Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance

View Author Information
Radiation Laboratory and Departments of Chemistry and Biochemistry, and Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556
* Address correspondence to [email protected]
Cite this: ACS Nano 2009, 3, 11, 3437–3446
Publication Date (Web):October 29, 2009
https://doi.org/10.1021/nn900897r
Copyright © 2009 American Chemical Society
Article Views
3983
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)
Supporting Info (1)»

Abstract

Cations such as H+ and Li+ are intercalated into TiO2 nanotube arrays by subjecting them to short-term electrochemical pulses at controlled potentials (<−1.0 V vs Ag/AgCl). The intercalation of these small cations has a profound effect toward enhancing photocurrent generation under UV light irradiation. A nearly three-fold increase in the photoconversion efficiency (IPCE) was observed upon intercalation of Li+ ions into TiO2 nanotube arrays. The intercalation process is visualized by the color change from gray to blue. Spectroelectrochemical measurements were carried out to monitor the absorption changes at different applied potentials. The analysis of the Voc decay following termination of UV light shows a significant decrease in the rate of recombination of accumulated electrons upon Li+ ion intercalation.

Supporting Information

ARTICLE SECTIONS
Jump To

Stability of intercalation as monitored from the absorption at 700 nm and XRD spectra are provided. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 216 publications.

  1. Ádám Balog, Gergely F. Samu, Szabolcs Pető, Csaba Janáky. The Mystery of Black TiO2: Insights from Combined Surface Science and In Situ Electrochemical Methods. ACS Materials Au 2021, 1 (2) , 157-168. https://doi.org/10.1021/acsmaterialsau.1c00020
  2. Zhongming Wang, Hong Wang, Xiaoxiao Wang, Xun Chen, Yan Yu, Wenxin Dai, Xianzhi Fu, Masakazu Anpo. Correlation between Photocorrosion of ZnO and Lattice Relaxation Induced by Its Surface Vacancies. The Journal of Physical Chemistry C 2021, 125 (5) , 3242-3255. https://doi.org/10.1021/acs.jpcc.0c11260
  3. Qian Yang, Jinyan Du, Xiaoqin Nie, Dingming Yang, Liang Bian, Long Yang, Faqin Dong, Huichao He, Yong Zhou, Huaming Yang. Magnetic Field-Assisted Photoelectrochemical Water Splitting: The Photoelectrodes Have Weaker Nonradiative Recombination of Carrier. ACS Catalysis 2021, 11 (3) , 1242-1247. https://doi.org/10.1021/acscatal.0c05436
  4. Zhi-Quan Wei, Shuo Hou, Xin Lin, Shuai Xu, Xiao-Cheng Dai, Yue-Hua Li, Jing-Yu Li, Fang-Xing Xiao, Yi-Jun Xu. Unexpected Boosted Solar Water Oxidation by Nonconjugated Polymer-Mediated Tandem Charge Transfer. Journal of the American Chemical Society 2020, 142 (52) , 21899-21912. https://doi.org/10.1021/jacs.0c11057
  5. Sungkyun Choi, Sol A. Lee, Hyunwoo Yang, Tae Hyung Lee, Changyeon Kim, Chung Won Lee, Hyunjung Shin, Ho Won Jang. Stabilization of NiFe Layered Double Hydroxides on n-Si by an Activated TiO2 Interlayer for Efficient Solar Water Oxidation. ACS Applied Energy Materials 2020, 3 (12) , 12298-12307. https://doi.org/10.1021/acsaem.0c02355
  6. Shuo Hou, Ming-Hui Huang, Yu-Bing Li, Shuai Xu, Xin Lin, Xiao-Yan Fu, Fang-Xing Xiao. Confinement of Quantum Dots in between Monolayered Graphene Nanosheets for Arousing Boosted Multifarious Photoredox Selective Organic Transformation. Inorganic Chemistry 2020, 59 (22) , 16654-16664. https://doi.org/10.1021/acs.inorgchem.0c02643
  7. Heng Zhu, Qimeng Yang, Depei Liu, Duanduan Liu, Weining Zhang, Zijing Chu, Xiaoming Wang, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface. The Journal of Physical Chemistry Letters 2020, 11 (21) , 9184-9194. https://doi.org/10.1021/acs.jpclett.0c02291
  8. Guoan Lin, Xiaoxiang Xu. Ba-Modified LaTiO2N as an Efficient Visible Light Active Photocatalyst for Water Oxidation. ACS Sustainable Chemistry & Engineering 2020, 8 (26) , 9641-9649. https://doi.org/10.1021/acssuschemeng.0c00302
  9. Shuo Hou, Zhi-Quan Wei, Xiao-Cheng Dai, Ming-Hui Huang, Fang-Xing Xiao. General Layer-by-Layer Assembly of Multilayered Photoanodes: Triggering Tandem Charge Transport toward Photoelectrochemical Water Oxidation. Inorganic Chemistry 2020, 59 (10) , 7325-7334. https://doi.org/10.1021/acs.inorgchem.0c00780
  10. Kang-Qiang Lu, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Earth-Abundant MoS2 and Cobalt Phosphate Dual Cocatalysts on 1D CdS Nanowires for Boosting Photocatalytic Hydrogen Production. Langmuir 2019, 35 (34) , 11056-11065. https://doi.org/10.1021/acs.langmuir.9b01409
  11. Lan Yuan, Sung-Fu Hung, Zi-Rong Tang, Hao Ming Chen, Yujie Xiong, Yi-Jun Xu. Dynamic Evolution of Atomically Dispersed Cu Species for CO2 Photoreduction to Solar Fuels. ACS Catalysis 2019, 9 (6) , 4824-4833. https://doi.org/10.1021/acscatal.9b00862
  12. Hao Deng, Zi-jie Li, Lin Wang, Li-yong Yuan, Jian-hui Lan, Zhi-yuan Chang, Zhi-fang Chai, Wei-qun Shi. Nanolayered Ti3C2 and SrTiO3 Composites for Photocatalytic Reduction and Removal of Uranium(VI). ACS Applied Nano Materials 2019, 2 (4) , 2283-2294. https://doi.org/10.1021/acsanm.9b00205
  13. Ádám Balog, Gergely F. Samu, Prashant V. Kamat, Csaba Janáky. Optoelectronic Properties of CuI Photoelectrodes. The Journal of Physical Chemistry Letters 2019, 10 (2) , 259-264. https://doi.org/10.1021/acs.jpclett.8b03242
  14. Yang Ma, Na Wang, Jiang Chen, Changsong Chen, Haisheng San, Jige Chen, Zhengdong Cheng. Betavoltaic Enhancement Using Defect-Engineered TiO2 Nanotube Arrays through Electrochemical Reduction in Organic Electrolytes. ACS Applied Materials & Interfaces 2018, 10 (26) , 22174-22181. https://doi.org/10.1021/acsami.8b05151
  15. Hao Yang, Zhiliang Jin, Duanduan Liu, Kai Fan, Guorong Wang. Visible Light Harvesting and Spatial Charge Separation over the Creative Ni/CdS/Co3O4 Photocatalyst. The Journal of Physical Chemistry C 2018, 122 (19) , 10430-10441. https://doi.org/10.1021/acs.jpcc.8b01666
  16. Xiaoqin Sun, Yongli Mi, Feng Jiao, Xiaoxiang Xu. Activating Layered Perovskite Compound Sr2TiO4 via La/N Codoping for Visible Light Photocatalytic Water Splitting. ACS Catalysis 2018, 8 (4) , 3209-3221. https://doi.org/10.1021/acscatal.8b00369
  17. Yin Xu, Michael A. Melia, Lok-kun Tsui, James M. Fitz-Gerald, and Giovanni Zangari . Laser-Induced Surface Modification at Anatase TiO2 Nanotube Array Photoanodes for Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C 2017, 121 (32) , 17121-17128. https://doi.org/10.1021/acs.jpcc.7b05368
  18. Yee-Seul Kim, Sébastien Kriegel, Kenneth D. Harris, Cyrille Costentin, Benoît Limoges, and Véronique Balland . Evidencing Fast, Massive, and Reversible H+ Insertion in Nanostructured TiO2 Electrodes at Neutral pH. Where Do Protons Come From?. The Journal of Physical Chemistry C 2017, 121 (19) , 10325-10335. https://doi.org/10.1021/acs.jpcc.7b02395
  19. Jesús Idígoras, Juan A. Anta, and Thomas Berger . Charge-Transfer Reductive in Situ Doping of Mesoporous TiO2 Photoelectrodes: Impact of Electrolyte Composition and Film Morphology. The Journal of Physical Chemistry C 2016, 120 (49) , 27882-27894. https://doi.org/10.1021/acs.jpcc.6b09926
  20. Juan M. Jiménez, Gilles R. Bourret, Thomas Berger, and Keith P. McKenna . Modification of Charge Trapping at Particle/Particle Interfaces by Electrochemical Hydrogen Doping of Nanocrystalline TiO2. Journal of the American Chemical Society 2016, 138 (49) , 15956-15964. https://doi.org/10.1021/jacs.6b08636
  21. Yanmei Xin, Zhenzhen Li, Wenlong Wu, Baihe Fu, and Zhonghai Zhang . Pyrite FeS2 Sensitized TiO2 Nanotube Photoanode for Boosting Near-Infrared Light Photoelectrochemical Water Splitting. ACS Sustainable Chemistry & Engineering 2016, 4 (12) , 6659-6667. https://doi.org/10.1021/acssuschemeng.6b01533
  22. Hong Dai, Shupei Zhang, Zhensheng Hong, and Yanyu Lin . A Potentiometric Addressable Photoelectrochemical Biosensor for Sensitive Detection of Two Biomarkers. Analytical Chemistry 2016, 88 (19) , 9532-9538. https://doi.org/10.1021/acs.analchem.6b02101
  23. Chao Peng, Xianfeng Yang, Yuhang Li, Hao Yu, Hongjuan Wang, and Feng Peng . Hybrids of Two-Dimensional Ti3C2 and TiO2 Exposing {001} Facets toward Enhanced Photocatalytic Activity. ACS Applied Materials & Interfaces 2016, 8 (9) , 6051-6060. https://doi.org/10.1021/acsami.5b11973
  24. Fang-Xing Xiao, Zhiping Zeng, and Bin Liu . Bridging the Gap: Electron Relay and Plasmonic Sensitization of Metal Nanocrystals for Metal Clusters. Journal of the American Chemical Society 2015, 137 (33) , 10735-10744. https://doi.org/10.1021/jacs.5b06323
  25. Ganganahalli K. Ramesha, Joan F. Brennecke, and Prashant V. Kamat . Origin of Catalytic Effect in the Reduction of CO2 at Nanostructured TiO2 Films. ACS Catalysis 2014, 4 (9) , 3249-3254. https://doi.org/10.1021/cs500730w
  26. Zhenyu Guo, Oleg V. Prezhdo, Tingjun Hou, Xue Chen, Shuit-Tong Lee, and Youyong Li . Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. The Journal of Physical Chemistry Letters 2014, 5 (10) , 1642-1647. https://doi.org/10.1021/jz500565v
  27. Zhonghai Zhang, Xiulin Yang, Mohamed Nejib Hedhili, Elaf Ahmed, Le Shi, and Peng Wang . Microwave-Assisted Self-Doping of TiO2 Photonic Crystals for Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2014, 6 (1) , 691-696. https://doi.org/10.1021/am404848n
  28. Fritz J. Knorr and Jeanne L. McHale . Spectroelectrochemical Photoluminescence of Trap States of Nanocrystalline TiO2 in Aqueous Media. The Journal of Physical Chemistry C 2013, 117 (26) , 13654-13662. https://doi.org/10.1021/jp402264p
  29. Jesús Idígoras, Thomas Berger, and Juan A. Anta . Modification of Mesoporous TiO2 Films by Electrochemical Doping: Impact on Photoelectrocatalytic and Photovoltaic Performance. The Journal of Physical Chemistry C 2013, 117 (4) , 1561-1570. https://doi.org/10.1021/jp306954y
  30. Peng Gao, Di Bao, Ying Wang, Yujin Chen, Longqiang Wang, Shaoqiang Yang, Guorui Chen, Guobao Li, Yuzeng Sun, and Wei Qin . Epitaxial Growth Route to Crystalline TiO2 Nanobelts with Optimizable Electrochemical Performance. ACS Applied Materials & Interfaces 2013, 5 (2) , 368-373. https://doi.org/10.1021/am302366h
  31. Xiu Wang, Sneha A. Kulkarni, Bruno Ieiri Ito, Sudip K. Batabyal, Kazuteru Nonomura, Chee Cheong Wong, Michael Grätzel, Subodh G. Mhaisalkar, and Satoshi Uchida . Nanoclay Gelation Approach toward Improved Dye-Sensitized Solar Cell Efficiencies: An Investigation of Charge Transport and Shift in the TiO2 Conduction Band. ACS Applied Materials & Interfaces 2013, 5 (2) , 444-450. https://doi.org/10.1021/am3025454
  32. Junling Song, Hong Bin Yang, Xiu Wang, Si Yun Khoo, C. C. Wong, Xue-Wei Liu, and Chang Ming Li . Improved Utilization of Photogenerated Charge Using Fluorine-Doped TiO2 Hollow Spheres Scattering Layer in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2012, 4 (7) , 3712-3717. https://doi.org/10.1021/am300801f
  33. Jing Zhang, Thomas F. Hughes, Michael Steigerwald, Louis Brus, and Richard A. Friesner . Realistic Cluster Modeling of Electron Transport and Trapping in Solvated TiO2 Nanoparticles. Journal of the American Chemical Society 2012, 134 (29) , 12028-12042. https://doi.org/10.1021/ja3013787
  34. Thomas Berger, Juan A. Anta, and Víctor Morales-Flórez . Electrons in the Band Gap: Spectroscopic Characterization of Anatase TiO2 Nanocrystal Electrodes under Fermi Level Control. The Journal of Physical Chemistry C 2012, 116 (21) , 11444-11455. https://doi.org/10.1021/jp212436b
  35. G. S. Zakharova, C. Jähne, A. Popa, Ch. Täschner, Th. Gemming, A. Leonhardt, B. Büchner, and R. Klingeler . Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries. The Journal of Physical Chemistry C 2012, 116 (15) , 8714-8720. https://doi.org/10.1021/jp300955r
  36. York R. Smith and Vaidyanathan (Ravi) Subramanian . Heterostructural Composites of TiO2 Mesh−TiO2 Nanoparticles Photosensitized with CdS: A New Flexible Photoanode for Solar Cells. The Journal of Physical Chemistry C 2011, 115 (16) , 8376-8385. https://doi.org/10.1021/jp110200s
  37. Wenjing Song, M. Kyle Brennaman, Javier J. Concepcion, Jonah W. Jurss, Paul G. Hoertz, Hanlin Luo, Chuncheng Chen, Kenneth Hanson, and Thomas J. Meyer . Interfacial Electron Transfer Dynamics for [Ru(bpy)2((4,4′-PO3H2)2bpy)]2+ Sensitized TiO2 in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics. The Journal of Physical Chemistry C 2011, 115 (14) , 7081-7091. https://doi.org/10.1021/jp200124k
  38. Tae Hwa Jeon, Wonyong Choi, and Hyunwoong Park . Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays: Energy Level Mismatch versus Surface Specific Reactivity. The Journal of Physical Chemistry C 2011, 115 (14) , 7134-7142. https://doi.org/10.1021/jp201215t
  39. Peiguang Hu, Guojun Du, Weijia Zhou, Jingjie Cui, Jianjian Lin, Hong Liu, Duo Liu, Jiyang Wang, and Shaowei Chen . Enhancement of Ethanol Vapor Sensing of TiO2 Nanobelts by Surface Engineering. ACS Applied Materials & Interfaces 2010, 2 (11) , 3263-3269. https://doi.org/10.1021/am100707h
  40. Shilin Zhang, Mei Long, Peng Zhang, Jie Wang, Hongxiu Lu, Hui Xie, Aidong Tang, Huaming Yang. Crystallographic orientation and morphology control of Sb2Se3 to sensitize TiO2 nanotube arrays for enhanced photoelectrochemical performances. Chemical Engineering Journal 2022, 429 , 132091. https://doi.org/10.1016/j.cej.2021.132091
  41. Lin Yang, Qingyang Fu, Lina Wang, Jinxing Yu, Xiaoxiang Xu. Liberating photocarriers in mesoporous single-crystalline SrTaO2N for efficient solar water splitting. Applied Catalysis B: Environmental 2021, 2 , 120934. https://doi.org/10.1016/j.apcatb.2021.120934
  42. Sutripto Majumder, Nguyen Duc Quang, Nguyen Manh Hung, Nguyen Duc Chinh, Chunjoong Kim, Dojin Kim. Deposition of zinc cobaltite nanoparticles onto bismuth vanadate for enhanced photoelectrochemical water splitting. Journal of Colloid and Interface Science 2021, 599 , 453-466. https://doi.org/10.1016/j.jcis.2021.04.116
  43. Jiayi Chen, Tingting Wang, Zhongjian Li, Bin Yang, Qinghua Zhang, Lecheng Lei, Pingyun Feng, Yang Hou. Recent progress and perspective of electrochemical CO2 reduction towards C2-C5 products over non-precious metal heterogeneous electrocatalysts. Nano Research 2021, 14 (9) , 3188-3207. https://doi.org/10.1007/s12274-021-3335-x
  44. Xiaocan Wang, Guojie Li, Juan Peng, Xiaoyong Lai, Qiang Wu, Yang Cao, Lei Ding, Jinchun Tu. The Au/ZnSe/ZnO heterojunction improves the electron transfer behavior to enhance the detection performance of ascorbic acid. Journal of Alloys and Compounds 2021, 873 , 159721. https://doi.org/10.1016/j.jallcom.2021.159721
  45. Shi Yang Xiao, Yuanwei Liu, Xue Feng Wu, Li Ting Gan, Hao Yang Lin, Li Rong Zheng, Sheng Dai, Peng Fei Liu, Hua Gui Yang. A low-valent cobalt oxide co-catalyst to boost photocatalytic water oxidation via enhanced hole-capturing ability. Journal of Materials Chemistry A 2021, 9 (26) , 14786-14792. https://doi.org/10.1039/D1TA01858B
  46. Yangyuan Ji, Junfeng Niu, Dong Xu, Kaixuan Wang, Jacob Brejcha, Seunghyo Jeon, David M Warsinger. Efficient electrocatalysis for denitrification by using TiO2 nanotube arrays cathode and adding chloride ions. Chemosphere 2021, 274 , 129706. https://doi.org/10.1016/j.chemosphere.2021.129706
  47. Khakemin Khan, Lifen Xu, Ming Shi, Jiangshan Qu, Xiaoping Tao, Zhaochi Feng, Can Li, Rengui Li. Surface assembly of cobalt species for simultaneous acceleration of interfacial charge separation and catalytic reactions on Cd0.9Zn0.1S photocatalyst. Chinese Journal of Catalysis 2021, 42 (6) , 1004-1012. https://doi.org/10.1016/S1872-2067(20)63717-2
  48. Hongjie Liu, Hao Fu, Yuchang Liu, Xiyong Chen, Kefu Yu, Liwei Wang. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. Chemosphere 2021, 272 , 129534. https://doi.org/10.1016/j.chemosphere.2021.129534
  49. Jingyu Zhao, Yaru Li, Ping Na. Facile Construction of Carbon Dots Layer and Oxygen Vacancies Simultaneously onto TiO2 to Enhance Photoreduction Activity. Chinese Journal of Chemistry 2021, 39 (5) , 1310-1318. https://doi.org/10.1002/cjoc.202000705
  50. Maxime E. Dufond, Jean-Noël Chazalviel, Lionel Santinacci. Electrochemical Stability of n-Si Photoanodes Protected by TiO 2 Thin Layers Grown by Atomic Layer Deposition. Journal of The Electrochemical Society 2021, 168 (3) , 031509. https://doi.org/10.1149/1945-7111/abeaf3
  51. Meng-Meng Zhang, Jia-Yuan Chen, Hui Li, Chun-Rui Wang. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Metals 2021, 40 (2) , 249-271. https://doi.org/10.1007/s12598-020-01499-x
  52. Yawei Wang, Yuyang Kang, Huaze Zhu, Gang Liu, John T. S. Irvine, Xiaoxiang Xu. Perovskite Oxynitride Solid Solutions of LaTaON 2 ‐CaTaO 2 N with Greatly Enhanced Photogenerated Charge Separation for Solar‐Driven Overall Water Splitting. Advanced Science 2021, 8 (2) , 2003343. https://doi.org/10.1002/advs.202003343
  53. Mun Kyoung Kim, Woo Hyeong Sim, Miri Choi, Hyungseob Lim, Youngkook Kwon, Hyung Mo Jeong. Electrochemically Li-intercalated TiO2 nanoparticles for High performance photocatalytic production of hydrogen. Catalysis Today 2021, 359 , 23-27. https://doi.org/10.1016/j.cattod.2019.07.058
  54. Yaping Zhang, Yuyu Bu, Fengqiu Jiang, Huan Li, Xi Chen, Jin-Ping Ao. Mechanism on BiVO4 photoanode photoelectrochemical performance improving: Based on surface electrochemical reduction method. Electrochimica Acta 2021, 366 , 137288. https://doi.org/10.1016/j.electacta.2020.137288
  55. Rahul B. Pujari, Dong-Weon Lee. Oxygen-Deficient Metal Oxide Nanostructures for Photocatalytic Activities. 2021,,, 329-353. https://doi.org/10.1007/978-3-030-68462-4_13
  56. Lianyuan Ge, Rui Hou, Yang Cao, Jinchun Tu, Qiang Wu. Photoelectrochemical enzymatic sensor for glucose based on [email protected]/TiO 2 nanorod arrays. RSC Advances 2020, 10 (72) , 44225-44231. https://doi.org/10.1039/D0RA08920F
  57. Jinxing Yu, Xiaoxiang Xu. Fluorination over Cr doped layered perovskite Sr2TiO4 for efficient photocatalytic hydrogen production under visible light illumination. Journal of Energy Chemistry 2020, 51 , 30-38. https://doi.org/10.1016/j.jechem.2020.03.025
  58. Qimeng Yang, Heng Zhu, Yanghui Hou, Duanduan Liu, Huang Tang, Depei Liu, Weining Zhang, Shicheng Yan, Zhigang Zou. Surface polaron states on single-crystal rutile TiO 2 nanorod arrays enhancing charge separation and transfer. Dalton Transactions 2020, 49 (42) , 15054-15060. https://doi.org/10.1039/D0DT03068F
  59. Wenwen Shi, Deng Li, Wenjun Fan, Jiangping Ma, Chunhua Li, Wei Yu, Jingying Shi, Can Li. Nonfullerene Bulk Heterojunction‐Based Photocathodes for Highly Efficient Solar Hydrogen Production in Acidic and Neutral Solutions. Advanced Functional Materials 2020, 30 (46) , 2003399. https://doi.org/10.1002/adfm.202003399
  60. Xiaohan Ma, Qinghua Chen, Guocheng Liu, Yuanming Zhou, Dong Ma, Shuaishuai Xin, Chengze Yu, Bin Zhang, Yanjun Xin. Construction of netlike 3D Z-scheme photoelectrodes with improved photocatalytic performance based on g-C3N4 nanosheets modified TiO2 nanobelt-tubes. Chemical Engineering Science 2020, 226 , 115844. https://doi.org/10.1016/j.ces.2020.115844
  61. Gurpreet Singh Selopal, Mahyar Mohammadnezhad, Lucas V. Besteiro, Ozge Cavuslar, Jiabin Liu, Hui Zhang, Fabiola Navarro‐Pardo, Guiju Liu, Maorong Wang, Emek G. Durmusoglu, Havva Yagci Acar, Shuhui Sun, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO 2 for Optoelectronic Devices. Advanced Science 2020, 7 (20) , 2001864. https://doi.org/10.1002/advs.202001864
  62. Wanggang Zhang, Yiming Liu, Zhiyuan Song, Changwan Zhuang, Aili Wei. The storage mechanism difference between amorphous and anatase as supercapacitors. Green Energy & Environment 2020, 24 https://doi.org/10.1016/j.gee.2020.10.004
  63. Ri Han, Shufang Chang, Xiaoxiang Xu. Gold nanocrystal anchored In 2 O 3 hollow nanospheres for N 2 photofixation to ammonia. Inorganic Chemistry Frontiers 2020, 7 (15) , 2778-2782. https://doi.org/10.1039/D0QI00311E
  64. Ziyu Yin, Xiangtian Chen, Cheng Wang, Zijing Guo, Xinglong Wu, Zongyan Zhao, Yingfang Yao, Wenjun Luo, Zhigang Zou. Mildly regulated intrinsic faradaic layer at the oxide/water interface for improved photoelectrochemical performance. Chemical Science 2020, 11 (24) , 6297-6304. https://doi.org/10.1039/D0SC01052A
  65. Yawei Wang, Shunhang Wei, Xiaoxiang Xu. SrTaO2N-CaTaO2N solid solutions as efficient visible light active photocatalysts for water oxidation and reduction. Applied Catalysis B: Environmental 2020, 263 , 118315. https://doi.org/10.1016/j.apcatb.2019.118315
  66. Xikui Wang, Xingxing Jiang, Qinglong Wang, Tao Zhang, Peize Li, Mingkui Wang, Yan Shen. Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta 2020, 340 , 135948. https://doi.org/10.1016/j.electacta.2020.135948
  67. Hong Zhang, Shunhang Wei, Xiaoxiang Xu. Mg modified BaTaO2N as an efficient visible-light-active photocatalyst for water oxidation. Journal of Catalysis 2020, 383 , 135-143. https://doi.org/10.1016/j.jcat.2020.01.005
  68. Boulos Alfakes, Corrado Garlisi, Juan Villegas, Abdulrahman Al-Hagri, Srinivasa Tamalampudi, Nitul S. Rajput, Jin-You Lu, Erik Lewin, Jacinto Sá, Ibraheem Almansouri, Giovanni Palmisano, Matteo Chiesa. Enhanced photoelectrochemical performance of atomic layer deposited Hf-doped ZnO. Surface and Coatings Technology 2020, 385 , 125352. https://doi.org/10.1016/j.surfcoat.2020.125352
  69. Xiangrong Ma, Rui Dang, Zhipan Liu, Fang Yang, Huigui Li, Tian Guo, Jiao Luo. Facile synthesis of heterogeneous recyclable Pd/CeO2/TiO2 nanostructured catalyst for the one pot hydroxylation of benzene to phenol. Chemical Engineering Science 2020, 211 , 115274. https://doi.org/10.1016/j.ces.2019.115274
  70. Chinmaya Mutalik, Yu-Cheng Hsiao, Yi-Hsuan Chang, Dyah Ika Krisnawati, Moh Alimansur, Achmad Jazidie, Mohammad Nuh, Chia-Che Chang, Di-Yan Wang, Tsung-Rong Kuo. <p>High UV-Vis-NIR Light-Induced Antibacterial Activity by Heterostructured TiO<sub>2</sub>-FeS<sub>2</sub> Nanocomposites</p>. International Journal of Nanomedicine 2020, Volume 15 , 8911-8920. https://doi.org/10.2147/IJN.S282689
  71. Nan Zhang, Quan Quan, Ming-Yu Qi, Zi-Rong Tang, Yi-Jun Xu. Hierarchically tailorable double-array film hybrids with enhanced photocatalytic and photoelectrochemical performances. Applied Catalysis B: Environmental 2019, 259 , 118086. https://doi.org/10.1016/j.apcatb.2019.118086
  72. Milan Vraneš, Nikola Cvjetićanin, Snežana Papović, Marko Pavlović, István Szilágyi, Slobodan Gadžurić. Electrochemical study of anatase TiO2 nanotube array electrode in electrolyte based on 1,3-diethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid. Ionics 2019, 25 (11) , 5501-5513. https://doi.org/10.1007/s11581-019-03129-8
  73. Jinxing Yu, Lei Zhang, Jun Qian, Zhirong Zhu, Shuang Ni, Gang Liu, Xiaoxiang Xu. In situ exsolution of silver nanoparticles on AgTaO3-SrTiO3 solid solutions as efficient plasmonic photocatalysts for water splitting. Applied Catalysis B: Environmental 2019, 256 , 117818. https://doi.org/10.1016/j.apcatb.2019.117818
  74. Shuo Hou, Xiao-Cheng Dai, Yu-Bing Li, Ming-Hui Huang, Tao Li, Zhi-Quan Wei, Yunhui He, Guangcan Xiao, Fang-Xing Xiao. Charge transfer modulation in layer-by-layer-assembled multilayered photoanodes for solar water oxidation. Journal of Materials Chemistry A 2019, 7 (39) , 22487-22499. https://doi.org/10.1039/C9TA08107K
  75. Xin-Zheng Yue, Chuan-Qi Li, Zhong-Yi Liu, Sha-Sha Yi, De-Liang Chen, Feng Wang, Shuai-Hui Li. Steering charge kinetics in [email protected]/TiO2 heterojunction architecture: Efficient solar-light-driven hydrogen generation. Applied Catalysis B: Environmental 2019, 255 , 117760. https://doi.org/10.1016/j.apcatb.2019.117760
  76. Lijun Zhang, Zhiliang Jin. Effective Electron–Hole Separation Over Controllable Construction of CdS/Co-Ni-P Core/Shell Nanophotocatalyst for Improved Photocatalytic Hydrogen Evolution Under Visible-Light-Driven. Catalysis Surveys from Asia 2019, 23 (3) , 219-230. https://doi.org/10.1007/s10563-019-09274-4
  77. Di Zu, Haiyang Wang, Sen Lin, Gang Ou, Hehe Wei, Shuqing Sun, Hui Wu. Oxygen-deficient metal oxides: Synthesis routes and applications in energy and environment. Nano Research 2019, 12 (9) , 2150-2163. https://doi.org/10.1007/s12274-019-2377-9
  78. Marian Sima, Eugeniu Vasile, Adrian Sima, Nicoleta Preda, Constantin Logofatu. Graphitic carbon nitride based photoanodes prepared by spray coating method. International Journal of Hydrogen Energy 2019, 44 (45) , 24430-24440. https://doi.org/10.1016/j.ijhydene.2019.07.243
  79. Norfatehah Basiron, Srimala Sreekantan, Hazizan Md. Akil, Khairul Arifah Saharudin, Nor Hazliana Harun, Rabiatul Basria S.M.N. Mydin, Azman Seeni, Nur Ruzaina Abdul Rahman, Farook Adam, Anwar Iqbal, Vignesh Kumaravel. Effect of Li-TiO 2 nanoparticles incorporation in LDPE polymer nanocomposites for biocidal activity. Nano-Structures & Nano-Objects 2019, 19 , 100359. https://doi.org/10.1016/j.nanoso.2019.100359
  80. Jiajia Xi, Hao Wang, Bihong Zhang, Xiaopeng Hu, Faqiong Zhao, Baizhao Zeng. A type I Bi 2 S 3 @ZnS core–shell structured photocatalyst for the selective photoelectrochemical sensing of Cu 2+. Analytical Methods 2019, 11 (19) , 2605-2610. https://doi.org/10.1039/C9AY00591A
  81. Yawei Wang, Shu Jin, Xiaoqin Sun, Shunhang Wei, Long Chen, Xiaoxiang Xu. Switching on efficient photocatalytic water oxidation reactions over CaNbO2N by Mg modifications under visible light illumination. Applied Catalysis B: Environmental 2019, 245 , 10-19. https://doi.org/10.1016/j.apcatb.2018.12.033
  82. Wanggang Zhang, Yiming Liu, Wenyi Li, Wei Liang, Fuqian Yang. Au nanocrystals decorated TiO2 nanotube arrays as anode material for lithium ion batteries. Applied Surface Science 2019, 476 , 948-958. https://doi.org/10.1016/j.apsusc.2019.01.159
  83. Hao Qin, Xian Zhao, Hongkai Zhao, Lili Yan, Weiliu Fan. Well-organized CN-M/CN-U/Pt-TiO2 ternary heterojunction design for boosting photocatalytic H2 production via electronic continuous and directional transmission. Applied Catalysis A: General 2019, 576 , 74-84. https://doi.org/10.1016/j.apcata.2019.03.002
  84. Yawei Wang, Shu Jin, Guoxiang Pan, Zuxin Li, Long Chen, Gang Liu, Xiaoxiang Xu. Zr doped mesoporous LaTaON 2 for efficient photocatalytic water splitting. Journal of Materials Chemistry A 2019, 7 (10) , 5702-5711. https://doi.org/10.1039/C8TA11561C
  85. Sha-Sha Yi, Ba-Ri Wulan, Jun-Min Yan, Qing Jiang. Highly Efficient Photoelectrochemical Water Splitting: Surface Modification of Cobalt-Phosphate-Loaded Co 3 O 4 /Fe 2 O 3 p-n Heterojunction Nanorod Arrays. Advanced Functional Materials 2019, 29 (11) , 1801902. https://doi.org/10.1002/adfm.201801902
  86. Xiao-Cheng Dai, Ming-Hui Huang, Yu-Bing Li, Tao Li, Bei-Bei Zhang, Yunhui He, Guangcan Xiao, Fang-Xing Xiao. Regulating spatial charge transfer over intrinsically ultrathin-carbon-encapsulated photoanodes toward solar water splitting. Journal of Materials Chemistry A 2019, 7 (6) , 2741-2753. https://doi.org/10.1039/C8TA10379H
  87. Shunhang Wei, Guan Zhang, Xiaoxiang Xu. Activating BaTaO2N by Ca modifications and cobalt oxide for visible light photocatalytic water oxidation reactions. Applied Catalysis B: Environmental 2018, 237 , 373-381. https://doi.org/10.1016/j.apcatb.2018.06.017
  88. Yang-Shan Xie, Lan Yuan, Nan Zhang, Yi-Jun Xu. Light-tuned switching of charge transfer channel for simultaneously boosted photoactivity and stability. Applied Catalysis B: Environmental 2018, 238 , 19-26. https://doi.org/10.1016/j.apcatb.2018.07.006
  89. HeeGoo Jo, Mihye Wu, Sungho Choi, Hyeongtag Jeon, Ha-Kyun Jung. Characterization of Ti 3+ -doped TiO 2 based composite electrode for lithium polymer secondary batteries. Nanotechnology 2018, 29 (44) , 445402. https://doi.org/10.1088/1361-6528/aadc6f
  90. Jesús Idígoras, Lidia Contreras-Bernal, James M. Cave, Nicola E. Courtier, Ángel Barranco, Ana Borras, Juan R. Sánchez-Valencia, Juan A. Anta, Alison B. Walker. The Role of Surface Recombination on the Performance of Perovskite Solar Cells: Effect of Morphology and Crystalline Phase of TiO 2 Contact. Advanced Materials Interfaces 2018, 5 (21) , 1801076. https://doi.org/10.1002/admi.201801076
  91. Zhengxiang Gu, Hao Shen, Longmei Shang, Ximeng Lv, Linping Qian, Gengfeng Zheng. Nanostructured Copper-Based Electrocatalysts for CO 2 Reduction. Small Methods 2018, 2 (11) , 1800121. https://doi.org/10.1002/smtd.201800121
  92. Yuyin Wang, Xiao Xiao, Qing Li, Huan Pang. Synthesis and Progress of New Oxygen-Vacant Electrode Materials for High-Energy Rechargeable Battery Applications. Small 2018, 14 (41) , 1802193. https://doi.org/10.1002/smll.201802193
  93. Heng Zhu, Meiming Zhao, Junkang Zhou, Wenchao Li, Haoyu Wang, Zhe Xu, Lei Lu, Lang Pei, Zhan Shi, Shicheng Yan, Zhaosheng Li, Zhigang Zou. Surface states as electron transfer pathway enhanced charge separation in TiO2 nanotube water splitting photoanodes. Applied Catalysis B: Environmental 2018, 234 , 100-108. https://doi.org/10.1016/j.apcatb.2018.04.040
  94. Dan Wu, Zhonghai Zhang. Simultaneous non-metal doping and cocatalyst decoration for efficient photoelectrochemical water splitting on hematite photoanodes. Electrochimica Acta 2018, 282 , 48-55. https://doi.org/10.1016/j.electacta.2018.06.045
  95. Maheswari Arunachalam, Gun Yun, Kwang-Soon Ahn, Won-Seon Seo, Dae Soo Jung, Soon Hyung Kang. Unique photoelectrochemical behavior of TiO2 nanorods wrapped with novel titanium Oxy-Nitride (TiOxNy) nanoparticles. International Journal of Hydrogen Energy 2018, 43 (34) , 16458-16467. https://doi.org/10.1016/j.ijhydene.2018.07.043
  96. Xiaofeng Ning, Wenlong Zhen, Yuqi Wu, Gongxuan Lu. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Applied Catalysis B: Environmental 2018, 226 , 373-383. https://doi.org/10.1016/j.apcatb.2017.12.067
  97. Panpan Li, Zhaoyu Jin, Dan Xiao. Three-dimensional nanotube-array anode enables a flexible Ni/Zn fibrous battery to ultrafast charge and discharge in seconds. Energy Storage Materials 2018, 12 , 232-240. https://doi.org/10.1016/j.ensm.2017.11.017
  98. Xinzheng Yue, Shasha Yi, Runwei Wang, Zongtao Zhang, Shilun Qiu. Well-controlled [email protected] core-shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 2018, 47 , 463-473. https://doi.org/10.1016/j.nanoen.2018.03.014
  99. Unseock Kang, Kyu Jun Park, Dong Suk Han, Young-Min Kim, Seungdo Kim, Hyunwoong Park. Photoelectrochemical hydrogen production using CdS nanoparticles photodeposited onto Li-ion-inserted titania nanotube arrays. Catalysis Today 2018, 303 , 289-295. https://doi.org/10.1016/j.cattod.2017.08.049
  100. Wenlong Zhen, Xiaofeng Ning, Baojun Yang, Yuqi Wu, Zhen Li, Gongxuan Lu. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Applied Catalysis B: Environmental 2018, 221 , 243-257. https://doi.org/10.1016/j.apcatb.2017.09.024
Load more citations