Perovskite Oxides: Preparation, Characterizations, and Applications in Heterogeneous Catalysis

View Author Information
Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-central University for Nationalities, 182 minzudadao, Wuhan 430074, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
§ State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, 18 Fuxue Road, Chang Ping, Beijing 102249, China
*E-mail: (J.Z.) [email protected]
*E-mail: (X.Y.) [email protected]
*E-mail: (Z.Z.) [email protected]
Cite this: ACS Catal. 2014, 4, 9, 2917–2940
Publication Date (Web):July 17, 2014
https://doi.org/10.1021/cs500606g
Copyright © 2014 American Chemical Society
Article Views
14143
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (3 MB)

Abstract

Perovskite oxides with formula ABO3 or A2BO4 are a very important class of functional materials that exhibit a range of stoichiometries and crystal structures. Because of the structural features, they could accommodate around 90% of the metallic natural elements of the Periodic Table that stand solely or partially at the A and/or B positions without destroying the matrix structure, offering a way of correlating solid state chemistry to catalytic properties. Moreover, their high thermal and hydrothermal stability enable them suitable catalytic materials either for gas or solid reactions carried out at high temperatures, or liquid reactions carried out at low temperatures. In this review, we addressed the preparation, characterization, and application of perovskite oxides in heterogeneous catalysis. Preparation is an important issue in catalysis by which materials with desired textural structure and physicochemical property could be achieved; characterization is the way to explore and understand the textural structures and physicochemical properties of the material; however, application reflects how and where the material could be used and what it can solve in practice, which is the ultimate goal of catalysis. This review is organized in five sections: (1) a brief introduction to perovskite oxides, (2) preparation of perovskite oxides with different textural structures and surface morphologies, (3) general characterizations applied to perovskite oxides, (4) application of perovskite oxides in heterogeneous catalysis, and (5) conclusions and perspectives. We expected that the overview on these achievements could lead to research on the nature of catalytic performances of perovskite oxides and finally commercialization of them for industrial use.

Cited By


This article is cited by 453 publications.

  1. Oleg A. Shlyakhtin, Sergey A. Malyshev, Alexey S. Loktev, Galina N. Mazo, Alexey V. Garshev, Ratibor G. Chumakov, Alexey G. Dedov. Synthesis and Decomposition of Nd2–yCayCo1–xNixO4: The Effect of Resynthesis on the Catalytic Performance of Decomposition Products in the Partial Oxidation of Methane. ACS Applied Energy Materials 2021, 4 (8) , 7661-7673. https://doi.org/10.1021/acsaem.1c00993
  2. Miao Wei, Pingping Xie, Xin Yong, Yongdan Li, Cuijuan Zhang. Tuning the Catalytic Activity of Complex Metal Oxides Prepared by a One-Pot Method for NO Direct Decomposition. Industrial & Engineering Chemistry Research 2021, 60 (26) , 9399-9408. https://doi.org/10.1021/acs.iecr.1c00950
  3. Jon A. Onrubia-Calvo, Beñat Pereda-Ayo, Maitane Urrutxua, Unai De La Torre, Juan R. González-Velasco. Boosting NOx Removal by Perovskite-Based Catalyst in NSR–SCR Diesel Aftertreatment Systems. Industrial & Engineering Chemistry Research 2021, 60 (18) , 6525-6537. https://doi.org/10.1021/acs.iecr.0c05420
  4. Yuanyuan Zhang, Guojin Cao, Xiao Yang. Advances in De-NOx Methods and Catalysts for Direct Catalytic Decomposition of NO: A Review. Energy & Fuels 2021, 35 (8) , 6443-6464. https://doi.org/10.1021/acs.energyfuels.1c00330
  5. Samji Samira, John Carl A. Camayang, Krishna Patel, Xiang-Kui Gu, Eranda Nikolla. Modulating Catalytic Properties of Targeted Metal Cationic Centers in Nonstochiometric Mixed Metal Oxides for Electrochemical Oxygen Reduction. ACS Energy Letters 2021, 6 (3) , 1065-1072. https://doi.org/10.1021/acsenergylett.1c00102
  6. Maria Christy, Hashikaa Rajan, Hwawoo Lee, Iqra Rabani, Sang Man Koo, Sung Chul Yi. Surface Engineering of Perovskites for Rechargeable Zinc–Air Battery Application. ACS Applied Energy Materials 2021, 4 (2) , 1876-1886. https://doi.org/10.1021/acsaem.0c02983
  7. Jianyi Lei, Jiajun Dai, Kok Bing Tan, Jiale Huang, Guowu Zhan, Qingbiao Li. Insight into the Effect of Copper Substitution on the Catalytic Performance of LaCoO3-Based Catalysts for Direct Epoxidation of Propylene with Molecular Oxygen. ACS Sustainable Chemistry & Engineering 2021, 9 (2) , 794-808. https://doi.org/10.1021/acssuschemeng.0c07315
  8. Nan Li, Jingjia Guo, Yiwen Ding, Yaqi Hu, Chunhua Zhao, Chongjun Zhao. Direct Regulation of Double Cation Defects at the A1A2 Site for a High-Performance Oxygen Evolution Reaction Perovskite Catalyst. ACS Applied Materials & Interfaces 2021, 13 (1) , 332-340. https://doi.org/10.1021/acsami.0c15868
  9. Maria Christy, Hashikaa Rajan, Hwichul Yang, Young-Beom Kim. Optimizing the Surface Characteristics of La0.6Sr0.4CoO3−δ Perovskite Oxide by Rapid Flash Sintering Technology for Easy Fabrication and Fast Reaction Kinetics in Alkaline Medium. Energy & Fuels 2020, 34 (12) , 16838-16846. https://doi.org/10.1021/acs.energyfuels.0c03147
  10. Yonghui Chen, Xiaoqing Yang, Wei Wang, Ran Ran, Wei Zhou, Zongping Shao. Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3−δ Perovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. Energy & Fuels 2020, 34 (9) , 11322-11329. https://doi.org/10.1021/acs.energyfuels.0c02354
  11. Ashish Kumar, Ajay Kumar, Venkata Krishnan. Perovskite Oxide Based Materials for Energy and Environment-Oriented Photocatalysis. ACS Catalysis 2020, 10 (17) , 10253-10315. https://doi.org/10.1021/acscatal.0c02947
  12. Wenjun Zhu, Xiao Chen, Zhongmin Liu, Changhai Liang. Insight into the Effect of Cobalt Substitution on the Catalytic Performance of LaMnO3 Perovskites for Total Oxidation of Propane. The Journal of Physical Chemistry C 2020, 124 (27) , 14646-14657. https://doi.org/10.1021/acs.jpcc.0c03084
  13. Ikuya Yamada, Takao Odake, Atsushi Tanaka, Yuichi Okazaki, Fumito Toda, Yuta Ishii, Toshifumi Taniguchi, Shogo Kawaguchi, Atsushi Hariki. A Sequential Electron Doping for Quadruple Perovskite Oxides ACu3Co4O12 (A = Ca, Y, Ce). Inorganic Chemistry 2020, 59 (13) , 8699-8706. https://doi.org/10.1021/acs.inorgchem.0c00184
  14. Gregor Koch, Michael Hävecker, Detre Teschner, Spencer J. Carey, Yuanqing Wang, Pierre Kube, Walid Hetaba, Thomas Lunkenbein, Gudrun Auffermann, Olaf Timpe, Frank Rosowski, Robert Schlögl, Annette Trunschke. Surface Conditions That Constrain Alkane Oxidation on Perovskites. ACS Catalysis 2020, 10 (13) , 7007-7020. https://doi.org/10.1021/acscatal.0c01289
  15. Ying Zhou, Jiliang Zhang, Changzhong Liao, Ting-Shan Chan, Ying-Rui Lu, Yu-Chun Chuang, Chung-Kai Chang, Kaimin Shih. Pb Stabilization by a New Chemically Durable Orthophosphate Phase: Insights into the Molecular Mechanism with X-ray Structural Analysis. Environmental Science & Technology 2020, 54 (11) , 6937-6946. https://doi.org/10.1021/acs.est.0c00643
  16. Xiu Wang, Yingnan Dou, Ying Xie, Jingping Wang, Tian Xia, Lihua Huo, Hui Zhao. A-Site Cation-Ordering Layered Perovskite EuBa0.5Sr0.5Co2–xFexO5+δ as Highly Active and Durable Electrocatalysts for Oxygen Evolution Reaction. ACS Omega 2020, 5 (21) , 12501-12515. https://doi.org/10.1021/acsomega.0c01383
  17. Yongjin Luo, Yingbin Zheng, Xiaoshan Feng, Daifeng Lin, Qingrong Qian, Xiuyun Wang, Yongfan Zhang, Qinghua Chen, Xianhui Zhang. Controllable P Doping of the LaCoO3 Catalyst for Efficient Propane Oxidation: Optimized Surface Co Distribution and Enhanced Oxygen Vacancies. ACS Applied Materials & Interfaces 2020, 12 (21) , 23789-23799. https://doi.org/10.1021/acsami.0c01599
  18. Nia Richards, James H. Carter, Luke A. Parker, Samuel Pattisson, Daniel G. Hewes, David J. Morgan, Thomas E. Davies, Nicholas F. Dummer, Stanislaw Golunski, Graham J. Hutchings. Lowering the Operating Temperature of Perovskite Catalysts for N2O Decomposition through Control of Preparation Methods. ACS Catalysis 2020, 10 (10) , 5430-5442. https://doi.org/10.1021/acscatal.0c00698
  19. Wei Liu, Yuqing Zhang, Longfei Zhang, Jiaqi Guo, Jiahao Wei. Polysulfone Ultrafiltration Membrane Promoted by Brownmillerite SrCuxCo1–xO3−λ-Deposited MCM-41 for Industrial Wastewater Decontamination: Catalytic Oxidation and Antifouling Properties. Industrial & Engineering Chemistry Research 2020, 59 (16) , 7805-7815. https://doi.org/10.1021/acs.iecr.9b06923
  20. Shenghua Chen, Yaqiong Su, Peilin Deng, Ruijuan Qi, Jiexin Zhu, Jinxi Chen, Zhitong Wang, Liang Zhou, Xingpeng Guo, Bao Yu Xia. Highly Selective Carbon Dioxide Electroreduction on Structure-Evolved Copper Perovskite Oxide toward Methane Production. ACS Catalysis 2020, 10 (8) , 4640-4646. https://doi.org/10.1021/acscatal.0c00847
  21. Sivasankara Rao Ede, T. K. Bijoy, S. Sam Sankar, P. Murugan, Subrata Kundu. Rational Design of Highly Efficient Perovskite Hydroxide for Electrocatalytic Water Oxidation. Inorganic Chemistry 2020, 59 (7) , 4816-4824. https://doi.org/10.1021/acs.inorgchem.0c00112
  22. Amit Kumar Sharma, Nallin Sharma, Sunil Pandey, Jhong-Lin Guo, Hui-Fen Wu. Ce1.0Mo0.15Eu0.05Ox Aqueous Perovskites for Stable Near-Infrared Emission and Their Sensitivity toward Hydrogen Peroxide. ACS Sustainable Chemistry & Engineering 2020, 8 (8) , 3126-3134. https://doi.org/10.1021/acssuschemeng.9b05879
  23. Gerald Malsch, Dmytro Ivaneyko, Peter Milde, Lena Wysocki, Lin Yang, Paul H. M. van Loosdrecht, Ionela Lindfors-Vrejoiu, Lukas M. Eng. Correlating the Nanoscale Structural, Magnetic, and Magneto-Transport Properties in SrRuO3-Based Perovskite Thin Films: Implications for Oxide Skyrmion Devices. ACS Applied Nano Materials 2020, 3 (2) , 1182-1190. https://doi.org/10.1021/acsanm.9b01918
  24. Yafen Zhang, David R. Mullins, Aditya Savara. Surface Reactions and Catalytic Activities for Small Alcohols over LaMnO3(100) and La0.7Sr0.3MnO3(100): Dehydrogenation, Dehydration, and Oxidation. The Journal of Physical Chemistry C 2020, 124 (6) , 3650-3663. https://doi.org/10.1021/acs.jpcc.9b10797
  25. Yilan Jiang, Zhibin Geng, Yu Sun, Xiyang Wang, Keke Huang, Yingge Cong, Fangbing Shi, Ying Wang, Wei Zhang, Shouhua Feng. Highly Efficient B-Site Exsolution Assisted by Co Doping in Lanthanum Ferrite toward High-Performance Electrocatalysts for Oxygen Evolution and Oxygen Reduction. ACS Sustainable Chemistry & Engineering 2020, 8 (1) , 302-310. https://doi.org/10.1021/acssuschemeng.9b05344
  26. Chunhua Zhao, Nan Li, Ruizhi Zhang, Zhaoqiang Zhu, Jiahao Lin, Kefu Zhang, Chongjun Zhao. Surface Reconstruction of La0.8Sr0.2Co0.8Fe0.2O3−δ for Superimposed OER Performance. ACS Applied Materials & Interfaces 2019, 11 (51) , 47858-47867. https://doi.org/10.1021/acsami.9b13834
  27. Mi Young Oh, Jung Hyun Kim, Young Wook Lee, Kyeong Joon Kim, Hong Rim Shin, Hyeokjun Park, Kang Taek Lee, Kisuk Kang, Tae Ho Shin. Enhancing Bifunctional Catalytic Activity via a Nanostructured La(Sr)Fe(Co)O3−δ@Pd Matrix as an Efficient Electrocatalyst for Li–O2 Batteries. ACS Applied Energy Materials 2019, 2 (12) , 8633-8640. https://doi.org/10.1021/acsaem.9b01540
  28. Ji Yang, Siyu Hu, Yarong Fang, Son Hoang, Li Li, Weiwei Yang, Zhenfeng Liang, Jian Wu, Jinpeng Hu, Wen Xiao, Chuanqi Pan, Zhu Luo, Jun Ding, Lizhi Zhang, Yanbing Guo. Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catalysis 2019, 9 (11) , 9751-9763. https://doi.org/10.1021/acscatal.9b02408
  29. Samji Samira, Xiang-Kui Gu, Eranda Nikolla. Design Strategies for Efficient Nonstoichiometric Mixed Metal Oxide Electrocatalysts: Correlating Measurable Oxide Properties to Electrocatalytic Performance. ACS Catalysis 2019, 9 (11) , 10575-10586. https://doi.org/10.1021/acscatal.9b02505
  30. Hikaru Saito, Hirofumi Seki, Yukiko Hosono, Takuma Higo, Jeong Gil Seo, Shun Maeda, Kunihide Hashimoto, Shuhei Ogo, Yasushi Sekine. Dehydrogenation of Ethane via the Mars–van Krevelen Mechanism over La0.8Ba0.2MnO3−δ Perovskites under Anaerobic Conditions. The Journal of Physical Chemistry C 2019, 123 (43) , 26272-26281. https://doi.org/10.1021/acs.jpcc.9b06475
  31. Yajie Gu, Shengrui Sun, Yangqiao Liu, Manjiang Dong, Qingfeng Yang. Solvent Effect on the Solvothermal Synthesis of Mesoporous NiO Catalysts for Activation of Peroxymonosulfate to Degrade Organic Dyes. ACS Omega 2019, 4 (18) , 17672-17683. https://doi.org/10.1021/acsomega.9b01883
  32. Lizhong Liu, Jiangtian Sun, Jiandong Ding, Yan Zhang, Jinping Jia, Tonghua Sun. Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene. Inorganic Chemistry 2019, 58 (20) , 14275-14283. https://doi.org/10.1021/acs.inorgchem.9b02518
  33. Wei Wang, Richard Tran, Jifa Qu, Yu Liu, Chi Chen, Meigui Xu, Yubo Chen, Shyue Ping Ong, Lianzhou Wang, Wei Zhou, Zongping Shao. Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (39) , 35641-35652. https://doi.org/10.1021/acsami.9b07966
  34. Yanpeng Chen, Xing Zhu, Kongzhai Li, Yonggang Wei, Yane Zheng, Hua Wang. Chemical Looping Co-splitting of H2O–CO2 for Efficient Generation of Syngas. ACS Sustainable Chemistry & Engineering 2019, 7 (18) , 15452-15462. https://doi.org/10.1021/acssuschemeng.9b02996
  35. Shuai Tan, Farheen Sayed, Shize Yang, Zhengyuan Li, Jingjie Wu, Pulickel M. Ajayan. Strong Effect of B-Site Substitution on the Reactivity of Layered Perovskite Oxides Probed via Isopropanol Conversion. ACS Materials Letters 2019, 1 (2) , 230-236. https://doi.org/10.1021/acsmaterialslett.9b00095
  36. Kuncan Wang, Junjie Huang, Wen Li, Jiale Huang, Daohua Sun, Xuebin Ke, Qingbiao Li. Role of Mineral Nutrients in Plant-Mediated Synthesis of Three-Dimensional Porous LaCoO3. Industrial & Engineering Chemistry Research 2019, 58 (20) , 8555-8564. https://doi.org/10.1021/acs.iecr.9b00951
  37. Ping Xiao, Junjiang Zhu, Dan Zhao, Zhen Zhao, Francisco Zaera, Yujun Zhu. Porous LaFeO3 Prepared by an in Situ Carbon Templating Method for Catalytic Transfer Hydrogenation Reactions. ACS Applied Materials & Interfaces 2019, 11 (17) , 15517-15527. https://doi.org/10.1021/acsami.9b00506
  38. Joo Hyeng Oh, Byeong Wan Kwon, Jinwon Cho, Chan Hyun Lee, Min Kyeong Kim, Sun Hee Choi, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Jin Young Kim, Seung Soon Jang, Ki Bong Lee, Hyung Chul Ham. Importance of Exsolution in Transition-Metal (Co, Rh, and Ir)-Doped LaCrO3 Perovskite Catalysts for Boosting Dry Reforming of CH4 Using CO2 for Hydrogen Production. Industrial & Engineering Chemistry Research 2019, 58 (16) , 6385-6393. https://doi.org/10.1021/acs.iecr.8b05337
  39. Chi He, Jie Cheng, Xin Zhang, Mark Douthwaite, Samuel Pattisson, Zhengping Hao. Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. Chemical Reviews 2019, 119 (7) , 4471-4568. https://doi.org/10.1021/acs.chemrev.8b00408
  40. Le Wang, Kelsey A. Stoerzinger, Lei Chang, Xinmao Yin, Yangyang Li, Chi Sin Tang, Endong Jia, Mark E. Bowden, Zhenzhong Yang, Amr Abdelsamie, Lu You, Rui Guo, Jingsheng Chen, Andrivo Rusydi, Junling Wang, Scott A. Chambers, Yingge Du. Strain Effect on Oxygen Evolution Reaction Activity of Epitaxial NdNiO3 Thin Films. ACS Applied Materials & Interfaces 2019, 11 (13) , 12941-12947. https://doi.org/10.1021/acsami.8b21301
  41. Aritra Biswas, Subhajit Saha, Nikhil R. Jana. ZnSnO3 Nanoparticle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants. ACS Applied Nano Materials 2019, 2 (2) , 1120-1128. https://doi.org/10.1021/acsanm.9b00107
  42. Yafen Zhang, David R. Mullins, Aditya Savara. Effect of Sr Substitution in LaMnO3(100) on Catalytic Conversion of Acetic Acid to Ketene and Combustion-Like Products. The Journal of Physical Chemistry C 2019, 123 (7) , 4148-4157. https://doi.org/10.1021/acs.jpcc.8b10921
  43. Yao Lu, Aijing Ma, Yifu Yu, Rui Tan, Chengwei Liu, Peng Zhang, Dan Liu, Jianzhou Gui. Engineering Oxygen Vacancies into LaCoO3 Perovskite for Efficient Electrocatalytic Oxygen Evolution. ACS Sustainable Chemistry & Engineering 2019, 7 (3) , 2906-2910. https://doi.org/10.1021/acssuschemeng.8b05717
  44. Leo Saputra, Takahiro Sato, Takashi Kojima, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu. Preparation of a Highly Stable Pd-Perovskite Catalyst for Suzuki Couplings via a Low-Temperature Hydrothermal Treatment. ACS Omega 2018, 3 (12) , 17528-17531. https://doi.org/10.1021/acsomega.8b02622
  45. Majida H. Khazaal, John Z. Staniforth, Zainab A. Alfatlawi, R. Mark Ormerod, Richard. J. Darton. Enhanced Methane Reforming Activity of a Hydrothermally Synthesized Codoped Perovskite Catalyst. Energy & Fuels 2018, 32 (12) , 12826-12832. https://doi.org/10.1021/acs.energyfuels.8b02848
  46. Felipe Polo-Garzon, Victor Fung, Xiaoming Liu, Zachary D. Hood, Elizabeth E. Bickel, Lei Bai, Hanjing Tian, Guo Shiou Foo, Miaofang Chi, De-en Jiang, Zili Wu. Understanding the Impact of Surface Reconstruction of Perovskite Catalysts on CH4 Activation and Combustion. ACS Catalysis 2018, 8 (11) , 10306-10315. https://doi.org/10.1021/acscatal.8b02307
  47. Jun Cheng, Lijun Wang, Peng Wang, Liang Deng. High-Oxidation-State 3d Metal (Ti–Cu) Complexes with N-Heterocyclic Carbene Ligation. Chemical Reviews 2018, 118 (19) , 9930-9987. https://doi.org/10.1021/acs.chemrev.8b00096
  48. Emily Grace Ripka, Christina R. Deschene, John M. Franck, In-Tae Bae, Mathew M. Maye. Understanding the Surface Properties of Halide Exchanged Cesium Lead Halide Nanoparticles. Langmuir 2018, 34 (37) , 11139-11146. https://doi.org/10.1021/acs.langmuir.8b02148
  49. Xing Zhu, Kongzhai Li, Luke Neal, Fanxing Li. Perovskites as Geo-inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective. ACS Catalysis 2018, 8 (9) , 8213-8236. https://doi.org/10.1021/acscatal.8b01973
  50. Yilan Jiang, Zhibin Geng, Long Yuan, Yu Sun, Yingge Cong, Keke Huang, Lei Wang, Wei Zhang. Nanoscale Architecture of RuO2/La0.9Fe0.92Ru0.08–xO3−δ Composite via Manipulating the Exsolution of Low Ru-Substituted A-Site Deficient Perovskite. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11999-12005. https://doi.org/10.1021/acssuschemeng.8b02288
  51. Xiyang Wang, Keke Huang, Long Yuan, Shuang Li, Wei Ma, Zhongyuan Liu, Shouhua Feng. Molten Salt Flux Synthesis, Crystal Facet Design, Characterization, Electronic Structure, and Catalytic Properties of Perovskite Cobaltite. ACS Applied Materials & Interfaces 2018, 10 (33) , 28219-28231. https://doi.org/10.1021/acsami.8b08621
  52. Xiyang Wang, Keke Huang, Long Yuan, Shibo Xi, Wensheng Yan, Zhibin Geng, Yingge Cong, Yu Sun, Hao Tan, Xiaofeng Wu, Liping Li, Shouhua Feng. Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. The Journal of Physical Chemistry Letters 2018, 9 (15) , 4146-4154. https://doi.org/10.1021/acs.jpclett.8b01623
  53. N. Raman Dhineshbabu, Suryasarathi Bose. Smart Textiles Coated with Eco-Friendly UV-Blocking Nanoparticles Derived from Natural Resources. ACS Omega 2018, 3 (7) , 7454-7465. https://doi.org/10.1021/acsomega.8b00822
  54. Jianping Yang, Mingguang Zhang, Hailong Li, Wenqi Qu, Yongchun Zhao, Junying Zhang. Simultaneous NO Reduction and Hg0 Oxidation over La0.8Ce0.2MnO3 Perovskite Catalysts at Low Temperature. Industrial & Engineering Chemistry Research 2018, 57 (29) , 9374-9385. https://doi.org/10.1021/acs.iecr.8b01431
  55. F. Deganello, D. N. Oko, M. L. Testa, V. La Parola, M. L. Tummino, C. O. Soares, J. G. Rivera, G. Orozco, D. Guay, A. C. Tavares. Perovskite-Type Catalysts Prepared by Nanocasting: Effect of Metal Silicates on the Electrocatalytic Activity toward Oxygen Evolution and Reduction Reactions. ACS Applied Energy Materials 2018, 1 (6) , 2565-2575. https://doi.org/10.1021/acsaem.8b00282
  56. Xiang-Kui Gu, Samji Samira, Eranda Nikolla. Oxygen Sponges for Electrocatalysis: Oxygen Reduction/Evolution on Nonstoichiometric, Mixed Metal Oxides. Chemistry of Materials 2018, 30 (9) , 2860-2872. https://doi.org/10.1021/acs.chemmater.8b00694
  57. Sixuan She, Jie Yu, Wanqi Tang, Yinlong Zhu, Yubo Chen, Jaka Sunarso, Wei Zhou, Zongping Shao. Systematic Study of Oxygen Evolution Activity and Stability on La1–xSrxFeO3−δ Perovskite Electrocatalysts in Alkaline Media. ACS Applied Materials & Interfaces 2018, 10 (14) , 11715-11721. https://doi.org/10.1021/acsami.8b00682
  58. Guo Shiou Foo, Zachary D. Hood, and Zili Wu . Shape Effect Undermined by Surface Reconstruction: Ethanol Dehydrogenation over Shape-Controlled SrTiO3 Nanocrystals. ACS Catalysis 2018, 8 (1) , 555-565. https://doi.org/10.1021/acscatal.7b03341
  59. Achraf el Hadri, Isabel Gómez-Recio, Eloy del Río, Juan C. Hernández-Garrido, Raquel Cortés-Gil, María Hernando, Áurea Varela, Ángel Gutiérrez-Alonso, Marina Parras, Juan J. Delgado, José A. Pérez-Omil, Ginesa Blanco, José J. Calvino, and José M. González-Calbet . Critical Influence of Redox Pretreatments on the CO Oxidation Activity of BaFeO3−δ Perovskites: An in-Depth Atomic-Scale Analysis by Aberration-Corrected and in Situ Diffraction Techniques. ACS Catalysis 2017, 7 (12) , 8653-8663. https://doi.org/10.1021/acscatal.7b02595
  60. Yafen Zhang, Aditya Savara, and David R. Mullins . Ambient-Pressure XPS Studies of Reactions of Alcohols on SrTiO3(100). The Journal of Physical Chemistry C 2017, 121 (42) , 23436-23445. https://doi.org/10.1021/acs.jpcc.7b06319
  61. Haomiao Xu, Naiqiang Yan, Zan Qu, Wei Liu, Jian Mei, Wenjun Huang, and Songjian Zhao . Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. Environmental Science & Technology 2017, 51 (16) , 8879-8892. https://doi.org/10.1021/acs.est.6b06079
  62. Guo Shiou Foo, Felipe Polo-Garzon, Victor Fung, De-en Jiang, Steven H. Overbury, and Zili Wu . Acid–Base Reactivity of Perovskite Catalysts Probed via Conversion of 2-Propanol over Titanates and Zirconates. ACS Catalysis 2017, 7 (7) , 4423-4434. https://doi.org/10.1021/acscatal.7b00783
  63. Chengcheng Tian, Xiang Zhu, Carter W. Abney, Xiaofei Liu, Guo Shiou Foo, Zili Wu, Meijun Li, Harry M. Meyer, III, Suree Brown, Shannon M. Mahurin, Sujuan Wu, Shi-Ze Yang, Jingyue Liu, and Sheng Dai . Toward the Design of a Hierarchical Perovskite Support: Ultra-Sintering-Resistant Gold Nanocatalysts for CO Oxidation. ACS Catalysis 2017, 7 (5) , 3388-3393. https://doi.org/10.1021/acscatal.7b00483
  64. Kosei Sugahara, Keigo Kamata, Satoshi Muratsugu, and Michikazu Hara . Amino Acid-Aided Synthesis of a Hexagonal SrMnO3 Nanoperovskite Catalyst for Aerobic Oxidation. ACS Omega 2017, 2 (4) , 1608-1616. https://doi.org/10.1021/acsomega.7b00146
  65. Muhammad Humayun, Yang Qu, Fazal Raziq, Rui Yan, Zhijun Li, Xuliang Zhang, and Liqiang Jing . Exceptional Visible-Light Activities of TiO2-Coupled N-Doped Porous Perovskite LaFeO3 for 2,4-Dichlorophenol Decomposition and CO2 Conversion. Environmental Science & Technology 2016, 50 (24) , 13600-13610. https://doi.org/10.1021/acs.est.6b04958
  66. Di Li, Xinyu Li, and Jinlong Gong . Catalytic Reforming of Oxygenates: State of the Art and Future Prospects. Chemical Reviews 2016, 116 (19) , 11529-11653. https://doi.org/10.1021/acs.chemrev.6b00099
  67. Sridevi Krishnan, Vinit Sharma, Prabhakar Singh, and Rampi Ramprasad . Dopants in Lanthanum Manganite: Insights from First-Principles Chemical Space Exploration. The Journal of Physical Chemistry C 2016, 120 (39) , 22126-22133. https://doi.org/10.1021/acs.jpcc.6b04524
  68. Yue Peng, Wenzhe Si, Jinming Luo, Wenkang Su, Huazhen Chang, Junhua Li, Jiming Hao, and John Crittenden . Surface Tuning of La0.5Sr0.5CoO3 Perovskite Catalysts by Acetic Acid for NOx Storage and Reduction. Environmental Science & Technology 2016, 50 (12) , 6442-6448. https://doi.org/10.1021/acs.est.6b00110
  69. Yi-Fei Sun, Jian-Hui Li, Ya-Qian Zhang, Bin Hua, and Jing-Li Luo . Bifunctional Catalyst of Core–Shell Nanoparticles Socketed on Oxygen-Deficient Layered Perovskite for Soot Combustion: In Situ Observation of Synergistic Dual Active Sites. ACS Catalysis 2016, 6 (4) , 2710-2714. https://doi.org/10.1021/acscatal.6b00081
  70. Yinlong Zhu, Wei Zhou, Jie Yu, Yubo Chen, Meilin Liu, and Zongping Shao . Enhancing Electrocatalytic Activity of Perovskite Oxides by Tuning Cation Deficiency for Oxygen Reduction and Evolution Reactions. Chemistry of Materials 2016, 28 (6) , 1691-1697. https://doi.org/10.1021/acs.chemmater.5b04457
  71. Joshua Young and James M. Rondinelli . Octahedral Rotation Preferences in Perovskite Iodides and Bromides. The Journal of Physical Chemistry Letters 2016, 7 (5) , 918-922. https://doi.org/10.1021/acs.jpclett.6b00094
  72. Qingjie Meng, Wanglong Wang, Xiaole Weng, Yue Liu, Haiqiang Wang, and Zhongbiao Wu . Active Oxygen Species in Lan+1NinO3n+1 Layered Perovskites for Catalytic Oxidation of Toluene and Methane. The Journal of Physical Chemistry C 2016, 120 (6) , 3259-3266. https://doi.org/10.1021/acs.jpcc.5b08703
  73. Qian Zhang, Yu Huang, Lifeng Xu, Jun-ji Cao, Wingkei Ho, and Shun Cheng Lee . Visible-Light-Active Plasmonic Ag–SrTiO3 Nanocomposites for the Degradation of NO in Air with High Selectivity. ACS Applied Materials & Interfaces 2016, 8 (6) , 4165-4174. https://doi.org/10.1021/acsami.5b11887
  74. Tingting Zhang, Wanying Lei, Ping Liu, J. A. Rodriguez, Jiaguo Yu, Yang Qi, Gang Liu, and Minghua Liu . Organic Pollutant Photodecomposition by Ag/KNbO3 Nanocomposites: A Combined Experimental and Theoretical Study. The Journal of Physical Chemistry C 2016, 120 (5) , 2777-2786. https://doi.org/10.1021/acs.jpcc.5b11297
  75. Aleksandar Staykov, Helena Téllez, Taner Akbay, John Druce, Tatsumi Ishihara, and John Kilner . Oxygen Activation and Dissociation on Transition Metal Free Perovskite Surfaces. Chemistry of Materials 2015, 27 (24) , 8273-8281. https://doi.org/10.1021/acs.chemmater.5b03263
  76. Stefan Vajda and Michael G. White . Catalysis Applications of Size-Selected Cluster Deposition. ACS Catalysis 2015, 5 (12) , 7152-7176. https://doi.org/10.1021/acscatal.5b01816
  77. Huiyuan Zhu, Pengfei Zhang, and Sheng Dai . Recent Advances of Lanthanum-Based Perovskite Oxides for Catalysis. ACS Catalysis 2015, 5 (11) , 6370-6385. https://doi.org/10.1021/acscatal.5b01667
  78. Dengjie Chen, Chi Chen, Zarah Medina Baiyee, Zongping Shao, and Francesco Ciucci . Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. Chemical Reviews 2015, 115 (18) , 9869-9921. https://doi.org/10.1021/acs.chemrev.5b00073
  79. Zhengzheng Chen, Xiao Liu, Kyeongjae Cho, Rong Chen, and Bin Shan . Density Functional Theory Study of the Oxygen Chemistry and NO Oxidation Mechanism on Low-Index Surfaces of SmMn2O5 Mullite. ACS Catalysis 2015, 5 (8) , 4913-4926. https://doi.org/10.1021/acscatal.5b00249
  80. Hao Tian, Xinyu Li, Liang Zeng, and Jinlong Gong . Recent Advances on the Design of Group VIII Base-Metal Catalysts with Encapsulated Structures. ACS Catalysis 2015, 5 (8) , 4959-4977. https://doi.org/10.1021/acscatal.5b01221
  81. Hyun Ho Shin and Steven McIntosh . Proton-Conducting Perovskites as Supports for Cr Catalysts in Short Contact Time Ethane Dehydrogenation. ACS Catalysis 2015, 5 (1) , 95-103. https://doi.org/10.1021/cs501314w
  82. Jie Ren, Chalachew Mebrahtu, Luke van Koppen, Ferenc Martinovic, Jan P. Hofmann, Emiel J.M. Hensen, Regina Palkovits. Enhanced CO2 methanation activity over La2-xCexNiO4 perovskite-derived catalysts: Understanding the structure-performance relationships. Chemical Engineering Journal 2021, 426 , 131760. https://doi.org/10.1016/j.cej.2021.131760
  83. A. Soundarya Mary, K.B. Bhojanaa, P. Murugan, A. Pandikumar. Experimental and theoretical study on optimizing CaxBa1−xSnO3 perovskite materials as photoanode of dye-sensitized solar cells. Journal of Alloys and Compounds 2021, 888 , 161439. https://doi.org/10.1016/j.jallcom.2021.161439
  84. Jiana Jing, Md. Nahid Pervez, Peipei Sun, Chengjin Cao, Bin Li, Vincenzo Naddeo, Wei Jin, Yaping Zhao. Highly efficient removal of bisphenol A by a novel Co-doped LaFeO3 perovskite/PMS system in salinity water. Science of The Total Environment 2021, 801 , 149490. https://doi.org/10.1016/j.scitotenv.2021.149490
  85. Ping Li, Runze Dong, Yuchen Wang, Fei Yan, Lemeng Wang, Ming Li, Dong Fu. Improving the performance of Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-based single-component fuel cell and reversible single-component cells by manufacturing A-site deficiency. Renewable Energy 2021, 177 , 387-396. https://doi.org/10.1016/j.renene.2021.05.141
  86. Zhengnan Sun, Huili Zhang, Xuehua Shen, Yu Su, Hongsheng Liu, Hailin Yu. Preparation of highly efficient Ni-doped layered perovskite grafted graphene oxide NixSr1-xTiO3-RGO heterojunction photocatalyst with enhanced visible-light photocatalytic activity for MB degradation. Materials Chemistry and Physics 2021, 273 , 125119. https://doi.org/10.1016/j.matchemphys.2021.125119
  87. Lanyi Wang, Xuehua Yu, Yuechang Wei, Jian Liu, Zhen Zhao. Research advances of rare earth catalysts for catalytic purification of vehicle exhausts − Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. Journal of Rare Earths 2021, 39 (10) , 1151-1180. https://doi.org/10.1016/j.jre.2021.05.001
  88. Hye Ji Jang, So Jeong Park, Ju Hyun Yang, Sung-Min Hong, Choong Kyun Rhee, Dongsoo Kim, Youngku Sohn. Photocatalytic and photoelectrocatalytic properties of Eu(III)-doped perovskite SrTiO3 nanoparticles with dopant level approaches. Materials Science in Semiconductor Processing 2021, 132 , 105919. https://doi.org/10.1016/j.mssp.2021.105919
  89. Olga Nikolaeva, Aleksandr Kapishnikov, Evgeny Gerasimov. Structural Insight into La0.5Ca0.5Mn0.5Co0.5O3 Decomposition in the Methane Combustion Process. Nanomaterials 2021, 11 (9) , 2283. https://doi.org/10.3390/nano11092283
  90. Longfei Zhang, Luhong Zhang, Yongli Sun, Bin Jiang. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal: Enhanced catalytic efficiency and suppressed metal leaching. Journal of Colloid and Interface Science 2021, 596 , 455-467. https://doi.org/10.1016/j.jcis.2021.03.171
  91. Phuoc Loc Truong, Alemayehu Kidanemariam, Juhyun Park. A critical innovation of photocatalytic degradation for toxic chemicals and pathogens in air. Journal of Industrial and Engineering Chemistry 2021, 100 , 19-39. https://doi.org/10.1016/j.jiec.2021.05.012
  92. Jiangtian Sun, Lizhong Liu, Yan Zhang, Mingming Guo, Bing Zhou. Improved catalytic oxidation of propylene glycol methyl ether over Sm–Mn and Sm–Co perovskite-based catalysts prepared by the recycling of spent ternary lithium-ion battery. Environmental Science and Pollution Research 2021, 28 (29) , 38829-38838. https://doi.org/10.1007/s11356-021-13497-2
  93. Jessica Yazmín Monter Monter-Guzmán, Xiangfeng Chu, Elisabetta Comini, Mauro Epifani, Rodolfo Zanella. How Chemoresistive Sensors Can Learn from Heterogeneous Catalysis. Hints, Issues, and Perspectives. Chemosensors 2021, 9 (8) , 193. https://doi.org/10.3390/chemosensors9080193
  94. Theodora Ramantani, Georgios Bampos, Andreas Vavatsikos, Georgios Vatskalis, Dimitris I. Kondarides. Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO3 and La0.8Sr0.2NiO3 Perovskite Precursors. Nanomaterials 2021, 11 (8) , 1931. https://doi.org/10.3390/nano11081931
  95. Jing Shi, Chang Han, Haibo Niu, Youzhang Zhu, Sining Yun. Theoretical Investigation of Proton Diffusion in Dion–Jacobson Layered Perovskite RbBiNb2O7. Nanomaterials 2021, 11 (8) , 1953. https://doi.org/10.3390/nano11081953
  96. Krystian Lankauf, Aleksander Mroziński, Patryk Błaszczak, Karolina Górnicka, Justyna Ignaczak, Marcin Łapiński, Jakub Karczewski, Grzegorz Cempura, Piotr Jasiński, Sebastian Molin. The effect of Fe on chemical stability and oxygen evolution performance of high surface area SrTix-1FexO3-δ mixed ionic-electronic conductors in alkaline media. International Journal of Hydrogen Energy 2021, 46 (56) , 28575-28590. https://doi.org/10.1016/j.ijhydene.2021.06.088
  97. S. Janaki, K. Punithamurthy. The influence of Ca substitution on LaFeO3 nanoparticles in terms of structural, optical and catalytic properties. Chemical Data Collections 2021, 34 , 100738. https://doi.org/10.1016/j.cdc.2021.100738
  98. Tahrizi Andana, Kenneth G. Rappé, Feng Gao, Janos Szanyi, Xavier Pereira-Hernandez, Yong Wang. Recent advances in hybrid metal oxide–zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia. Applied Catalysis B: Environmental 2021, 291 , 120054. https://doi.org/10.1016/j.apcatb.2021.120054
  99. Jitpisut Poolwong, Silvano Del Gobbo, Valerio D'Elia. Transesterification of dimethyl carbonate with glycerol by perovskite-based mixed metal oxide nanoparticles for the atom-efficient production of glycerol carbonate. Journal of Industrial and Engineering Chemistry 2021, 110 https://doi.org/10.1016/j.jiec.2021.08.008
  100. Calum McDonald, Chengsheng Ni, Vladimir Švrček, Manuel Macias-Montero, Tamilselvan Velusamy, Paul A. Connor, Paul Maguire, John T. S. Irvine, Davide Mariotti. Carrier extraction from metallic perovskite oxide nanoparticles. Nanoscale 2021, 13 (28) , 12271-12278. https://doi.org/10.1039/D1NR02890A
Load more citations