Tailored TiO2−SrTiO3 Heterostructure Nanotube Arrays for Improved Photoelectrochemical Performance

View Author Information
Radiation Laboratory and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
§ School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China
* Address correspondence to [email protected]
Cite this: ACS Nano 2010, 4, 1, 387–395
Publication Date (Web):December 15, 2009
https://doi.org/10.1021/nn901087c
Copyright © 2009 American Chemical Society
Article Views
9918
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)
Supporting Info (1)»

Abstract

TiO2 nanotube arrays formed on Ti substrate by electrochemical anodization have been converted into TiO2−SrTiO3 heterostructures by controlled substitution of Sr under hydrothermal conditions. The growth of SrTiO3 crystallites on the nanotube array electrode was probed by electron microscopy and X-ray diffraction. As the degree of Sr substitution increases with the duration of hydrothermal treatment, an increase in the size of SrTiO3 crystallites was observed. Consequently, with increasing SrTiO3 fraction in the TiO2−SrTiO3 nanotube arrays, we observed a shift in the flat band potential to more negative potentials, thus confirming the influence of SrTiO3 in the modification of the photoelectrochemical properties. The TiO2−SrTiO3 composite heterostructures obtained with 1 h or less hydrothermal treatment exhibit the best photoelectrochemical performance with nearly 100% increase in external quantum efficiency at 360 nm. The results presented here provide a convenient way to tailor the photoelectrochemical properties of TiO2−SrTiO3 nanotube array electrodes and employ them for dye- or quantum-dot-sensitized solar cells and/or photocatalytic hydrogen production.

Supporting Information

ARTICLE SECTIONS
Jump To

XPS spectra, photocurrent response of pure SrTiO3 nanotube arrays, diffuse reflectance absorption spectra, and comparison of photocurrent of TiO2−SrTiO3 electrodes (2 h) before and after heat treatment are presented. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 359 publications.

  1. Tsai-Te Wang, Chao-Lung Chiang, Sudhakar Narra, Jhih-Long Lin, Shao-Wen Chien, Jhin-Cheng Yu, Eric Wei-Guang Diau, Yan-Gu Lin, M. C. Lin. Synergistic Effects of Plasmonic Gold and Perovskite-Type SrTiO3 for Enhanced Photocatalytic Performance of TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2021, 125 (44) , 24340-24349. https://doi.org/10.1021/acs.jpcc.1c05781
  2. Marjan Bele, Primož Jovanovič, Živa Marinko, Sandra Drev, Vid Simon Šelih, Janez Kovač, Miran Gaberšček, Gorazd Koderman Podboršek, Goran Dražić, Nejc Hodnik, Anton Kokalj, Luka Suhadolnik. Increasing the Oxygen-Evolution Reaction Performance of Nanotubular Titanium Oxynitride-Supported Ir Nanoparticles by a Strong Metal–Support Interaction. ACS Catalysis 2020, 10 (22) , 13688-13700. https://doi.org/10.1021/acscatal.0c03688
  3. Wei-Hai Chen, Zhixin Zhou, Guo-Feng Luo, Ehud Neumann, Henri-Baptiste Marjault, David Stone, Rachel Nechushtai, Itamar Willner. Photosensitized H2 Evolution and NADPH Formation by Photosensitizer/Carbon Nitride Hybrid Nanoparticles. Nano Letters 2019, 19 (12) , 9121-9130. https://doi.org/10.1021/acs.nanolett.9b04375
  4. M. Z. Iqbal, E. Carleschi, B. P. Doyle, R. J. Kriek. Photocharged Water Splitting Employing a Nickel(II) Tellurium Oxide (Photo)anode in Alkaline Medium. ACS Applied Energy Materials 2019, 2 (11) , 8125-8137. https://doi.org/10.1021/acsaem.9b01597
  5. Yanfang He, Peipei Wang, Jianfei Zhu, Ying Yang, Yuan Liu, Mingming Chen, Dawei Cao, Xiaohong Yan. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO2. ACS Applied Materials & Interfaces 2019, 11 (40) , 37322-37329. https://doi.org/10.1021/acsami.9b12537
  6. R. J. Kriek, M. Z. Iqbal, B. P. Doyle, E. Carleschi. Photocharging of Europium(III) Tellurium Oxide as a Photoelectrocatalyst. ACS Applied Energy Materials 2019, 2 (6) , 4205-4214. https://doi.org/10.1021/acsaem.9b00407
  7. Usman Ali Khan, Jianjun Liu, Jinbo Pan, Hecheng Ma, Shengli Zuo, Yingchun Yu, Aftab Ahmad, Muzaffar Iqbal, Sadeeq Ullah, Baoshan Li. One-Pot Fabrication of Hierarchical Floating Bi–Bi2S3–Bi2WO6/Expanded Perlite Photocatalysts for Efficient Photocatalysis of Organic Contaminants Utilized Sunlike Illumination. Industrial & Engineering Chemistry Research 2019, 58 (22) , 9286-9299. https://doi.org/10.1021/acs.iecr.9b01067
  8. Zhao Liang, Huilin Hou, Zhi Fang, Fengmei Gao, Lin Wang, Ding Chen, Weiyou Yang. Hydrogenated TiO2 Nanorod Arrays Decorated with Carbon Quantum Dots toward Efficient Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2019, 11 (21) , 19167-19175. https://doi.org/10.1021/acsami.9b04059
  9. Amit Kumar, Anamika Rana, Gaurav Sharma, Mu. Naushad, Ala’a H. Al-Muhtaseb, Changsheng Guo, Ana Iglesias-Juez, Florian J. Stadler. High-Performance Photocatalytic Hydrogen Production and Degradation of Levofloxacin by Wide Spectrum-Responsive Ag/Fe3O4 Bridged SrTiO3/g-C3N4 Plasmonic Nanojunctions: Joint Effect of Ag and Fe3O4. ACS Applied Materials & Interfaces 2018, 10 (47) , 40474-40490. https://doi.org/10.1021/acsami.8b12753
  10. Hamid Mehdipour, Alexey V. Akimov, Joanna Jankowska, Ali T. Rezakhanai, Saeedeh S. Tafreshi, Nora H. de Leeuw, Alireza Z. Moshfegh, Oleg V. Prezhdo. Persistent Quantum Coherence and Strong Coupling Enable Fast Electron Transfer across the CdS/TiO2 Interface: A Time-Domain ab Initio Simulation. The Journal of Physical Chemistry C 2018, 122 (44) , 25606-25616. https://doi.org/10.1021/acs.jpcc.8b06425
  11. Li Shi, Wei Zhou, Zhao Li, Supriya Koul, Akihiro Kushima, Yang Yang. Periodically Ordered Nanoporous Perovskite Photoelectrode for Efficient Photoelectrochemical Water Splitting. ACS Nano 2018, 12 (6) , 6335-6342. https://doi.org/10.1021/acsnano.8b03940
  12. Faqi Zhan, Yahui Yang, Wenhua Liu, Keke Wang, Wenzhang Li, Jie Li. Facile Synthesis of FeOOH Quantum Dots Modified ZnO Nanorods Films via a Metal-Solating Process. ACS Sustainable Chemistry & Engineering 2018, 6 (6) , 7789-7798. https://doi.org/10.1021/acssuschemeng.8b00776
  13. Yanjie Wang, Jiarui Jin, Weiguo Chu, David Cahen, Tao He. Synergistic Effect of Charge Generation and Separation in Epitaxially Grown BiOCl/Bi2S3 Nano-Heterostructure. ACS Applied Materials & Interfaces 2018, 10 (17) , 15304-15313. https://doi.org/10.1021/acsami.8b03390
  14. Keita Sekizawa, Shunsuke Sato, Takeo Arai, and Takeshi Morikawa . Solar-Driven Photocatalytic CO2 Reduction in Water Utilizing a Ruthenium Complex Catalyst on p-Type Fe2O3 with a Multiheterojunction. ACS Catalysis 2018, 8 (2) , 1405-1416. https://doi.org/10.1021/acscatal.7b03244
  15. Kanji Saito, Satoshi Tominaka, Shun Yoshihara, Koji Ohara, Yoshiyuki Sugahara, and Yusuke Ide . Room-Temperature Rutile TiO2 Nanoparticle Formation on Protonated Layered Titanate for High-Performance Heterojunction Creation. ACS Applied Materials & Interfaces 2017, 9 (29) , 24538-24544. https://doi.org/10.1021/acsami.7b04051
  16. Xuemei Zhou, Ning Liu, and Patrik Schmuki . Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes. ACS Catalysis 2017, 7 (5) , 3210-3235. https://doi.org/10.1021/acscatal.6b03709
  17. Yisi Zhu, Paul A. Salvador, and Gregory S. Rohrer . Buried Charge at the TiO2/SrTiO3 (111) Interface and Its Effect on Photochemical Reactivity. ACS Applied Materials & Interfaces 2017, 9 (8) , 7843-7851. https://doi.org/10.1021/acsami.6b16443
  18. Abhijeet L. Sangle, Simrjit Singh, Jie Jian, Sneha R. Bajpe, Haiyan Wang, Neeraj Khare, and Judith L. MacManus-Driscoll . Very High Surface Area Mesoporous Thin Films of SrTiO3 Grown by Pulsed Laser Deposition and Application to Efficient Photoelectrochemical Water Splitting. Nano Letters 2016, 16 (12) , 7338-7345. https://doi.org/10.1021/acs.nanolett.6b02487
  19. Jiejing Kong, Zebao Rui, and Hongbing Ji . Enhanced Photocatalytic Mineralization of Gaseous Toluene over SrTiO3 by Surface Hydroxylation. Industrial & Engineering Chemistry Research 2016, 55 (46) , 11923-11930. https://doi.org/10.1021/acs.iecr.6b03270
  20. Sunita Khanchandani, Sandeep Kumar, and Ashok K. Ganguli . Comparative Study of TiO2/CuS Core/Shell and Composite Nanostructures for Efficient Visible Light Photocatalysis. ACS Sustainable Chemistry & Engineering 2016, 4 (3) , 1487-1499. https://doi.org/10.1021/acssuschemeng.5b01460
  21. Hui Yang, Paul E. Kruger, and Shane G. Telfer . Metal–Organic Framework Nanocrystals as Sacrificial Templates for Hollow and Exceptionally Porous Titania and Composite Materials. Inorganic Chemistry 2015, 54 (19) , 9483-9490. https://doi.org/10.1021/acs.inorgchem.5b01352
  22. Tao Yu, Wen-li Hu, Lixia Jia, Xin Tan, Juanru Huang, and Xiang Huang . Enhanced Photoelectrochemical Performance of Coaxial-Nanocoupled Strontium-Rich SrTiO3/TiO2 {001} Nanotube Arrays. Industrial & Engineering Chemistry Research 2015, 54 (33) , 8193-8200. https://doi.org/10.1021/acs.iecr.5b01903
  23. Yu Wang, Dongmei Zhang, Cuie Wen, and Yuncang Li . Processing and Characterization of SrTiO3–TiO2 Nanoparticle–Nanotube Heterostructures on Titanium for Biomedical Applications. ACS Applied Materials & Interfaces 2015, 7 (29) , 16018-16026. https://doi.org/10.1021/acsami.5b04304
  24. Jia Hong Pan, Chao Shen, Irina Ivanova, Na Zhou, Xingzhu Wang, Wee Chong Tan, Qing-Hua Xu, Detlef W. Bahnemann, and Qing Wang . Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (27) , 14859-14869. https://doi.org/10.1021/acsami.5b03396
  25. Hongquan Zhan, Zhi-Gang Chen, Jianle Zhuang, Xianfeng Yang, Qili Wu, Xiangping Jiang, Chaolun Liang, Mingmei Wu, and Jin Zou . Correlation between Multiple Growth Stages and Photocatalysis of SrTiO3 Nanocrystals. The Journal of Physical Chemistry C 2015, 119 (7) , 3530-3537. https://doi.org/10.1021/jp512448p
  26. Vipin Amoli, Malayil Gopalan Sibi, Biplab Banerjee, Mohit Anand, Abhayankar Maurya, Saleem Akhtar Farooqui, Asim Bhaumik, and Anil Kumar Sinha . Faceted Titania Nanocrystals Doped with Indium Oxide Nanoclusters As a Superior Candidate for Sacrificial Hydrogen Evolution without Any Noble-Metal Cocatalyst under Solar Irradiation. ACS Applied Materials & Interfaces 2015, 7 (1) , 810-822. https://doi.org/10.1021/am507293b
  27. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  28. Yubin Chen, Chi-Hung Chuang, Keng-Chu Lin, Shaohua Shen, Christopher McCleese, Liejin Guo, and Clemens Burda . Synthesis and Photoelectrochemical Properties of (Cu2Sn)xZn3(1–x)S3 Nanocrystal Films. The Journal of Physical Chemistry C 2014, 118 (22) , 11954-11963. https://doi.org/10.1021/jp500270d
  29. Ying Liu, Yu-Xiang Yu, and Wei-De Zhang . MoS2/CdS Heterojunction with High Photoelectrochemical Activity for H2 Evolution under Visible Light: The Role of MoS2. The Journal of Physical Chemistry C 2013, 117 (25) , 12949-12957. https://doi.org/10.1021/jp4009652
  30. Bo Chen, Junbo Hou, and Kathy Lu . Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors. Langmuir 2013, 29 (19) , 5911-5919. https://doi.org/10.1021/la400586r
  31. Xiaoyong Wu, Shu Yin, Qiang Dong, Chongshen Guo, Takeshi Kimura, Jun-ichi Matsushita, and Tsugio Sato . Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption. The Journal of Physical Chemistry C 2013, 117 (16) , 8345-8352. https://doi.org/10.1021/jp402063n
  32. Jonglak Choi, Nacole King, and Paul A. Maggard . Metastable Cu(I)-Niobate Semiconductor with a Low-Temperature, Nanoparticle-Mediated Synthesis. ACS Nano 2013, 7 (2) , 1699-1708. https://doi.org/10.1021/nn305707f
  33. Zhonghai Zhang, Rubal Dua, Lianbin Zhang, Haibo Zhu, Hongnan Zhang, and Peng Wang . Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. ACS Nano 2013, 7 (2) , 1709-1717. https://doi.org/10.1021/nn3057092
  34. Hao Ming Chen, Chih Kai Chen, Chih-Jung Chen, Liang-Chien Cheng, Pin Chieh Wu, Bo Han Cheng, You Zhe Ho, Ming Lun Tseng, Ying-Ya Hsu, Ting-Shan Chan, Jyh-Fu Lee, Ru-Shi Liu, and Din Ping Tsai . Plasmon Inducing Effects for Enhanced Photoelectrochemical Water Splitting: X-ray Absorption Approach to Electronic Structures. ACS Nano 2012, 6 (8) , 7362-7372. https://doi.org/10.1021/nn3024877
  35. Zhonghai Zhang, Yanjie Yu, and Peng Wang . Hierarchical Top-Porous/Bottom-Tubular TiO2 Nanostructures Decorated with Pd Nanoparticles for Efficient Photoelectrocatalytic Decomposition of Synergistic Pollutants. ACS Applied Materials & Interfaces 2012, 4 (2) , 990-996. https://doi.org/10.1021/am201630s
  36. Bo Chen and Kathy Lu . Hierarchically Branched Titania Nanotubes with Tailored Diameters and Branch Numbers. Langmuir 2012, 28 (5) , 2937-2943. https://doi.org/10.1021/la204154h
  37. Yu-Chih Chen, Ying-Chih Pu, and Yung-Jung Hsu . Interfacial Charge Carrier Dynamics of the Three-Component In2O3–TiO2–Pt Heterojunction System. The Journal of Physical Chemistry C 2012, 116 (4) , 2967-2975. https://doi.org/10.1021/jp210033y
  38. Sergei Piskunov and Eckhard Spohr . SrTiO3 Nanotubes with Negative Strain Energy Predicted from First Principles. The Journal of Physical Chemistry Letters 2011, 2 (20) , 2566-2570. https://doi.org/10.1021/jz201050e
  39. Hoda A. Hamedani, Nageh K. Allam, Hamid Garmestani, and Mostafa A. El-Sayed . Electrochemical Fabrication of Strontium-Doped TiO2 Nanotube Array Electrodes and Investigation of Their Photoelectrochemical Properties. The Journal of Physical Chemistry C 2011, 115 (27) , 13480-13486. https://doi.org/10.1021/jp201194b
  40. Tae Hwa Jeon, Wonyong Choi, and Hyunwoong Park . Photoelectrochemical and Photocatalytic Behaviors of Hematite-Decorated Titania Nanotube Arrays: Energy Level Mismatch versus Surface Specific Reactivity. The Journal of Physical Chemistry C 2011, 115 (14) , 7134-7142. https://doi.org/10.1021/jp201215t
  41. Heather L. Tierney (Managing Editor) and Paul S. Weiss (Editor-in-Chief). Virtual Video Issue: A New Way To Look at the Most-Accessed Articles in ACS Nano and Nano Letters. ACS Nano 2011, 5 (3) , 1565-1566. https://doi.org/10.1021/nn200834m
  42. Tieping Cao, Yuejun Li, Changhua Wang, Changlu Shao, and Yichun Liu . A Facile in Situ Hydrothermal Method to SrTiO3/TiO2 Nanofiber Heterostructures with High Photocatalytic Activity. Langmuir 2011, 27 (6) , 2946-2952. https://doi.org/10.1021/la104195v
  43. Mingyi Zhang, Changlu Shao, Zengcai Guo, Zhenyi Zhang, Jingbo Mu, Tieping Cao, and Yichun Liu . Hierarchical Nanostructures of Copper(II) Phthalocyanine on Electrospun TiO2 Nanofibers: Controllable Solvothermal-Fabrication and Enhanced Visible Photocatalytic Properties. ACS Applied Materials & Interfaces 2011, 3 (2) , 369-377. https://doi.org/10.1021/am100989a
  44. Prashant V. Kamat, Kevin Tvrdy, David R. Baker, Emmy J. Radich. Beyond Photovoltaics: Semiconductor Nanoarchitectures for Liquid-Junction Solar Cells. Chemical Reviews 2010, 110 (11) , 6664-6688. https://doi.org/10.1021/cr100243p
  45. Chang-jun Liu, Uwe Burghaus, Flemming Besenbacher, and Zhong Lin Wang . Preparation and Characterization of Nanomaterials for Sustainable Energy Production. ACS Nano 2010, 4 (10) , 5517-5526. https://doi.org/10.1021/nn102420c
  46. Ting-Ting Yang, Wei-Ta Chen, Yung-Jung Hsu, Kung-Hwa Wei, Tai-Yuan Lin and Tai-Wei Lin . Interfacial Charge Carrier Dynamics in Core−Shell Au-CdS Nanocrystals. The Journal of Physical Chemistry C 2010, 114 (26) , 11414-11420. https://doi.org/10.1021/jp103294c
  47. Pascal Hartmann, Doh-Kwon Lee, Bernd M. Smarsly and Juergen Janek . Mesoporous TiO2: Comparison of Classical Sol−Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction. ACS Nano 2010, 4 (6) , 3147-3154. https://doi.org/10.1021/nn1004765
  48. Xincong Lv, Frank Leung-Yuk Lam, Xijun Hu. Developing SrTiO3/TiO2 heterostructure nanotube array for photocatalytic fuel cells with improved efficiency and elucidating the effects of organic substrates. Chemical Engineering Journal 2022, 427 , 131602. https://doi.org/10.1016/j.cej.2021.131602
  49. Md Sariful Sheikh, Anurag Roy, Alo Dutta, Senthilarasu Sundaram, Tapas K Mallick, T P Sinha. Nanostructured perovskite oxides for dye-sensitized solar cells. Journal of Physics D: Applied Physics 2021, 54 (49) , 493001. https://doi.org/10.1088/1361-6463/ac252c
  50. Tanveer ul Haq Zia, Anwar ul Haq Ali Shah. Label-free photoelectrochemical immunosensor based on sensitive photocatalytic surface of Sn doped ZnO for detection of hepatitis C (HCV) anticore mAbs 19D9D6. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 630 , 127586. https://doi.org/10.1016/j.colsurfa.2021.127586
  51. Jielin Wang, Jieyuan Li, Wenjia Yang, Yongyi Liu, Hong Wang, Qin Geng, Fan Dong. Promote reactants activation and key intermediates formation for facilitated toluene photodecomposition via Ba active sites construction. Applied Catalysis B: Environmental 2021, 297 , 120489. https://doi.org/10.1016/j.apcatb.2021.120489
  52. Frenson P. Jose, Sreekumar Rajappan Achari, Madambi K. Jayaraj, Asha Arackal Sukumaran. Charge transfer mechanism of AZO-ZnO photoanode based on impedance study for solar cell application. Journal of Electroanalytical Chemistry 2021, 901 , 115769. https://doi.org/10.1016/j.jelechem.2021.115769
  53. Yangbo Xu, Liefen Zhang, Jiangang Xu, Jia Li, Hui Wang, Fuming He. Strontium‐incorporated titanium implant surfaces treated by hydrothermal treatment enhance rapid osseointegration in diabetes: A preclinical vivo experimental study. Clinical Oral Implants Research 2021, 32 (11) , 1366-1383. https://doi.org/10.1111/clr.13837
  54. Palyam Subramanyam, Bhagatram Meena, Vasudevanpillai Biju, Hiroaki Misawa, Subrahmanyam Challapalli. Emerging Materials for Plasmon-assisted Photoelectrochemical Water Splitting. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2021, 110 , 100472. https://doi.org/10.1016/j.jphotochemrev.2021.100472
  55. Jongseong Park, Tae Hyung Lee, Changyeon Kim, Sol A Lee, Min-Ju Choi, Hwiho Kim, Jin Wook Yang, Jongwoo Lim, Ho Won Jang. Hydrothermally obtained type-Ⅱ heterojunction nanostructures of In2S3 / TiO2 for remarkably enhanced photoelectrochemical water splitting. Applied Catalysis B: Environmental 2021, 295 , 120276. https://doi.org/10.1016/j.apcatb.2021.120276
  56. Ye Zhang, Yiguo Xu, Jia Guo, Xiuwen Zhang, Xinling Liu, Yushuang Fu, Feng Zhang, Chunyang Ma, Zhe Shi, Rui Cao, Han Zhang. Designing of 0D/2D mixed-dimensional van der waals heterojunction over ultrathin g-C3N4 for high-performance flexible self-powered photodetector. Chemical Engineering Journal 2021, 420 , 129556. https://doi.org/10.1016/j.cej.2021.129556
  57. Xiaowei Jiang, Wan-Jian Yin. High-throughput computational screening of oxide double perovskites for optoelectronic and photocatalysis applications. Journal of Energy Chemistry 2021, 57 , 351-358. https://doi.org/10.1016/j.jechem.2020.08.046
  58. Giovanni Di Liberto, Sergio Tosoni, Gianfranco Pacchioni. Nature and Role of Surface Junctions in BiOIO 3 Photocatalysts. Advanced Functional Materials 2021, 31 (20) , 2009472. https://doi.org/10.1002/adfm.202009472
  59. Dasari Ayodhya, Guttena Veerabhadram. Microwave-assisted fabrication of g-C 3 N 4 nanosheets sustained Bi 2 S 3 heterojunction composites for the catalytic reduction of 4-nitrophenol. Environmental Technology 2021, 42 (6) , 826-841. https://doi.org/10.1080/09593330.2019.1646323
  60. Ziran Zhu, Kun Wei, Hui Li, Xiaopeng Li, Baoping Li, Xiuyun Gu, Lulu Chen, Jinyuan Zhou, Xiaojun Pan, Youqing Wang. High-sensitivity photoelectrochemical visible-blind ultraviolet detector using SrTiO 3 nanocrystalline for weak irradiation. Journal of Physics D: Applied Physics 2021, 54 (9) , 095104. https://doi.org/10.1088/1361-6463/abc8b6
  61. Min Zhang, Faying Li, Daniele Benetti, Riad Nechache, Qin Wei, Xiwei Qi, Federico Rosei. Ferroelectric polarization-enhanced charge separation in quantum dots sensitized semiconductor hybrid for photoelectrochemical hydrogen production. Nano Energy 2021, 81 , 105626. https://doi.org/10.1016/j.nanoen.2020.105626
  62. Zhongrui Yu, Haobo Liu, Mingyuan Zhu, Ying Li, Wenxian Li. Interfacial Charge Transport in 1D TiO 2 Based Photoelectrodes for Photoelectrochemical Water Splitting. Small 2021, 17 (9) , 1903378. https://doi.org/10.1002/smll.201903378
  63. Lei Jin, Haiguang Zhao, Zhiming M. Wang, Federico Rosei. Quantum Dots‐Based Photoelectrochemical Hydrogen Evolution from Water Splitting. Advanced Energy Materials 2021, 11 (12) , 2003233. https://doi.org/10.1002/aenm.202003233
  64. Y. Naciri, A. Hsini, A. Bouziani, R. Djellabi, Z. Ajmal, M. Laabd, J. A. Navío, A. Mills, C. L. Bianchi, H. Li, B. Bakiz, A. Albourine. Photocatalytic oxidation of pollutants in gas-phase via Ag 3 PO 4 -based semiconductor photocatalysts: Recent progress, new trends, and future perspectives. Critical Reviews in Environmental Science and Technology 2021, 404 , 1-44. https://doi.org/10.1080/10643389.2021.1877977
  65. V.R. Akshay, B. Arun, M. Mukesh, Anupama Chanda, M. Vasundhara. Tailoring the NIR range optical absorption, band-gap narrowing and ferromagnetic response in defect modulated TiO2 nanocrystals by varying the annealing conditions. Vacuum 2021, 184 , 109955. https://doi.org/10.1016/j.vacuum.2020.109955
  66. Matthäus Siebenhofer, Alexander Viernstein, Maximilian Morgenbesser, Jürgen Fleig, Markus Kubicek. Photoinduced electronic and ionic effects in strontium titanate. Materials Advances 2021, 91 https://doi.org/10.1039/D1MA00906K
  67. Hongda Zhang, Xin Zhang, Minghang Zhu, Haiyan Li, Yan Zhao, Xuerong Han, Lihong Jin, Haixia Shan. Antibacterial Performance of a Gold‐Loaded g‐C 3 N 4 Nanocomposite System in Visible Light‐Dark Dual Mode. ChemPlusChem 2020, 85 (12) , 2722-2730. https://doi.org/10.1002/cplu.202000676
  68. Haoshan Wei, Jingyi Cai, Yong Zhang, Xueru Zhang, Elena A. Baranova, Jiewu Cui, Yan Wang, Xia Shu, Yongqiang Qin, Jiaqin Liu, Yucheng Wu. Synthesis of SrTiO 3 submicron cubes with simultaneous and competitive photocatalytic activity for H 2 O splitting and CO 2 reduction. RSC Advances 2020, 10 (70) , 42619-42627. https://doi.org/10.1039/D0RA08246E
  69. Bingmei Huang, Yang Liu, Qi Pang, Xinyi Zhang, Huanting Wang, Pei Kang Shen. Boosting the photocatalytic activity of mesoporous SrTiO 3 for nitrogen fixation through multiple defects and strain engineering. Journal of Materials Chemistry A 2020, 8 (42) , 22251-22256. https://doi.org/10.1039/D0TA08678A
  70. Hyun Sik Moon, Kijung Yong. Noble-metal free photocatalytic hydrogen generation of CuPc/TiO2 nanoparticles under visible-light irradiation. Applied Surface Science 2020, 530 , 147215. https://doi.org/10.1016/j.apsusc.2020.147215
  71. Zhuang Wang, Asad Mahmood, Xiaofeng Xie, Xiao Wang, Hanxun Qiu, Jing Sun. Surface adsorption configurations of H3PO4 modified TiO2 and its influence on the photodegradation intermediates of gaseous o-xylene. Chemical Engineering Journal 2020, 393 , 124723. https://doi.org/10.1016/j.cej.2020.124723
  72. Xuejiao Zhang, Yong Huang, Bingbing Wang, Xiaotong Chang, Hao Yang, Jinping Lan, Saisai Wang, Haixia Qiao, He Lin, Shuguang Han, Yaxiong Guo, Xiaojun Zhang. A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceramics International 2020, 46 (10) , 14796-14807. https://doi.org/10.1016/j.ceramint.2020.03.004
  73. Umar Farooq, Ashiq Hussain Pandit, Ruby Phul. Recent Advances in Metal Oxide/Sulphide‐Based Heterostructure Photocatalysts for Water Splitting and Environmental Remediation. 2020,,, 187-216. https://doi.org/10.1002/9781119641353.ch7
  74. Mahdi Shahrezaei, Seyyed Mohammad Hossein Hejazi, Yalavarthi Rambabu, Miroslav Vavrecka, Aristides Bakandritsos, Selda Oezkan, Radek Zboril, Patrik Schmuki, Alberto Naldoni, Stepan Kment. Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts 2020, 10 (6) , 717. https://doi.org/10.3390/catal10060717
  75. Mengjiao Zhai, Yi Liu, Jing Huang, Wenjia Hou, Songze Wu, Botao Zhang, Hua Li. Fabrication of TiO2-SrCO3 Composite Coatings by Suspension Plasma Spraying: Microstructure and Enhanced Visible Light Photocatalytic Performances. Journal of Thermal Spray Technology 2020, 29 (5) , 1172-1182. https://doi.org/10.1007/s11666-020-01022-9
  76. Giovanni Di Liberto, Sergio Tosoni, Francesc Illas, Gianfranco Pacchioni. Nature of SrTiO 3 /TiO 2 (anatase) heterostructure from hybrid density functional theory calculations. The Journal of Chemical Physics 2020, 152 (18) , 184704. https://doi.org/10.1063/5.0007138
  77. Chung-En Tan, Ju-Ting Lee, En-Chin Su, Ming-Yen Wey. Facile approach for Z-scheme type Pt/g-C3N4/SrTiO3 heterojunction semiconductor synthesis via low-temperature process for simultaneous dyes degradation and hydrogen production. International Journal of Hydrogen Energy 2020, 45 (24) , 13330-13339. https://doi.org/10.1016/j.ijhydene.2020.03.034
  78. Thalles T.A. Lucas, Mauricio A. Melo, André L.M. Freitas, Flavio L. Souza, Renato V. Gonçalves. Enhancing the solar water splitting activity of TiO2 nanotube-array photoanode by surface coating with La-doped SrTiO3. Solar Energy Materials and Solar Cells 2020, 208 , 110428. https://doi.org/10.1016/j.solmat.2020.110428
  79. Sayaka Yanagida, Kiyoto Sano, Takahiro Takei, Nobuhiro Kumada. Preparation and photocatalytic properties of rutile TiO2 with a unique morphology and SrTiO3–TiO2 composites obtained by acid treatment of SrTiO3. Materials Research Bulletin 2020, 125 , 110762. https://doi.org/10.1016/j.materresbull.2019.110762
  80. Giovanni Di Liberto, Sergio Tosoni, Gianfranco Pacchioni. Charge Carriers Cascade in a Ternary TiO 2 /TiO 2 /ZnS Heterojunction: A DFT Study. ChemCatChem 2020, 12 (7) , 2097-2105. https://doi.org/10.1002/cctc.201902351
  81. Vincent Tiing Tiong, Hongxia Wang. Photon-Responsive Nanomaterials for Solar Cells. 2020,,, 1-63. https://doi.org/10.1007/978-3-030-39994-8_1
  82. Xuemei Zhou, Patrik Schmuki. One-dimensional TiO2 nanotube–based photocatalysts: enhanced performance by site-selective decoration. 2020,,, 231-264. https://doi.org/10.1016/B978-0-08-102890-2.00007-5
  83. Dong Yan, Xin Wu, Jiayun Pei, Chaochao Wu, Xiumei Wang, Haiyan Zhao. Construction of g-C3N4/TiO2/Ag composites with enhanced visible-light photocatalytic activity and antibacterial properties. Ceramics International 2020, 46 (1) , 696-702. https://doi.org/10.1016/j.ceramint.2019.09.022
  84. Bin Han, Liangpeng Wu, Juan Li, Xiaoyang Wang, Quanming Peng, Nan Wang, Xinjun Li. A nanoreactor based on SrTiO3 coupled TiO2 nanotubes confined Au nanoparticles for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy 2020, 45 (3) , 1559-1568. https://doi.org/10.1016/j.ijhydene.2019.11.095
  85. Liuxin Yang, Zhou Chen, Jian Zhang, Chang-An Wang. SrTiO3/TiO2 heterostructure nanowires with enhanced electron-hole separation for efficient photocatalytic activity. Frontiers of Materials Science 2019, 13 (4) , 342-351. https://doi.org/10.1007/s11706-019-0477-9
  86. Khadija Munawar, Muhammad Adil Mansoor, Marilyn M. Olmstead, Farazila Binti Yusof, Misni Bin Misran, Wan Jeffrey Basirun, Muhammad Mazhar. Pyrochlore-structured Y2Ti2O7–2TiO2 composite thin films for photovoltaic applications. Journal of the Australian Ceramic Society 2019, 55 (4) , 921-932. https://doi.org/10.1007/s41779-019-00329-3
  87. Samina Ghafoor, Asia Inayat, Faryal Aftab, Hatice Duran, Katrin Kirchhoff, Sadia Waseem, Salman Noshear Arshad. TiO2 nanofibers embedded with g-C3N4 nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation. Journal of Environmental Chemical Engineering 2019, 7 (6) , 103452. https://doi.org/10.1016/j.jece.2019.103452
  88. Zhuang Wang, Xiaofeng Xie, Xiao Wang, Asad Mahmood, Hanxun Qiu, Jing Sun. Difference of photodegradation characteristics between single and mixed VOC pollutants under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry 2019, 384 , 112029. https://doi.org/10.1016/j.jphotochem.2019.112029
  89. Yongcai Qiu, Zhenghui Pan, Haining Chen, Daiqi Ye, Lin Guo, Zhiyong Fan, Shihe Yang. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting. Science Bulletin 2019, 64 (18) , 1348-1380. https://doi.org/10.1016/j.scib.2019.07.017
  90. Ubirajara Coleto, Rafael A.C. Amoresi, Chrystopher A.M. Pereira, Alexandre Z. Simões, Maria A. Zaghete, Elias S. Monteiro Filho, Elson Longo, Leinig A. Perazolli. Influence of defects on photoluminescent and photocatalytic behavior of CaO/SrTiO3 heterojunctions. Ceramics International 2019, 45 (12) , 15244-15251. https://doi.org/10.1016/j.ceramint.2019.05.013
  91. Shuaiyu Jiang, Kun Zhao, Mohammad Al-Mamun, Yu Lin Zhong, Porun Liu, Huajie Yin, Lixue Jiang, Sean Lowe, Jian Qi, Ranbo Yu, Dan Wang, Huijun Zhao. Design of three-dimensional hierarchical TiO 2 /SrTiO 3 heterostructures towards selective CO 2 photoreduction. Inorganic Chemistry Frontiers 2019, 6 (7) , 1667-1674. https://doi.org/10.1039/C9QI00350A
  92. Peng Zhang, Xiong Wen (David) Lou. Design of Heterostructured Hollow Photocatalysts for Solar‐to‐Chemical Energy Conversion. Advanced Materials 2019, 31 (29) , 1900281. https://doi.org/10.1002/adma.201900281
  93. C. Zhou, Y.Q. Chen, Y.H. Zhu, G.F. Lin, L.F. Zhang, X.C. Liu, F.M. He. Antiadipogenesis and Osseointegration of Strontium-Doped Implant Surfaces. Journal of Dental Research 2019, 98 (7) , 795-802. https://doi.org/10.1177/0022034519850574
  94. Fang Zhou, Wenjun Liu, Zhilei Miao, Qiang Wang. Photocatalytic Behaviors of TiO 2 Nanoblets Coated with MoS 2 Nanosheets for Solar‐Driven Photocatalysis. ChemistrySelect 2019, 4 (24) , 7260-7269. https://doi.org/10.1002/slct.201900743
  95. Bismark Sarkodie, Collins Acheampong, Benjamin Asinyo, Xun Zhang, Benjamin Tawiah. Characteristics of pigments, modification, and their functionalities. Color Research & Application 2019, 44 (3) , 396-410. https://doi.org/10.1002/col.22359
  96. Ying Chen, Shi Li, Ruo-Yu Zhao, Wei Li, Zhao-Hui Ren, Gao-Rong Han. Single-crystal TiO2/SrTiO3 core–shell heterostructured nanowire arrays for enhanced photoelectrochemical performance. Rare Metals 2019, 38 (5) , 369-378. https://doi.org/10.1007/s12598-019-01221-6
  97. Yao Yang, Winston Cheng, Y. Frank Cheng. Preparation of [email protected] core-shell nanocomposites with intrinsic p-n junction as high-performance photoelectrodes for photoelectrochemical cathodic protection under visible light. Applied Surface Science 2019, 476 , 815-821. https://doi.org/10.1016/j.apsusc.2019.01.157
  98. Bao Lee Phoon, Chin Wei Lai, Joon Ching Juan, Pau-Loke Show, Guan-Ting Pan. Recent developments of strontium titanate for photocatalytic water splitting application. International Journal of Hydrogen Energy 2019, 44 (28) , 14316-14340. https://doi.org/10.1016/j.ijhydene.2019.01.166
  99. Chi Him A. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, Ruijie Xie, Dennis Y.C. Leung, Haibao Huang. WITHDRAWN: Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: overview and forecast. Progress in Solid State Chemistry 2019, https://doi.org/10.1016/j.progsolidstchem.2019.04.002
  100. Chi Him A. Tsang, Kai Li, Yuxuan Zeng, Wei Zhao, Tao Zhang, Yujie Zhan, Ruijie Xie, Dennis Y.C. Leung, Haibao Huang. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environment International 2019, 125 , 200-228. https://doi.org/10.1016/j.envint.2019.01.015
Load more citations