RETURN TO ISSUEPREVResearch ArticleNEXT

Electrocatalytic Enhancement of Salicylic Acid Oxidation at Electrochemically Reduced TiO2 Nanotubes

View Author Information
Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada
*Fax: 1-807-346-7775. E-mail: [email protected]
Cite this: ACS Catal. 2014, 4, 8, 2616–2622
Publication Date (Web):June 27, 2014
https://doi.org/10.1021/cs500487a
Copyright © 2014 American Chemical Society
Article Views
1419
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

In this study, TiO2 nanotubes were treated via electrochemical reduction and tested as a novel catalyst, for the first time, toward the electrochemical oxidation of salicylic acid (SA), where the effects of cathodic current and reduction time were systemically investigated. The fabricated TiO2 nanotubes were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV), chronoamperometry, chronopotentiometry, ultraviolet–visible light (UV-vis) absorbance spectroscopy, and Mott–Schottky plots were employed to study the enhanced electrochemical activity of the TiO2 nanotubes. Our experimental results revealed that the optimal electrochemical treatment conditions were −5 mA cm–2 for 10 min. The treated TiO2 nanotubes possessed a much higher overpotential for oxygen evolution than a Pt electrode, and exhibited a high electrocatalytic activity toward the oxidation of SA. The oxidation of SA at the treated TiO2 nanotubes was shown to be 6.3 times greater than a Pt electrode. Stability tests indicated that treated TiO2 nanotubes are very stable over eight cycles of electrochemical oxidation of SA. The high electrocatalytic activity and stability of the treated TiO2 nanotubes enabled by the facile electrochemical reduction can be attributed to the decrease of Ti(IV), the increase of Ti(II) and Ti(III), and the increase of the oxygen vacancies, as well as significant improvement of the donor density.

Cited By


This article is cited by 37 publications.

  1. Jing Wu, Da Li, Jia Liu, Chao Li, Zeng Li, Bruce E. Logan, Yujie Feng. Enhanced Charge Separation of TiO2 Nanotubes Photoelectrode for Efficient Conversion of CO2. ACS Sustainable Chemistry & Engineering 2018, 6 (10) , 12953-12960. https://doi.org/10.1021/acssuschemeng.8b02375
  2. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  3. Yang Yang and Michael R. Hoffmann . Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology 2016, 50 (21) , 11888-11894. https://doi.org/10.1021/acs.est.6b03540
  4. Nitish Roy, Kam Tong Leung, and Debabrata Pradhan . Nitrogen Doped Reduced Graphene Oxide Based Pt–TiO2 Nanocomposites for Enhanced Hydrogen Evolution. The Journal of Physical Chemistry C 2015, 119 (33) , 19117-19125. https://doi.org/10.1021/acs.jpcc.5b03870
  5. Xuedong Du, Mehmet A. Oturan, Minghua Zhou, Nacer Belkessa, Pei Su, Jingju Cai, Clément Trellu, Emmanuel Mousset. Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Applied Catalysis B: Environmental 2021, 296 , 120332. https://doi.org/10.1016/j.apcatb.2021.120332
  6. Chen Chen, Ruidong Xu, Xuanbing Wang, Wenhao Jiang, Suyang Feng, Ao Ju. Controllable preparation of Ti/TiO2-NTs/PbO2–CNTs–MnO2 layered composite materials with excellent electrocatalytic activity for the OER in acidic media. Ceramics International 2021, 47 (18) , 25350-25362. https://doi.org/10.1016/j.ceramint.2021.05.257
  7. Qiang Liu, Shiqi Jiang, Xintong Su, Xiaolei Zhang, Weimin Cao, Yunfeng Xu. Role of the biochar modified with ZnCl2 and FeCl3 on the electrochemical degradation of nitrobenzene. Chemosphere 2021, 275 , 129966. https://doi.org/10.1016/j.chemosphere.2021.129966
  8. Zhongzheng Hu, Jingju Cai, Ge Song, Yusi Tian, Minghua Zhou. Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications. Current Opinion in Electrochemistry 2021, 26 , 100659. https://doi.org/10.1016/j.coelec.2020.100659
  9. Chen Chen, Xuanbing Wang, Ruidong Xu, Ying Zhang, Suyang Feng, Ao Ju, Wenhao Jiang. PbO 2 modified with TiO 2 -NTs composite materials with enhanced OER electrocatalytic activity for Zn electrowinning. RSC Advances 2021, 11 (11) , 6146-6158. https://doi.org/10.1039/D0RA08448D
  10. So Young Yang, Jiyeon Park, Hye Won Jeong, Hyunwoong Park. Electrocatalytic activities of electrochemically reduced tubular titania arrays loaded with cobalt ions in flow-through processes. Chemical Engineering Journal 2021, 404 , 126410. https://doi.org/10.1016/j.cej.2020.126410
  11. Deyou Yu, Liping Wang, Taoyu Yang, Guangpeng Yang, Dong Wang, Huagang Ni, Minghua Wu. Tuning Lewis acidity of iron-based metal-organic frameworks for enhanced catalytic ozonation. Chemical Engineering Journal 2021, 404 , 127075. https://doi.org/10.1016/j.cej.2020.127075
  12. Khuzaimah Arifin, Rozan Mohamad Yunus, Lorna Jeffery Minggu, Mohammad B. Kassim. Improvement of TiO2 nanotubes for photoelectrochemical water splitting: Review. International Journal of Hydrogen Energy 2021, 46 (7) , 4998-5024. https://doi.org/10.1016/j.ijhydene.2020.11.063
  13. Kaixuan Wang, Yang Li, Junxiong Huang, Lei Xu, Lifeng Yin, Yangyuan Ji, Chong Wang, Zesheng Xu, Junfeng Niu. Insights into electrochemical decomposition mechanism of lipopolysaccharide using TiO2 nanotubes arrays electrode. Journal of Hazardous Materials 2020, 391 , 122259. https://doi.org/10.1016/j.jhazmat.2020.122259
  14. Jesse S. Dondapati, Aicheng Chen. Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning. Physical Chemistry Chemical Physics 2020, 22 (16) , 8878-8888. https://doi.org/10.1039/D0CP01518K
  15. Xin Chang, Joshua van der Zalm, Sapanbir S. Thind, Aicheng Chen. Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes. Journal of Electroanalytical Chemistry 2020, 863 , 114049. https://doi.org/10.1016/j.jelechem.2020.114049
  16. Xin Xu, Jingju Cai, Minghua Zhou, Xuedong Du, Ying Zhang. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped Blue TiO2 nanotube arrays with formic acid as electrolyte. Journal of Hazardous Materials 2020, 382 , 121096. https://doi.org/10.1016/j.jhazmat.2019.121096
  17. Jingju Cai, Minghua Zhou, Yuwei Pan, Xuedong Du, Xiaoye Lu. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode. Applied Catalysis B: Environmental 2019, 257 , 117902. https://doi.org/10.1016/j.apcatb.2019.117902
  18. Amir Ahmadi, Tingting Wu. Electrocatalytic reduction of nitrobenzene using TiO2 nanotube electrodes with different morphologies: Kinetics, mechanism, and degradation pathways. Chemical Engineering Journal 2019, 374 , 1241-1252. https://doi.org/10.1016/j.cej.2019.06.020
  19. Min Tian, Sapanbir S. Thind, Jesse S. Dondapati, Xinyong Li, Aicheng Chen. Electrochemical oxidation of 4-chlorophenol for wastewater treatment using highly active UV treated TiO2 nanotubes. Chemosphere 2018, 209 , 182-190. https://doi.org/10.1016/j.chemosphere.2018.06.042
  20. Kefeng Wang, Qi Chen, Yingyan Hu, Wei Wei, Songzhu Wang, Qi Shen, Peng Qu. Crystalline Ru 0.33 Se Nanoparticles-Decorated TiO 2 Nanotube Arrays for Enhanced Hydrogen Evolution Reaction. Small 2018, 14 (37) , 1802132. https://doi.org/10.1002/smll.201802132
  21. Bal-Ram Adhikari, Sapanbir S. Thind, Shuai Chen, Heidi Schraft, Aicheng Chen. Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. Journal of Hazardous Materials 2018, 356 , 73-81. https://doi.org/10.1016/j.jhazmat.2018.05.036
  22. Naeimeh Sadat Peighambardoust, Shahin Khameneh Asl, Raheleh Mohammadpour, Shahab Khameneh Asl. Band-gap narrowing and electrochemical properties in N-doped and reduced anodic TiO2 nanotube arrays. Electrochimica Acta 2018, 270 , 245-255. https://doi.org/10.1016/j.electacta.2018.03.091
  23. Xiaoxia Yan, Junjing Li, Ruiying Yang, Yanmei Li, Xiaohua Zhang, Jinhua Chen. A new photoelectrochemical aptasensor for prion assay based on cyclodextrin and Rhodamine B. Sensors and Actuators B: Chemical 2018, 255 , 2187-2193. https://doi.org/10.1016/j.snb.2017.09.030
  24. Francois-Marie Allioux, Oana David, Andrea Merenda, James W. Maina, Miren Etxeberria Benavides, Alfredo Pacheco Tanaka, Ludovic F. Dumée. Catalytic nickel and nickel–copper alloy hollow-fiber membranes for the remediation of organic pollutants by electrocatalysis. Journal of Materials Chemistry A 2018, 6 (16) , 6904-6915. https://doi.org/10.1039/C7TA11323D
  25. Yudong Xue, Shili Zheng, Yi Zhang, Wei Jin. Reinforced As(III) oxidation by the in-situ electro-generated hydrogen peroxide on MoS2 ultrathin nanosheets modified carbon felt in alkaline media. Electrochimica Acta 2017, 252 , 245-253. https://doi.org/10.1016/j.electacta.2017.08.191
  26. Jingnan Song, Maojun Zheng, Xiaoliang Yuan, Qiang Li, Faze Wang, Liguo Ma, Yuxiu You, Shaohua Liu, Pengjie Liu, Dongkai Jiang, Li Ma, Wenzhong Shen. Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. Journal of Materials Science 2017, 52 (12) , 6976-6986. https://doi.org/10.1007/s10853-017-0930-z
  27. Sapanbir S. Thind, Aicheng Chen. Direct Growth of One-, Two-, and Three-Dimensional Nanostructured Materials at Electrode Surfaces. 2017,,, 97-143. https://doi.org/10.1002/9783527340934.ch3
  28. Amir Ahmadi, Tingting Wu. Inactivation of E. coli using a novel TiO 2 nanotube electrode. Environmental Science: Water Research & Technology 2017, 3 (3) , 534-545. https://doi.org/10.1039/C6EW00319B
  29. Sapanbir S. Thind, Christian C. Mustapic, Jiali Wen, Carl D. Goodwin, Aicheng Chen. Facile synthesis of mesoporous carbon nitride and titanium dioxide nanocomposites with enhanced visible light photocatalytic activity. New Journal of Chemistry 2017, 41 (19) , 10542-10549. https://doi.org/10.1039/C7NJ02333B
  30. Aiqin Zhang, Feilong Gong, Yuanhua Xiao, Xingpeng Guo, Feng Li, Lizhen Wang, Yong Zhang, Linsen Zhang. Electrochemical Reductive Doping and Interfacial Impedance of TiO 2 Nanotube Arrays in Aqueous and Aprotic Solvents. Journal of The Electrochemical Society 2017, 164 (2) , H91-H96. https://doi.org/10.1149/2.1231702jes
  31. Guohong Xie, Xin Chang, Bal Ram Adhikari, Sapanbir S. Thind, Aicheng Chen. Photoelectrochemical degradation of acetaminophen and valacyclovir using nanoporous titanium dioxide. Chinese Journal of Catalysis 2016, 37 (7) , 1062-1069. https://doi.org/10.1016/S1872-2067(15)61101-9
  32. Rongrong Fu, Xiaoqiao Zeng, Lu Ma, Shanmin Gao, Qingyao Wang, Zeyan Wang, Baibiao Huang, Ying Dai, Jun Lu. Enhanced photocatalytic and photoelectrochemical activities of reduced TiO2−x/BiOCl heterojunctions. Journal of Power Sources 2016, 312 , 12-22. https://doi.org/10.1016/j.jpowsour.2016.02.038
  33. Zhaoyang Zhang, Xin Chang, Aicheng Chen. Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO 2 electrodes. Sensors and Actuators B: Chemical 2016, 223 , 664-670. https://doi.org/10.1016/j.snb.2015.10.001
  34. Walaa Alammari, Maduraiveeran Govindhan, Aicheng Chen. Modification of TiO 2 Nanotubes with PtRu/Graphene Nanocomposites for Enhanced Oxygen Reduction Reaction. ChemElectroChem 2015, 2 (12) , 2041-2047. https://doi.org/10.1002/celc.201500295
  35. F. F. Orudzhev, Z. M. Aliev, F. G. Gasanova, A. B. Isaev, N. S. Shabanov. Photoelectrocatalytic oxidation of phenol on TiO2 nanotubes under oxygen pressure. Russian Journal of Electrochemistry 2015, 51 (12) , 1108-1114. https://doi.org/10.1134/S1023193515110130
  36. Xin Chang, Sapanbir S. Thind, Min Tian, Md. Motasser Hossain, Aicheng Chen. Significant Enhancement of the Photoelectrochemical Activity of Nanoporous TiO 2 for Environmental Applications. Electrochimica Acta 2015, 173 , 728-735. https://doi.org/10.1016/j.electacta.2015.05.122
  37. Junye Dong, Jie Han, Xin Ouyang, Wei Gao. How voltage dictates anodic TiO 2 formation. Scripta Materialia 2015, 94 , 32-35. https://doi.org/10.1016/j.scriptamat.2014.09.011