Unfolding the Anatase-to-Rutile Phase Transition in TiO2 Nanotubes Using X-ray Spectroscopy and Spectromicroscopy

View Author Information
Department of Chemistry, University of Western Ontario, Chemistry Building, 1151 Richmond Street, London, Ontario Canada N6A 5B7
Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Canada S7N 2 V3
Soochow University-Western University Centre for Synchrotron Radiation Research, University of Western Ontario, London, Canada N6A 5B7
*E-mail: [email protected]. Phone: 519-661-2111, ext. 86341.
Cite this: J. Phys. Chem. C 2016, 120, 38, 22079–22087
Publication Date (Web):August 31, 2016
Copyright © 2016 American Chemical Society
Article Views
Read OnlinePDF (4 MB)
Supporting Info (1)»


This work reports a study of the anatase-to-rutile phase transition (ART) in a highly ordered TiO2 nanotube (NT) specimen fabricated using an electrochemical process followed by thermal annealing at 750 °C (NT750). Two-dimensional X-ray absorption near-edge structure–X-ray excited optical luminescence spectroscopy reveals the hierarchically two-layered structure of NT750 by resolving the surface anatase luminescence and bulk rutile optical emission. Scanning transmission X-ray microscopy analysis of a sliced NT750 lamella spatially differentiates the top nanotubular anatase structure from the denser rutile bottom layer with a gradual ART interface layer. On the basis of these results together with the known behavior of size and anisotropy dependence of ART in TiO2 nanocrystal, we propose the “bottom-up” mechanism for ART in anodic TiO2 NTs. This result is particularly relevant to the fundamental understanding of phase transition in nanostructures as well as the fabrication of desired TiO2 NT mixed-phase composite with an excellent control of the anatase/rutile phase ratio.

Supporting Information

Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.6b07613.

  • Detailed STXM sample preparation, characterization, and the associated data analysis; the setup for XANES and XEOL measurements (Figure S1); calculated attenuation length of X-rays for bulk anatase and rutile TiO2 (Figure S2); schematic views of X-ray penetration depth in porous NT750 (Figure S3); STXM examinations on the top nanotubular region (Figures S4 and S5); XRD analysis of various NT samples (Figure S6); and XANES analysis of NT800 and NT900 (Figure S7) (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 16 publications.

  1. S. Bhowmick, R. Sen, C. P. Saini, R. Singhal, L. Walczak, M. Gupta, D. M. Phase, A. Kanjilal. Unveiling Temperature-Mediated Dual-Band Edge in TiO2 Nanotubes with Enhanced Photocatalytic Effect. The Journal of Physical Chemistry C 2021, 125 (8) , 4846-4859. https://doi.org/10.1021/acs.jpcc.0c11081
  2. Wei Mao, Markus Wilde, Shohei Ogura, Jikun Chen, Katsuyuki Fukutani, Hiroyuki Matsuzaki, Takayuki Terai. Hydrogen-Accelerated Phase Transition and Diffusion in TiO2 Thin Films. The Journal of Physical Chemistry C 2018, 122 (40) , 23026-23033. https://doi.org/10.1021/acs.jpcc.8b06893
  3. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  4. Francesca A. Scaramuzzo, Alessandro Dell’Era, Gabriele Tarquini, Ruggero Caminiti, Paolo Ballirano, and Mauro Pasquali . Phase Transition of TiO2 Nanotubes: An X-ray Study as a Function of Temperature. The Journal of Physical Chemistry C 2017, 121 (44) , 24871-24876. https://doi.org/10.1021/acs.jpcc.7b08297
  5. Chengjie Xiang, Lidong Sun, Ye Wang, Guangchen Wang, Xiaoli Zhao, and Sam Zhang . Large-Scale, Uniform, and Superhydrophobic Titania Nanotubes at the Inner Surface of 1000 mm Long Titanium Tubes. The Journal of Physical Chemistry C 2017, 121 (28) , 15448-15455. https://doi.org/10.1021/acs.jpcc.7b03124
  6. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
  7. Ahmed Yousef Mohamed, Dae Hyun Kim, Minji Lee, Tae Joo Park, Deok-Yong Cho. Nanoscale chemical and structural reconstruction in thermally oxidized TiN/SnO2 ultrathin films. Journal of Alloys and Compounds 2020, 843 , 155896. https://doi.org/10.1016/j.jallcom.2020.155896
  8. Majid Jahdi, Shivani B. Mishra, Edward N. Nxumalo, Sabelo D. Mhlanga, Ajay K. Mishra. Smart pathways for the photocatalytic degradation of sulfamethoxazole drug using F-Pd co-doped TiO2 nanocomposites. Applied Catalysis B: Environmental 2020, 267 , 118716. https://doi.org/10.1016/j.apcatb.2020.118716
  9. Ahmed Yousef Mohamed, Dae Hyun Kim, Minji Lee, Tae Joo Park, Deok-Yong Cho. Characterization of oxide nanocomposites formed at annealed TiN/SnS2 heterostructure thin film. Journal of Alloys and Compounds 2020, 814 , 152286. https://doi.org/10.1016/j.jallcom.2019.152286
  10. Lei Ge, Qing Hong, Hui Li, Feng Li. A laser-induced TiO 2 -decorated graphene photoelectrode for sensitive photoelectrochemical biosensing. Chemical Communications 2019, 55 (34) , 4945-4948. https://doi.org/10.1039/C9CC00889F
  11. Aaron Kirkey, Jun Li, T.K. Sham. Low temperature amorphous to anatase phase transition of titanium oxide nanotubes. Surface Science 2019, 680 , 68-74. https://doi.org/10.1016/j.susc.2018.10.012
  12. Rambabu Yalavarthi, Alberto Naldoni, Štěpán Kment, Luca Mascaretti, Hana Kmentová, Ondřej Tomanec, Patrik Schmuki, Radek Zbořil. Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting. Catalysts 2019, 9 (2) , 204. https://doi.org/10.3390/catal9020204
  13. Elisangela P. Da Silva, Manuel E.G. Winkler, Willyan M. Giufrida, Lucio Cardozo-Filho, Christian G. Alonso, Jardel B.O. Lopes, Adley F. Rubira, Rafael Silva. Effect of phase composition on the photocatalytic activity of titanium dioxide obtained from supercritical antisolvent. Journal of Colloid and Interface Science 2019, 535 , 245-254. https://doi.org/10.1016/j.jcis.2018.09.098
  14. Lijia Liu, Tsun-Kong Sham. Luminescence from TiO2 Nanotubes and Related Nanostructures Investigated Using Synchrotron X-Ray Absorption Near-Edge Structure and X-Ray Excited Optical Luminescence. 2018,,https://doi.org/10.5772/intechopen.72856
  15. Fatemeh Zabihi, Mohammad-Reza Ahmadian-Yazdi, Morteza Eslamian. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process. Catalysts 2017, 7 (5) , 136. https://doi.org/10.3390/catal7050136
  16. Dong-Dong Qin, Qiu-Hong Wang, Jing Chen, Cai-Hua He, Yang Li, Cai-He Wang, Jing-Jing Quan, Chun-Lan Tao, Xiao-Quan Lu. Phosphorus-doped TiO 2 nanotube arrays for visible-light-driven photoelectrochemical water oxidation. Sustainable Energy & Fuels 2017, 1 (2) , 248-253. https://doi.org/10.1039/C6SE00045B