutchison. Selective Deposition of Metals onto Molecularly Tethered Gold Nanoparticles: The Influence of Silver Deposition on Oxygen Electroreduction. Chemistry of Materials 2019, 31 (8) , 2750-2761. https://doi.org/10.1021/acs.chemmater.8b04841
  12. Dhruba K. Pattadar, Francis P. Zamborini. Size Stability Study of Catalytically Active Sub-2 nm Diameter Gold Nanoparticles Synthesized with Weak Stabilizers. Journal of the American Chemical Society 2018, 140 (43) , 14126-14133. https://doi.org/10.1021/jacs.8b06830
  13. Santosh Shaw, Xinchun Tian, Tiago F. Silva, Jonathan M. Bobbitt, Fabian Naab, Cleber L. Rodrigues, Emily A. Smith, Ludovico Cademartiri. Selective Removal of Ligands from Colloidal Nanocrystal Assemblies with Non-Oxidizing He Plasmas. Chemistry of Materials 2018, 30 (17) , 5961-5967. https://doi.org/10.1021/acs.chemmater.8b02095
  14. Jay N. Sharma, Dhruba K. Pattadar, Badri P. Mainali, Francis P. Zamborini. Size Determination of Metal Nanoparticles Based on Electrochemically Measured Surface-Area-to-Volume Ratios. Analytical Chemistry 2018, 90 (15) , 9308-9314. https://doi.org/10.1021/acs.analchem.8b01905
  15. Feng Zhu, Noreen E. Gentry, Long Men, Miles A. White, Javier Vela. Aliovalent Doping of Lead Halide Perovskites: Exploring the CH3NH3PbI3–(CH3NH3)3Sb2I9 Nanocrystalline Phase Space. The Journal of Physical Chemistry C 2018, 122 (25) , 14082-14090. https://doi.org/10.1021/acs.jpcc.8b01191
  16. Andrew W. Cook, Zachary R. Jones, Guang Wu, Susannah L. Scott, and Trevor W. Hayton . An Organometallic Cu20 Nanocluster: Synthesis, Characterization, Immobilization on Silica, and “Click” Chemistry. Journal of the American Chemical Society 2018, 140 (1) , 394-400. https://doi.org/10.1021/jacs.7b10960
  17. Young Shin Cho, Soo Min Kim, Youngwon Ju, Junghoon Kim, Ki-Wan Jeon, Seung Hwan Cho, Joohoon Kim, and In Su Lee . Spontaneous Pt Deposition on Defective Surfaces of In2O3 Nanocrystals Confined within Cavities of Hollow Silica Nanoshells: Pt Catalyst-Modified ITO Electrode with Enhanced ECL Performance. ACS Applied Materials & Interfaces 2017, 9 (24) , 20728-20737. https://doi.org/10.1021/acsami.7b02757
  18. Wenxin Niu, Yukun Duan, Zikun Qing, Hejin Huang, and Xianmao Lu . Shaping Gold Nanocrystals in Dimethyl Sulfoxide: Toward Trapezohedral and Bipyramidal Nanocrystals Enclosed by {311} Facets. Journal of the American Chemical Society 2017, 139 (16) , 5817-5826. https://doi.org/10.1021/jacs.7b00036
  19. Wei Li, Jonathan R. Lee, and Frank Jäckel . Simultaneous Optimization of Colloidal Stability and Interfacial Charge Transfer Efficiency in Photocatalytic Pt/CdS Nanocrystals. ACS Applied Materials & Interfaces 2016, 8 (43) , 29434-29441. https://doi.org/10.1021/acsami.6b09364
  20. Samantha L. Young, Jaclyn E. Kellon, and James E. Hutchison . Small Gold Nanoparticles Interfaced to Electrodes through Molecular Linkers: A Platform to Enhance Electron Transfer and Increase Electrochemically Active Surface Area. Journal of the American Chemical Society 2016, 138 (42) , 13975-13984. https://doi.org/10.1021/jacs.6b07674
  21. Likai Wang, Zhenghua Tang, Wei Yan, Hongyu Yang, Qiannan Wang, and Shaowei Chen . Porous Carbon-Supported Gold Nanoparticles for Oxygen Reduction Reaction: Effects of Nanoparticle Size. ACS Applied Materials & Interfaces 2016, 8 (32) , 20635-20641. https://doi.org/10.1021/acsami.6b02223
  22. Weili Li, Chao Liu, Hadi Abroshan, Qingjie Ge, Xiujuan Yang, Hengyong Xu, and Gao Li . Catalytic CO Oxidation Using Bimetallic MxAu25–x Clusters: A Combined Experimental and Computational Study on Doping Effects. The Journal of Physical Chemistry C 2016, 120 (19) , 10261-10267. https://doi.org/10.1021/acs.jpcc.6b00793
  23. Chao Liu, Hadi Abroshan, Chunyang Yan, Gao Li, and Masatake Haruta . One-Pot Synthesis of Au11(PPh2Py)7Br3 for the Highly Chemoselective Hydrogenation of Nitrobenzaldehyde. ACS Catalysis 2016, 6 (1) , 92-99. https://doi.org/10.1021/acscatal.5b02116
  24. Matteo Cargnello, Chen Chen, Benjamin T. Diroll, Vicky V. T. Doan-Nguyen, Raymond J. Gorte, and Christopher B. Murray . Efficient Removal of Organic Ligands from Supported Nanocrystals by Fast Thermal Annealing Enables Catalytic Studies on Well-Defined Active Phases. Journal of the American Chemical Society 2015, 137 (21) , 6906-6911. https://doi.org/10.1021/jacs.5b03333
  25. Nidhi Kapil, Tobias Weissenberger, Fabio Cardinale, Panagiotis Trogadas, T. Alexander Nijhuis, Michael M. Nigra, Marc‐Olivier Coppens. Precisely Engineered Supported Gold Clusters as a Stable Catalyst for Propylene Epoxidation. Angewandte Chemie International Edition 2021, 60 (33) , 18185-18193. https://doi.org/10.1002/anie.202104952
  26. Nidhi Kapil, Tobias Weissenberger, Fabio Cardinale, Panagiotis Trogadas, T. Alexander Nijhuis, Michael M. Nigra, Marc‐Olivier Coppens. Precisely Engineered Supported Gold Clusters as a Stable Catalyst for Propylene Epoxidation. Angewandte Chemie 2021, 133 (33) , 18333-18341. https://doi.org/10.1002/ange.202104952
  27. Xiao-An Wang, Wei Shen, Binbin Zhou, Daoyang Yu, Xianghu Tang, Jinhuai Liu, Xingjiu Huang. The rationality of using core – shell nanoparticles with embedded internal standards for SERS quantitative analysis based glycerol-assisted 3D hotspots platform. RSC Advances 2021, 11 (33) , 20326-20334. https://doi.org/10.1039/D1RA01957K
  28. Tokuhisa Kawawaki, Yuki Kataoka, Momoko Hirata, Yuki Iwamatsu, Sakiat Hossain, Yuichi Negishi. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horizons 2021, 6 (6) , 409-448. https://doi.org/10.1039/D1NH00046B
  29. Thierry K. Slot, Nathan Riley, N. Raveendran Shiju, J. Will Medlin, Gadi Rothenberg. An experimental approach for controlling confinement effects at catalyst interfaces. Chemical Science 2020, 11 (40) , 11024-11029. https://doi.org/10.1039/D0SC04118A
  30. Peter Tieu, Vincent Nguyen, Young-Seok Shon. Proximity Effects of Methyl Group on Ligand Steric Interactions and Colloidal Stability of Palladium Nanoparticles. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00599
  31. Tirtha R. Sibakoti, Jacek B. Jasinski, Michael H. Nantz, Francis P. Zamborini. Iodine activation: a general method for catalytic enhancement of thiolate monolayer-protected metal clusters. Nanoscale 2020, 12 (22) , 12027-12037. https://doi.org/10.1039/D0NR00844C
  32. Lu‐Hua Zhang, Yumeng Shi, Ye Wang, N. Raveendran Shiju. Nanocarbon Catalysts: Recent Understanding Regarding the Active Sites. Advanced Science 2020, 7 (5) , 1902126. https://doi.org/10.1002/advs.201902126
  33. Dhruba K. Pattadar, Badri P. Mainali, Jacek B. Jasinski, Francis P. Zamborini. Electrooxidation, Size Stability, and Electrocatalytic Activity of 0.9 nm Diameter Gold Nanoclusters Coated with a Weak Stabilizer. ChemElectroChem 2020, 7 (3) , 800-809. https://doi.org/10.1002/celc.201901700
  34. V. Sudheeshkumar, Kazeem O. Sulaiman, Robert W. J. Scott. Activation of atom-precise clusters for catalysis. Nanoscale Advances 2020, 2 (1) , 55-69. https://doi.org/10.1039/C9NA00549H
  35. Linyuan Tian, Yucheng Luo, Kunlin Chu, Dongjun Wu, Jianying Shi, Zhenxing Liang. A robust photocatalyst of Au 25 @[email protected] 2 -ReP with dual photoreductive sites to promote photoelectron utilization in H 2 O splitting to H 2 and CO 2 reduction to CO. Chemical Communications 2019, 55 (86) , 12976-12979. https://doi.org/10.1039/C9CC07014A
  36. Kazeem O. Sulaiman, V. Sudheeshkumar, Robert W. J. Scott. Activation of atomically precise silver clusters on carbon supports for styrene oxidation reactions. RSC Advances 2019, 9 (48) , 28019-28027. https://doi.org/10.1039/C9RA05566E
  37. Kristin Bryant, Christy Wheeler West, Steven R. Saunders. Impacts of calcination on surface-clean supported nanoparticle catalysts. Applied Catalysis A: General 2019, 579 , 58-64. https://doi.org/10.1016/j.apcata.2019.04.016
  38. Yang, Park, Kim, Kang. Low-Temperature Vapor-Phase Synthesis of Single-Crystalline Gold Nanostructures: Toward Exceptional Electrocatalytic Activity for Methanol Oxidation Reaction. Nanomaterials 2019, 9 (4) , 595. https://doi.org/10.3390/nano9040595
  39. Muhammad Ejaz Khan, Juho Lee, Seongjae Byeon, Yong‐Hoon Kim. Semimetallicity and Negative Differential Resistance from Hybrid Halide Perovskite Nanowires. Advanced Functional Materials 2019, 29 (13) , 1807620. https://doi.org/10.1002/adfm.201807620
  40. Kai Zheng, Jiangwei Zhang, Dan Zhao, Yong Yang, Zhimin Li, Gao Li. Motif-mediated Au25(SPh)5(PPh3)10X2 nanorods with conjugated electron delocalization. Nano Research 2019, 12 (3) , 501-507. https://doi.org/10.1007/s12274-018-2147-0
  41. Santosh Shaw, Tiago F. Silva, Pratyasha Mohapatra, Deyny Mendivelso-Perez, Xinchun Tian, Fabian Naab, Cleber L. Rodrigues, Emily A. Smith, Ludovico Cademartiri. On the kinetics of the removal of ligands from films of colloidal nanocrystals by plasmas. Physical Chemistry Chemical Physics 2019, 21 (3) , 1614-1622. https://doi.org/10.1039/C8CP06890A
  42. Bei Zhang, Annelies Sels, Giovanni Salassa, Stephan Pollitt, Vera Truttmann, Christoph Rameshan, Jordi Llorca, Wojciech Olszewski, Günther Rupprechter, Thomas Bürgi, Noelia Barrabés. Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolate‐protected Gold Clusters. ChemCatChem 2018, 10 (23) , 5372-5376. https://doi.org/10.1002/cctc.201801474
  43. Zheng Wang, Suttipong Wannapaiboon, Katia Rodewald, Min Tu, Bernhard Rieger, Roland A. Fischer. Directing the hetero-growth of lattice-mismatched surface-mounted metal–organic frameworks by functionalizing the interface. Journal of Materials Chemistry A 2018, 6 (43) , 21295-21303. https://doi.org/10.1039/C8TA06136J
  44. Baira Donoeva, Petra E. de Jongh. Colloidal Au Catalyst Preparation: Selective Removal of Polyvinylpyrrolidone from Active Au Sites. ChemCatChem 2018, 10 (5) , 989-997. https://doi.org/10.1002/cctc.201701760
  45. Ruixuan Qin, Pengxin Liu, Gang Fu, Nanfeng Zheng. Strategies for Stabilizing Atomically Dispersed Metal Catalysts. Small Methods 2018, 2 (1) , 1700286. https://doi.org/10.1002/smtd.201700286
  46. Liane M. Rossi, Jhonatan L. Fiorio, Marco A. S. Garcia, Camila P. Ferraz. The role and fate of capping ligands in colloidally prepared metal nanoparticle catalysts. Dalton Transactions 2018, 47 (17) , 5889-5915. https://doi.org/10.1039/C7DT04728B
  47. Zhimin Li, Weili Li, Hadi Abroshan, Qingjie Ge, Gao Li, Rongchao Jin. Dual effects of water vapor on ceria-supported gold clusters. Nanoscale 2018, 10 (14) , 6558-6565. https://doi.org/10.1039/C7NR09447G
  48. Tianyou Chen, Zhao Cheng, Changfeng Yi, Zushun Xu. Synthesis of platinum nanoparticles templated by dendrimers terminated with alkyl chains. Chemical Communications 2018, 54 (66) , 9143-9146. https://doi.org/10.1039/C8CC05106B
  49. Pratyasha Mohapatra, Santosh Shaw, Deyny Mendivelso-Perez, Jonathan M. Bobbitt, Tiago F. Silva, Fabian Naab, Bin Yuan, Xinchun Tian, Emily A. Smith, Ludovico Cademartiri. Calcination does not remove all carbon from colloidal nanocrystal assemblies. Nature Communications 2017, 8 (1) https://doi.org/10.1038/s41467-017-02267-9
  50. Zuojun Wei, Dilantha Thushara, Xinghua Li, Zuyi Zhang, Yingxin Liu, Xiuyang Lu. Ligand-controlled fabrication of core-shell PdNi bimetallic nanoparticles as a highly efficient hydrogenation catalyst. Catalysis Communications 2017, 98 , 61-65. https://doi.org/10.1016/j.catcom.2017.04.025
  51. Priscila Destro, Sergio Marras, Liberato Manna, Massimo Colombo, Daniela Zanchet. AuCu alloy nanoparticles supported on SiO2: Impact of redox pretreatments in the catalyst performance in CO oxidation. Catalysis Today 2017, 282 , 105-110. https://doi.org/10.1016/j.cattod.2016.08.003
  52. Ben Liu, Ting Jiang, Haoquan Zheng, Shanka Dissanayke, Wenqiao Song, Anthony Federico, Steven L. Suib, Jie He. Nanoengineering of aggregation-free and thermally-stable gold nanoparticles in mesoporous frameworks. Nanoscale 2017, 9 (19) , 6380-6390. https://doi.org/10.1039/C7NR01988B
  53. Indra Puspitasari, Emmanuel Skupien, Freek Kapteijn, Patricia Kooyman. Au Capping Agent Removal Using Plasma at Mild Temperature. Catalysts 2016, 6 (11) , 179. https://doi.org/10.3390/catal6110179
  54. Dawei Ding, Lei Zhang, Qikui Fan, Shujiang Ding. Assemble of high-density gold nanodots on TiO2 substrate for surface-e nhanced Raman spectroscopy. Applied Surface Science 2016, 379 , 462-466. https://doi.org/10.1016/j.apsusc.2016.04.098