Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions

View Author Information
Texas Materials Institute, Department of Chemistry (1 University Station A5300), §Department of Chemical Engineering (1 University Station C0400), and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
# College of Material Science & Engineering, Donghua University, Shanghai 201620, People’s Republic of China
*E-mail: [email protected] (K.J.S.).
*E-mail: [email protected] (K.P.J.).
Cite this: Chem. Mater. 2014, 26, 11, 3368–3376
Publication Date (Web):May 15, 2014
Copyright © 2014 American Chemical Society
Article Views
Read OnlinePDF (2 MB)
Supporting Info (1)»


We present a series of perovskite electrocatalysts that are highly active for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in an aqueous alkaline electrolyte. Lanthanum-based perovskites containing different transition metal active sites (LaBO3, B = Ni, Ni0.75Fe0.25, Co, Mn) are synthesized by a general colloidal method, yielding phase pure catalysts of homogeneous morphology and surface area (8–14 m2/g). Each perovskite’s ability to catalyze the OER and ORR is examined using thin film rotating disk electrochemistry (RDE). LaCoO3 supported on nitrogen-doped carbon is shown to be ∼3 times more active for the OER than high-surface-area IrO2. Furthermore, LaCoO3 is demonstrated to be highly bifunctional by having a lower total overpotential between the OER and ORR (ΔE = 1.00 V) than Pt (ΔE = 1.16) and Ru (ΔE = 1.01). The OER and ORR pathways are perturbed by the introduction of peroxide disproportionation functionality via support interactions and selective doping of the catalyst. LaNi0.75Fe0.25O3’s ability to disproportionate peroxide is hypothesized to be responsible for the ∼50% improvement over LaNiO3 in catalytic activity toward the ORR, despite similar electronic structure. These results allow us to examine the pathways for OER and ORR in context of support interactions, transition metal redox processes, and catalytic bifunctionality.

Supporting Information

Jump To

Material summary table including XRD phase identification, DLS colloid size, BET surface area, and crystallite size. XPS of the N 1s core region of the carbon supports, dissolved oxygen concentration measurements, and electrochemical polarization curves used to calculate mass activities are included. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By

This article is cited by 177 publications.

  1. Sergei V. Porokhin, Victoria A. Nikitina, Dmitry A. Aksyonov, Dmitry S. Filimonov, Egor M. Pazhetnov, Ivan V. Mikheev, Artem M. Abakumov. Mixed-Cation Perovskite La0.6Ca0.4Fe0.7Ni0.3O2.9 as a Stable and Efficient Catalyst for the Oxygen Evolution Reaction. ACS Catalysis 2021, 11 (13) , 8338-8348. https://doi.org/10.1021/acscatal.1c00796
  2. Veronica Celorrio, Andrew S. Leach, Haoliang Huang, Shusaku Hayama, Adam Freeman, David W. Inwood, David J. Fermin, Andrea E. Russell. Relationship between Mn Oxidation State Changes and Oxygen Reduction Activity in (La,Ca)MnO3 as Probed by In Situ XAS and XES. ACS Catalysis 2021, 11 (11) , 6431-6439. https://doi.org/10.1021/acscatal.1c00997
  3. Nitul Kakati, Guangfu Li, Po-Ya Abel Chuang. Insights into the Ni/C-Based Thin-Film Catalyst Layer Design for Urea Oxidation Reaction in a Three-Electrode System. ACS Applied Energy Materials 2021, 4 (4) , 4224-4233. https://doi.org/10.1021/acsaem.1c00607
  4. Samji Samira, John Carl A. Camayang, Krishna Patel, Xiang-Kui Gu, Eranda Nikolla. Modulating Catalytic Properties of Targeted Metal Cationic Centers in Nonstochiometric Mixed Metal Oxides for Electrochemical Oxygen Reduction. ACS Energy Letters 2021, 6 (3) , 1065-1072. https://doi.org/10.1021/acsenergylett.1c00102
  5. Casey E. Beall, Emiliana Fabbri, Thomas J. Schmidt. Perovskite Oxide Based Electrodes for the Oxygen Reduction and Evolution Reactions: The Underlying Mechanism. ACS Catalysis 2021, 11 (5) , 3094-3114. https://doi.org/10.1021/acscatal.0c04473
  6. Yuxuan Wang, Hongyang Su, Yanghua He, Ligui Li, Shangqian Zhu, Hao Shen, Pengfei Xie, Xianbiao Fu, Guangye Zhou, Chen Feng, Dengke Zhao, Fei Xiao, Xiaojing Zhu, Yachao Zeng, Minhua Shao, Shaowei Chen, Gang Wu, Jie Zeng, Chao Wang. Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews 2020, 120 (21) , 12217-12314. https://doi.org/10.1021/acs.chemrev.0c00594
  7. Jishan Liu, Endong Jia, Kelsey A. Stoerzinger, Le Wang, Yining Wang, Zhenzhong Yang, Dawei Shen, Mark H. Engelhard, Mark E. Bowden, Zihua Zhu, Scott A. Chambers, Yingge Du. Dynamic Lattice Oxygen Participation on Perovskite LaNiO3 during Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2020, 124 (28) , 15386-15390. https://doi.org/10.1021/acs.jpcc.0c04808
  8. J. Ran, T. Wang, J. Zhang, Y. Liu, C. Xu, S. Xi, D. Gao. Modulation of Electronics of Oxide Perovskites by Sulfur Doping for Electrocatalysis in Rechargeable Zn–Air Batteries. Chemistry of Materials 2020, 32 (8) , 3439-3446. https://doi.org/10.1021/acs.chemmater.9b05148
  9. Nikhil Kumar, Mukesh Kumar, Tharamani C. Nagaiah, Vasudeva Siruguri, Sudhindra Rayaprol, Ashok Kumar Yadav, Shambhu Nath Jha, Dibyendu Bhattacharyya, Avijit Kumar Paul. Investigation of New B-Site-Disordered Perovskite Oxide CaLaScRuO6+δ: An Efficient Oxygen Bifunctional Electrocatalyst in a Highly Alkaline Medium. ACS Applied Materials & Interfaces 2020, 12 (8) , 9190-9200. https://doi.org/10.1021/acsami.9b20199
  10. Samji Samira, Xiang-Kui Gu, Eranda Nikolla. Design Strategies for Efficient Nonstoichiometric Mixed Metal Oxide Electrocatalysts: Correlating Measurable Oxide Properties to Electrocatalytic Performance. ACS Catalysis 2019, 9 (11) , 10575-10586. https://doi.org/10.1021/acscatal.9b02505
  11. Xi Cheng, Bae-Jung Kim, Emiliana Fabbri, Thomas J. Schmidt. Co/Fe Oxyhydroxides Supported on Perovskite Oxides as Oxygen Evolution Reaction Catalyst Systems. ACS Applied Materials & Interfaces 2019, 11 (38) , 34787-34795. https://doi.org/10.1021/acsami.9b04456
  12. J. Tyler Mefford, Andrew R. Akbashev, Liming Zhang, William C. Chueh. Electrochemical Reactivity of Faceted β-Co(OH)2 Single Crystal Platelet Particles in Alkaline Electrolytes. The Journal of Physical Chemistry C 2019, 123 (31) , 18783-18794. https://doi.org/10.1021/acs.jpcc.9b03589
  13. Tisita Das, Sudip Chakraborty, Rajeev Ahuja, Gour P. Das. Functionalization and Defect-Driven Water Splitting Mechanism on a Quasi-Two-Dimensional TiO2 Hexagonal Nanosheet. ACS Applied Energy Materials 2019, 2 (7) , 5074-5082. https://doi.org/10.1021/acsaem.9b00745
  14. Maria Retuerto, Federico Calle-Vallejo, Laura Pascual, Gunnar Lumbeeck, María Teresa Fernandez-Diaz, Mark Croft, Jagannatha Gopalakrishnan, Miguel A. Peña, Joke Hadermann, Martha Greenblatt, Sergio Rojas. La1.5Sr0.5NiMn0.5Ru0.5O6 Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. ACS Applied Materials & Interfaces 2019, 11 (24) , 21454-21464. https://doi.org/10.1021/acsami.9b02077
  15. Moritz L. Weber, Christoph Baeumer, David N. Mueller, Lei Jin, Chun-Lin Jia, Daniel S. Bick, Rainer Waser, Regina Dittmann, Ilia Valov, Felix Gunkel. Electrolysis of Water at Atomically Tailored Epitaxial Cobaltite Surfaces. Chemistry of Materials 2019, 31 (7) , 2337-2346. https://doi.org/10.1021/acs.chemmater.8b04577
  16. Robin P. Forslund, Caleb T. Alexander, Artem M. Abakumov, Keith P. Johnston, Keith J. Stevenson. Enhanced Electrocatalytic Activities by Substitutional Tuning of Nickel-Based Ruddlesden–Popper Catalysts for the Oxidation of Urea and Small Alcohols. ACS Catalysis 2019, 9 (3) , 2664-2673. https://doi.org/10.1021/acscatal.8b04103
  17. Caleb T. Alexander, J. Tyler Mefford, Jennette Saunders, Robin P. Forslund, Keith P. Johnston, Keith J. Stevenson. Anion-Based Pseudocapacitance of the Perovskite Library La1–xSrxBO3−δ (B = Fe, Mn, Co). ACS Applied Materials & Interfaces 2019, 11 (5) , 5084-5094. https://doi.org/10.1021/acsami.8b19592
  18. Yao Lu, Aijing Ma, Yifu Yu, Rui Tan, Chengwei Liu, Peng Zhang, Dan Liu, Jianzhou Gui. Engineering Oxygen Vacancies into LaCoO3 Perovskite for Efficient Electrocatalytic Oxygen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 2906-2910. https://doi.org/10.1021/acssuschemeng.8b05717
  19. Emiliana Fabbri, Thomas J. Schmidt. Oxygen Evolution Reaction—The Enigma in Water Electrolysis. ACS Catalysis 2018, 8 (10) , 9765-9774. https://doi.org/10.1021/acscatal.8b02712
  20. Victoria F. Mattick, Xinfang Jin, Tianrang Yang, Ralph E. White, Kevin Huang. Unraveling Oxygen Electrocatalysis Mechanisms on a Thin-Film Oxygen-Deficient Perovskite La0.6Sr0.4CoO3−δ. ACS Applied Energy Materials 2018, 1 (8) , 3937-3946. https://doi.org/10.1021/acsaem.8b00669
  21. F. Deganello, D. N. Oko, M. L. Testa, V. La Parola, M. L. Tummino, C. O. Soares, J. G. Rivera, G. Orozco, D. Guay, A. C. Tavares. Perovskite-Type Catalysts Prepared by Nanocasting: Effect of Metal Silicates on the Electrocatalytic Activity toward Oxygen Evolution and Reduction Reactions. ACS Applied Energy Materials 2018, 1 (6) , 2565-2575. https://doi.org/10.1021/acsaem.8b00282
  22. Xiang-Kui Gu, Samji Samira, Eranda Nikolla. Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials 2018, 30 (9) , 2860-2872. https://doi.org/10.1021/acs.chemmater.8b00694
  23. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  24. Jong Suk Yoo, Xi Rong, Yusu Liu, Alexie M. Kolpak. Role of Lattice Oxygen Participation in Understanding Trends in the Oxygen Evolution Reaction on Perovskites. ACS Catalysis 2018, 8 (5) , 4628-4636. https://doi.org/10.1021/acscatal.8b00612
  25. Caleb T. Alexander, Artem M. Abakumov, Robin P. Forslund, Keith P. Johnston, Keith J. Stevenson. Role of the Carbon Support on the Oxygen Reduction and Evolution Activities in LaNiO3 Composite Electrodes in Alkaline Solution. ACS Applied Energy Materials 2018, 1 (4) , 1549-1558. https://doi.org/10.1021/acsaem.7b00339
  26. Jong Suk Yoo, Yusu Liu, Xi Rong, Alexie M. Kolpak. Electronic Origin and Kinetic Feasibility of the Lattice Oxygen Participation During the Oxygen Evolution Reaction on Perovskites. The Journal of Physical Chemistry Letters 2018, 9 (7) , 1473-1479. https://doi.org/10.1021/acs.jpclett.8b00154
  27. Dilek Dervishogullari, Christopher A. Sharpe, and Lee R. Sharpe . LaFexCo(1–x)O3 Thin-Film Oxygen Reduction Catalysts Prepared Using Spray Pyrolysis without Conductive Additives. ACS Omega 2017, 2 (11) , 7695-7701. https://doi.org/10.1021/acsomega.7b01428
  28. Yu-Qi Lyu and Francesco Ciucci . Activating the Bifunctionality of a Perovskite Oxide toward Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces 2017, 9 (41) , 35829-35836. https://doi.org/10.1021/acsami.7b10216
  29. Coray L. McBean, Haiqing Liu, Megan E. Scofield, Luyao Li, Lei Wang, Ashley Bernstein, Stanislaus S. Wong. Generalizable, Electroless, Template-Assisted Synthesis and Electrocatalytic Mechanistic Understanding of Perovskite LaNiO3 Nanorods as Viable, Supportless Oxygen Evolution Reaction Catalysts in Alkaline Media. ACS Applied Materials & Interfaces 2017, 9 (29) , 24634-24648. https://doi.org/10.1021/acsami.7b06855
  30. Hui Su, Ke-Xin Zhang, Bing Zhang, Hong-Hui Wang, Qiu-Ying Yu, Xin-Hao Li, Markus Antonietti, and Jie-Sheng Chen . Activating Cobalt Nanoparticles via the Mott–Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. Journal of the American Chemical Society 2017, 139 (2) , 811-818. https://doi.org/10.1021/jacs.6b10710
  31. Robin P. Forslund, J. Tyler Mefford, William G. Hardin, Caleb T. Alexander, Keith P. Johnston, and Keith J. Stevenson . Nanostructured LaNiO3 Perovskite Electrocatalyst for Enhanced Urea Oxidation. ACS Catalysis 2016, 6 (8) , 5044-5051. https://doi.org/10.1021/acscatal.6b00487
  32. Jonathan R. Petrie, Hyoungjeen Jeen, Sara C. Barron, Tricia L. Meyer, and Ho Nyung Lee . Enhancing Perovskite Electrocatalysis through Strain Tuning of the Oxygen Deficiency. Journal of the American Chemical Society 2016, 138 (23) , 7252-7255. https://doi.org/10.1021/jacs.6b03520
  33. Yinlong Zhu, Wei Zhou, Jie Yu, Yubo Chen, Meilin Liu, and Zongping Shao . Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials 2016, 28 (6) , 1691-1697. https://doi.org/10.1021/acs.chemmater.5b04457
  34. Zhaodong Wang, Ya You, Jing Yuan, Ya-Xia Yin, Yu-Tao Li, Sen Xin, and Dawei Zhang . Nickel-Doped La0.8Sr0.2Mn1–xNixO3 Nanoparticles Containing Abundant Oxygen Vacancies as an Optimized Bifunctional Catalyst for Oxygen Cathode in Rechargeable Lithium–Air Batteries. ACS Applied Materials & Interfaces 2016, 8 (10) , 6520-6528. https://doi.org/10.1021/acsami.6b00296
  35. Jonathan R. Petrie, Valentino R. Cooper, John W. Freeland, Tricia L. Meyer, Zhiyong Zhang, Daniel A. Lutterman, and Ho Nyung Lee . Enhanced Bifunctional Oxygen Catalysis in Strained LaNiO3 Perovskites. Journal of the American Chemical Society 2016, 138 (8) , 2488-2491. https://doi.org/10.1021/jacs.5b11713
  36. Bryan R. Wygant, Karalee A. Jarvis, William D. Chemelewski, Oluwaniyi Mabayoje, Hugo Celio, and C. Buddie Mullins . Structural and Catalytic Effects of Iron- and Scandium-Doping on a Strontium Cobalt Oxide Electrocatalyst for Water Oxidation. ACS Catalysis 2016, 6 (2) , 1122-1133. https://doi.org/10.1021/acscatal.5b02429
  37. Xi Rong, Jules Parolin, and Alexie M. Kolpak . A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution. ACS Catalysis 2016, 6 (2) , 1153-1158. https://doi.org/10.1021/acscatal.5b02432
  38. Michael K. Bates, Qingying Jia, Huong Doan, Wentao Liang, and Sanjeev Mukerjee . Charge-Transfer Effects in Ni–Fe and Ni–Fe–Co Mixed-Metal Oxides for the Alkaline Oxygen Evolution Reaction. ACS Catalysis 2016, 6 (1) , 155-161. https://doi.org/10.1021/acscatal.5b01481
  39. Weiwei Gu, Jingjun Liu, Mingan Hu, Feng Wang, and Ye Song . La2O2CO3 Encapsulated La2O3 Nanoparticles Supported on Carbon as Superior Electrocatalysts for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2015, 7 (48) , 26914-26922. https://doi.org/10.1021/acsami.5b06100
  40. Kelsey A. Stoerzinger, Marcel Risch, Binghong Han, and Yang Shao-Horn . Recent Insights into Manganese Oxides in Catalyzing Oxygen Reduction Kinetics. ACS Catalysis 2015, 5 (10) , 6021-6031. https://doi.org/10.1021/acscatal.5b01444
  41. Dengjie Chen, Chi Chen, Zarah Medina Baiyee, Zongping Shao, and Francesco Ciucci . Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews 2015, 115 (18) , 9869-9921. https://doi.org/10.1021/acs.chemrev.5b00073
  42. Yi Zhan, Guojun Du, Shiliu Yang, Chaohe Xu, Meihua Lu, Zhaolin Liu, and Jim Yang Lee . Development of Cobalt Hydroxide as a Bifunctional Catalyst for Oxygen Electrocatalysis in Alkaline Solution. ACS Applied Materials & Interfaces 2015, 7 (23) , 12930-12936. https://doi.org/10.1021/acsami.5b02670
  43. S. Malkhandi, P. Trinh, Aswin K. Manohar, A. Manivannan, M. Balasubramanian, G. K. Surya Prakash, and S. R. Narayanan . Design Insights for Tuning the Electrocatalytic Activity of Perovskite Oxides for the Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2015, 119 (15) , 8004-8013. https://doi.org/10.1021/jp512722x
  44. Jaemin Kim, Xi Yin, Kai-Chieh Tsao, Shaohua Fang, and Hong Yang . Ca2Mn2O5 as Oxygen-Deficient Perovskite Electrocatalyst for Oxygen Evolution Reaction. Journal of the American Chemical Society 2014, 136 (42) , 14646-14649. https://doi.org/10.1021/ja506254g
  45. Jinmei Qian, Junfu Li, Baorui Xia, Jingyan Zhang, Zhengmei Zhang, Cao Guan, Daqiang Gao, Wei Huang. Multi-stability modulating of alkaline-earth metal doped LaCoO3 for rechargeable Zn-air batteries. Energy Storage Materials 2021, 42 , 470-476. https://doi.org/10.1016/j.ensm.2021.08.007
  46. Yong-Rong Sun, Xue Zhang, Li-Guang Wang, Zhi-Kai Liu, Ning Kang, Ni Zhou, Wen-Long You, Jia Li, Xue-Feng Yu. Lattice contraction tailoring in perovskite oxides towards improvement of oxygen electrode catalytic activity. Chemical Engineering Journal 2021, 421 , 129698. https://doi.org/10.1016/j.cej.2021.129698
  47. Ramsha Khan, Muhammad Taqi Mehran, Salman Raza Naqvi, Asif Hussain Khoja, Mutawara Mahmood Baig, Muhammad Aftab Akram, Faisal Shahzad, Sajjad Hussain. A highly efficient A-site deficient perovskite interlaced within two dimensional MXene nanosheets as an active electrocatalyst for hydrogen production. International Journal of Hydrogen Energy 2021, 16 https://doi.org/10.1016/j.ijhydene.2021.09.017
  48. Hamidreza Arandiyan, Sajjad S. Mofarah, Charles C. Sorrell, Esmail Doustkhah, Baharak Sajjadi, Derek Hao, Yuan Wang, Hongyu Sun, Bing-Jie Ni, Mehran Rezaei, Zongping Shao, Thomas Maschmeyer. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chemical Society Reviews 2021, 50 (18) , 10116-10211. https://doi.org/10.1039/D0CS00639D
  49. Ning Zhang, Yang Chai. Lattice oxygen redox chemistry in solid-state electrocatalysts for water oxidation. Energy & Environmental Science 2021, 14 (9) , 4647-4671. https://doi.org/10.1039/D1EE01277K
  50. Yi Liang, Dongdong Ye, Ning Han, Ping Liang, Jiaqi Wang, Guangjun Yang, Chengkai Zhang, Xin He, Mei Chen, Chi Zhang. Nanoporous silver-modified LaCoO3-δ perovskite for oxygen reduction reaction. Electrochimica Acta 2021, 391 , 138908. https://doi.org/10.1016/j.electacta.2021.138908
  51. Sivasankara Rao Ede, Carlos Poasada, Jessa Guffie, William Ratcliff, Hui Wu, Shubo Han, Zhiping Luo. Synthesis and Characterization of Sr 2 Co 2- x Fe x O 5+ d Perovskite Oxides. Microscopy and Microanalysis 2021, 27 (S1) , 714-715. https://doi.org/10.1017/S1431927621002919
  52. Chang-Xin Zhao, Jia-Ning Liu, Juan Wang, Ding Ren, Bo-Quan Li, Qiang Zhang. Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews 2021, 50 (13) , 7745-7778. https://doi.org/10.1039/D1CS00135C
  53. Chuanhua Li, Jingsai Cheng, Yu Jiang, Wei Xiao, Xuemin Yan. Electronic structure regulation and electrocatalytic mechanism of one-dimensional mesoporous La0.8Sr0.2Mn1-xCoxO3 with bifunctional electrocatalysts towards Zn-air batteries. Journal of Power Sources 2021, 498 , 229940. https://doi.org/10.1016/j.jpowsour.2021.229940
  54. É. V. Nascimento, A. M. Garrido Pedrosa, M. J. B. Souza. Development of LaxCa1-xMnO3 materials for Bezaktiv Blue removal in aqueous media. Water Science and Technology 2021, 83 (11) , 2793-2808. https://doi.org/10.2166/wst.2021.174
  55. Yingjian Yu, Sujuan Hu. The applications of semiconductor materials in air batteries. Chinese Chemical Letters 2021, 13 https://doi.org/10.1016/j.cclet.2021.04.049
  56. Shengjuan Li, Zhiwei Xia, Wenyi Zhao, Kun Wu, Lulu Suo, Yunhao Huo, Lei Li. Dandelion-type Mn-promoted Co3O4/CNTs composite as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Ionics 2021, 27 (4) , 1619-1632. https://doi.org/10.1007/s11581-021-03963-9
  57. Kumar Kashyap Hazarika, Yusuke Yamada, Ekaterina V. Matus, Mikhail Kerzhentsev, Pankaj Bharali. Enhancing the electrocatalytic activity via hybridization of Cu(I/II) oxides with Co3O4 towards oxygen electrode reactions. Journal of Power Sources 2021, 490 , 229511. https://doi.org/10.1016/j.jpowsour.2021.229511
  58. Xiaohan Wu, Hui Liu, Jiaxi Zhang, Juemin Song, Jiefeng Huang, Wanli Xu, Yang Yan, Kun Yu. Synthesis of Ag-La0.8Sr0.2MnO3 (LSM-Ag) Composite Powder and Its Application in Magnesium Air Battery. Metals 2021, 11 (4) , 633. https://doi.org/10.3390/met11040633
  59. J. Li, C. A. Triana, W. Wan, D. P. Adiyeri Saseendran, Y. Zhao, S. E. Balaghi, S. Heidari, G. R. Patzke. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. Chemical Society Reviews 2021, 50 (4) , 2444-2485. https://doi.org/10.1039/D0CS00978D
  60. Shanshan Yan, Liyang Wan, Yejian Xue, Yan Wang, Guangjie Shao, Zhaoping Liu. A facile method of selective dissolution for preparation of Co 3 O 4 /LaCoO 3 as a bifunctional catalyst for Al/Zn–air batteries. Sustainable Energy & Fuels 2021, 5 (4) , 995-1002. https://doi.org/10.1039/D0SE01636E
  61. Jiayi Tang, Chao Su, Yijun Zhong, Zongping Shao. Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A 2021, 9 (6) , 3151-3179. https://doi.org/10.1039/D0TA09346G
  62. Chuanhua Li, Jingsai Cheng, Yu Jiang, Wei Xiao, Xuemin Yan. Synthesis and enhanced electrocatalytic mechanism of mesoporous La0.8Sr0.2MnO3 nanowires as high-active electrocatalysts for Zn-air batteries. Applied Surface Science 2021, 538 , 148015. https://doi.org/10.1016/j.apsusc.2020.148015
  63. Baoyi Yin, Yining Li, Ningqiang Sun, Xiaohui Ji, Yu Huan, Dehua Dong, Xun Hu, Tao Wei. Activating ORR and OER in Ruddlesden-Popper based catalysts by enhancing interstitial oxygen and lattice oxygen redox reactions. Electrochimica Acta 2021, 370 , 137747. https://doi.org/10.1016/j.electacta.2021.137747
  64. Bae-Jung Kim, Emiliana Fabbri, Mario Borlaf, Daniel F. Abbott, Ivano E. Castelli, Maarten Nachtegaal, Thomas Graule, Thomas J. Schmidt. Oxygen evolution reaction activity and underlying mechanism of perovskite electrocatalysts at different pH. Materials Advances 2021, 2 (1) , 345-355. https://doi.org/10.1039/D0MA00661K
  65. Tetyana Maltseva, Valeriy Kublanovsky. ELECTROCATALYSIS OF THE OXYGEN REACTION ON THE MULTICOMPONENT OXIDES OF TRANSITION METALS. Ukrainian Chemistry Journal 2021, 86 (12) , 103-123. https://doi.org/10.33609/2708-129X.86.12.2020.103-123
  66. Xuyang Wu, He Miao, Ruigan Hu, Bin Chen, Mingming Yin, Houcheng Zhang, Lan Xia, Chunfei Zhang, Jinliang Yuan. A-site deficient perovskite nanofibers boost oxygen evolution reaction for zinc-air batteries. Applied Surface Science 2021, 536 , 147806. https://doi.org/10.1016/j.apsusc.2020.147806
  67. Anna S. Ryabova, Sergey Ya. Istomin, Kirill A. Dosaev, Antoine Bonnefont, Joke Hadermann, Natalya A. Arkharova, Anton S. Orekhov, Robert Paria Sena, Viktoriia A. Saveleva, Gwénaëlle Kéranguéven, Evgeny V. Antipov, Elena R. Savinova, Galina A. Tsirlina. Mn2O3 oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media: Highly active if properly manipulated. Electrochimica Acta 2021, 367 , 137378. https://doi.org/10.1016/j.electacta.2020.137378
  68. Jian Wang, Yang Gao, Hui Kong, Juwon Kim, Subin Choi, Francesco Ciucci, Yong Hao, Shihe Yang, Zongping Shao, Jongwoo Lim. Non-precious-metal catalysts for alkaline water electrolysis: operando characterizations, theoretical calculations, and recent advances. Chemical Society Reviews 2020, 49 (24) , 9154-9196. https://doi.org/10.1039/D0CS00575D
  69. Chunzhen Yang, Gwenaëlle Rousse, Katrine Louise Svane, Paul E. Pearce, Artem M. Abakumov, Michael Deschamps, Giannantonio Cibin, Alan V. Chadwick, Daniel Alves Dalla Corte, Heine Anton Hansen, Tejs Vegge, Jean-Marie Tarascon, Alexis Grimaud. Cation insertion to break the activity/stability relationship for highly active oxygen evolution reaction catalyst. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15231-x
  70. C. B. Njoku, R. J. Kriek. Sol-gel Synthesis of Ce0.8Sr0.2Co1-(x+y)NixFeyO3-δ (x = 0.1, 0.2, and y = 0.2, 0.5, 0.7)—a Nanocomposite-Type Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Media. Electrocatalysis 2020, 11 (6) , 628-641. https://doi.org/10.1007/s12678-020-00624-9
  71. Lihua Zhang, Qun Fan, Kai Li, Sheng Zhang, Xinbin Ma. First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustainable Energy & Fuels 2020, 4 (11) , 5417-5432. https://doi.org/10.1039/D0SE01087A
  72. Ramsha Khan, Muhammad T. Mehran, Salman R. Naqvi, Asif H. Khoja, Khalid Mahmood, Faisal Shahzad, Sajjad Hussain. Role of perovskites as a bi‐functional catalyst for electrochemical water splitting: A review. International Journal of Energy Research 2020, 44 (12) , 9714-9747. https://doi.org/10.1002/er.5635
  73. Cong Li, Yarong Wang, Chao Jin, Jia Lu, Jiawen Sun, Ruizhi Yang. Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+δ layered perovskite oxide. International Journal of Hydrogen Energy 2020, 45 (43) , 22959-22964. https://doi.org/10.1016/j.ijhydene.2020.06.044
  74. Gwénaëlle Kéranguéven, Corinne Bouillet, Vasiliki Papaefthymiou, Pavel A. Simonov, Elena R. Savinova. How key characteristics of carbon materials influence the ORR activity of LaMnO3- and Mn3O4-carbon composites prepared by in situ autocombustion method. Electrochimica Acta 2020, 353 , 136557. https://doi.org/10.1016/j.electacta.2020.136557
  75. Shuai Li, Yang-lan Li, Zhi-gang Zhang, Xin-yuan Chen, Hang Xiao, Lang Lin, Wei-qin Wu, Xiao-yuan Wu, Xiao-yu Jiang. LaCoO3-modified RuO2–TiO2/Ti electrode as an efficient electrocatalyst for oxygen evolution reaction. Journal of Applied Electrochemistry 2020, 50 (6) , 723-731. https://doi.org/10.1007/s10800-020-01424-1
  76. Zhaoyi Ding, Juanjuan Bian, Shuo Shuang, Xiaodi Liu, Yuanchao Hu, Chunwen Sun, Yong Yang. High Entropy Intermetallic–Oxide Core–Shell Nanostructure as Superb Oxygen Evolution Reaction Catalyst. Advanced Sustainable Systems 2020, 4 (5) , 1900105. https://doi.org/10.1002/adsu.201900105
  77. Haipeng Deng, Linan Shu, Zaixing Wang, Junkui Mao, Fengli Liang. SrTi0.1CoxFe0.9-xO3-δ Perovskites for enhanced oxygen evolution reaction activity. International Journal of Hydrogen Energy 2020, 45 (24) , 13129-13138. https://doi.org/10.1016/j.ijhydene.2020.03.057
  78. Anamika, Dharmendra Kumar Yadav, Krishna K. Manar, Chote Lal Yadav, Kamlesh Kumar, Vellaichamy Ganesan, Michael G. B. Drew, Nanhai Singh. New heteroleptic [Ni( ii ) 1,1-dithiolate-phosphine] complexes: synthesis, characterization and electrocatalytic oxygen evolution studies. Dalton Transactions 2020, 49 (11) , 3592-3605. https://doi.org/10.1039/C9DT04923A
  79. Rui Gao, Dongpeng Yan. Recent Development of Ni/Fe‐Based Micro/Nanostructures toward Photo/Electrochemical Water Oxidation. Advanced Energy Materials 2020, 10 (11) , 1900954. https://doi.org/10.1002/aenm.201900954
  80. He Miao, Xuyang Wu, Bin Chen, Qin Wang, Fu Wang, Jiatang Wang, Chunfei Zhang, Houcheng Zhang, Jinliang Yuan, Qiuju Zhang. A-site deficient/excessive effects of LaMnO3 perovskite as bifunctional oxygen catalyst for zinc-air batteries. Electrochimica Acta 2020, 333 , 135566. https://doi.org/10.1016/j.electacta.2019.135566
  81. Xiaomin Xu, Yangli Pan, Lei Ge, Zongping Shao. Perovskite Materials in Electrocatalysis. 2020,,, 209-250. https://doi.org/10.1007/978-981-15-1267-4_8
  82. Praveen Kolla, Golibsho Nasymov, Rudresh Rajappagowda, Alevtina Smirnova. Bi-functionality of samarium- and praseodymium-based perovskite catalysts for oxygen reduction and oxygen evolution reactions in alkaline medium. Journal of Power Sources 2020, 446 , 227234. https://doi.org/10.1016/j.jpowsour.2019.227234
  83. Umar Farooq, Ruby Phul, Saad M. Alshehri, Jahangeer Ahmed, Tokeer Ahmad. Electrocatalytic and Enhanced Photocatalytic Applications of Sodium Niobate Nanoparticles Developed by Citrate Precursor Route. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-40745-w
  84. Jie Xiong, Hong Zhong, Jing Li, Xinlei Zhang, Jiawei Shi, Weiwei Cai, Konggang Qu, Chengzhou Zhu, Zehui Yang, Scott P. Beckman, Hansong Cheng. Engineering highly active oxygen sites in perovskite oxides for stable and efficient oxygen evolution. Applied Catalysis B: Environmental 2019, 256 , 117817. https://doi.org/10.1016/j.apcatb.2019.117817
  85. Ivan S. Filimonenkov, Galina A. Tsirlina, Elena R. Savinova. Conductive additives for oxide-based OER catalysts: A comparative RRDE study of carbon and silver in alkaline medium. Electrochimica Acta 2019, 319 , 227-236. https://doi.org/10.1016/j.electacta.2019.06.154
  86. Ivan S. Filimonenkov, Corinne Bouillet, Gwénaëlle Kéranguéven, Pavel A. Simonov, Galina A. Tsirlina, Elena R. Savinova. Carbon materials as additives to the OER catalysts: RRDE study of carbon corrosion at high anodic potentials. Electrochimica Acta 2019, 321 , 134657. https://doi.org/10.1016/j.electacta.2019.134657
  87. Congling Hu, Lei Zhang, Jinlong Gong. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy & Environmental Science 2019, 12 (9) , 2620-2645. https://doi.org/10.1039/C9EE01202H
  88. Pengzhang Li, Chuanjin Tian, Wei Yang, Wenyan Zhao, Zhe Lü. LaNiO3 modified with Ag nanoparticles as an efficient bifunctional electrocatalyst for rechargeable zinc–air batteries. Frontiers of Materials Science 2019, 13 (3) , 277-287. https://doi.org/10.1007/s11706-019-0474-z
  89. Mingjie Wu, Gaixia Zhang, Minghao Wu, Jai Prakash, Shuhui Sun. Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials 2019, 21 , 253-286. https://doi.org/10.1016/j.ensm.2019.05.018
  90. Quazi Arif Islam, Rahul Majee, Sayan Bhattacharyya. Bimetallic nanoparticle decorated perovskite oxide for state-of-the-art trifunctional electrocatalysis. Journal of Materials Chemistry A 2019, 7 (33) , 19453-19464. https://doi.org/10.1039/C9TA06123A
  91. Jun Xu, Chan Chen, Zhifei Han, Yuanyuan Yang, Junsheng Li, Qibo Deng. Recent Advances in Oxygen Electrocatalysts Based on Perovskite Oxides. Nanomaterials 2019, 9 (8) , 1161. https://doi.org/10.3390/nano9081161
  92. Chang Hu, Xianjie Wang, Tai Yao, Tangling Gao, Jiecai Han, Xinghong Zhang, Yumin Zhang, Ping Xu, Bo Song. Enhanced Electrocatalytic Oxygen Evolution Activity by Tuning Both the Oxygen Vacancy and Orbital Occupancy of B‐Site Metal Cation in NdNiO 3. Advanced Functional Materials 2019, 29 (30) , 1902449. https://doi.org/10.1002/adfm.201902449
  93. Chima Benjamin Njoku, Roelof Jacobus Kriek. Application of Sm0.8Sr0.2Fe1-xCoxO3-δ (x = 0.2, 0.5, 0.8) Perovskite for the Oxygen Evolution Reaction in Alkaline Media. Electrocatalysis 2019, 10 (4) , 305-313. https://doi.org/10.1007/s12678-018-0498-7
  94. Weiwei Cai, Xinlei Zhang, Jiawei Shi, Jing Li, Zhao Liu, Shunfa Zhou, Xiaomeng Jia, Jie Xiong, Konggang Qu, Yunjie Huang. Contribution of carbon support in cost-effective metal oxide/carbon composite catalysts for the alkaline oxygen evolution reaction. Catalysis Communications 2019, 127 , 5-9. https://doi.org/10.1016/j.catcom.2019.04.016
  95. Luyao Li, Sha Tan, Kenna L. Salvatore, Stanislaus S. Wong. Nanoscale Perovskites as Catalysts and Supports for Direct Methanol Fuel Cells. Chemistry – A European Journal 2019, 25 (33) , 7779-7797. https://doi.org/10.1002/chem.201805695
  96. Fengli Liang, Ziqiong Yang, Haipeng Deng, Jaka Sunarso, Lili Yang, Junkui Mao. Enhancement of oxygen evolution reaction activity and durability of Ba0.5Sr0.5Co0.8Fe0.2O3- by CO2 thermal treatment. Journal of Materials Science & Technology 2019, 35 (6) , 1184-1191. https://doi.org/10.1016/j.jmst.2019.01.005
  97. Antoine Bonnefont, Anna S. Ryabova, Tiphaine Schott, Gwénaëlle Kéranguéven, Sergey Ya. Istomin, Evgeny V. Antipov, Elena R. Savinova. Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Current Opinion in Electrochemistry 2019, 14 , 23-31. https://doi.org/10.1016/j.coelec.2018.09.010
  98. Yumin Da, Lirong Zeng, Caiyun Wang, Cairong Gong, Lan Cui. A simple approach to tailor OER activity of SrxCo0.8Fe0.2O3 perovskite catalysts. Electrochimica Acta 2019, 300 , 85-92. https://doi.org/10.1016/j.electacta.2019.01.052
  99. Qin Li, Xie Zhou, Zhiqiang Wei, Guoping Du, Guoguang Zhang, Nan Chen. Electrocatalytic activity of LaSr3Fe3O10 and LaSr3Fe3O10-GO towards oxygen reduction reaction in alkaline medium. Journal of Rare Earths 2019, 37 (3) , 282-286. https://doi.org/10.1016/j.jre.2018.07.004
  100. Wan-Jian Yin, Baicheng Weng, Jie Ge, Qingde Sun, Zhenzhu Li, Yanfa Yan. Oxide perovskites, double perovskites and derivatives for electrocatalysis, photocatalysis, and photovoltaics. Energy & Environmental Science 2019, 12 (2) , 442-462. https://doi.org/10.1039/C8EE01574K
Load all citations