Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

View Author Information
§Joint Center for Artificial Photosynthesis and Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
Cite this: J. Am. Chem. Soc. 2013, 135, 45, 16977–16987
Publication Date (Web):October 30, 2013
https://doi.org/10.1021/ja407115p
Copyright © 2013 American Chemical Society
Article Views
56431
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (1 MB)
Supporting Info (1)»

Abstract

Objective evaluation of the activity of electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion technologies including integrated solar water-splitting devices, water electrolyzers, and Li-air batteries. However, current methods employed to evaluate oxygen-evolving catalysts are not standardized, making it difficult to compare the activity and stability of these materials. We report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts. In particular, we focus on methods for determining electrochemically active surface area and measuring electrocatalytic activity and stability under conditions relevant to an integrated solar water-splitting device. Our primary figure of merit is the overpotential required to achieve a current density of 10 mA cm–2 per geometric area, approximately the current density expected for a 10% efficient solar-to-fuels conversion device. Utilizing the aforementioned surface area measurements, one can determine electrocatalyst turnover frequencies. The reported protocol was used to examine the oxygen-evolution activity of the following systems in acidic and alkaline solutions: CoOx, CoPi, CoFeOx, NiOx, NiCeOx, NiCoOx, NiCuOx, NiFeOx, and NiLaOx. The oxygen-evolving activity of an electrodeposited IrOx catalyst was also investigated for comparison. Two general observations are made from comparing the catalytic performance of the OER catalysts investigated: (1) in alkaline solution, every non-noble metal system achieved 10 mA cm–2 current densities at similar operating overpotentials between 0.35 and 0.43 V, and (2) every system but IrOx was unstable under oxidative conditions in acidic solutions.

Supporting Information

ARTICLE SECTIONS
Jump To

X-ray photoelectron spectra; discussion of choice of specific capacitance values; rotating disk voltammograms, chronopotentiometric steps and chronoamperometric steps for electrodeposited catalyts; OER activity and stability measurements for NiCeOx on Ni electrodes; confirmation of 2 e reduction of O2 on Pt ring electrodes at 0.7 V vs SCE and 1600 rpm rotation rate in 1 M NaOH; rotating disk voltammograms, chronopotentiometric steps and chronoamperometric steps for sputtered Ni and commercial Ni disks; discussion regarding the use of Tafel plots for comparing electrocatalysts and benchmarking intermediate pH solutions. This material is available free of charge via the Internet at http://pubs.acs.org.

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Cited By


This article is cited by 3511 publications.

  1. Junheng Huang, Soren B. Scott, Ib Chorkendorff, Zhenhai Wen. Online Electrochemistry–Mass Spectrometry Evaluation of the Acidic Oxygen Evolution Reaction at Supported Catalysts. ACS Catalysis 2021, 11 (20) , 12745-12753. https://doi.org/10.1021/acscatal.1c03430
  2. Jingyan Zhang, Junfu Li, Chenglin Zhong, Pinxian Xi, Dongliang Chao, Daqiang Gao. Surface-Electronic-Structure Reconstruction of Perovskite via Double-Cation Gradient Etching for Superior Water Oxidation. Nano Letters 2021, 21 (19) , 8166-8174. https://doi.org/10.1021/acs.nanolett.1c02623
  3. Wenli Tian, Dengchao Zheng, Xun Sun, Xin Guan, Hao Feng, Chengyi Li, Minglei Yan, Yadong Yao. Structural and Interfacial Engineering of Ni2P/Fe3O4 Porous Nanosheet Arrays for Efficient Oxygen Evolution Reaction. Inorganic Chemistry 2021, 60 (19) , 14786-14792. https://doi.org/10.1021/acs.inorgchem.1c02028
  4. Ahmed S. M. Ismail, Ivan Garcia-Torregrosa, Jeroen C. Vollenbroek, Laura Folkertsma, Johan G. Bomer, Ties Haarman, Mahnaz Ghiasi, Meike Schellhorn, Maarten Nachtegaal, Mathieu Odijk, Albert van den Berg, Bert M. Weckhuysen, Frank M. F. de Groot. Detection of Spontaneous FeOOH Formation at the Hematite/Ni(Fe)OOH Interface During Photoelectrochemical Water Splitting by Operando X-ray Absorption Spectroscopy. ACS Catalysis 2021, 11 (19) , 12324-12335. https://doi.org/10.1021/acscatal.1c02566
  5. Caiyun Sun, Qiantong Song, Jinglei Lei, Dan Li, Lingjie Li, Fusheng Pan. Corrosion of Iron-Nickel Foam to In Situ Fabricate Amorphous FeNi (Oxy)hydroxide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (9) , 8791-8800. https://doi.org/10.1021/acsaem.1c00891
  6. Noor-Ul-Ain Babar, Fayyaz Hussain, Muhammad Naeem Ashiq, Khurram Saleem Joya. Engineered Modular Design of a Nanoscale CoNP/Aunano Hybrid Assembly for High-Performance Overall Water Splitting. ACS Applied Energy Materials 2021, 4 (9) , 8953-8968. https://doi.org/10.1021/acsaem.1c01221
  7. Renjie Xie, Zhiwei Nie, Xiangchen Hu, Yi Yu, Carmela Aruta, Nan Yang. Pr-Doped LaCoO3 toward Stable and Efficient Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (9) , 9057-9065. https://doi.org/10.1021/acsaem.1c01348
  8. Biswajit S. De, Pawan Kumar, Neeraj Khare, Jing-Li Luo, Anastasia Elias, Suddhasatwa Basu. Microfabrication of the Ammonia Plasma-Activated Nickel Nitride–Nickel Thin Film for Overall Water Splitting in the Microfluidic Membraneless Electrolyzer. ACS Applied Energy Materials 2021, 4 (9) , 9639-9652. https://doi.org/10.1021/acsaem.1c01772
  9. Peican Wang, Yuqun Lin, Qin Xu, Ziang Xu, Lei Wan, YingChun Xia, Baoguo Wang. Acid-Corrosion-Induced Hollow-Structured NiFe-Layered Double Hydroxide Electrocatalysts for Efficient Water Oxidation. ACS Applied Energy Materials 2021, 4 (9) , 9022-9031. https://doi.org/10.1021/acsaem.1c01314
  10. Peican Wang, Runzhi Wang, Qin Xu, Ziang Xu, Lei Wan, Yuqun Lin, Peng-Fei Liu, Baoguo Wang. Role of the Interfacial Effect between the Substrate and Co(OH)2 Layer in Electrochemical Oxygen Evolution. ACS Applied Energy Materials 2021, 4 (9) , 9487-9497. https://doi.org/10.1021/acsaem.1c01671
  11. Pandiaraj Sekar, Nithya Murugesh, Ramasamy Shanmugam, Shanmugam Senthil Kumar, Stefano Agnoli, Narendraraj Chandran, Seenuvasan Vedachalam, Ramasamy Karvembu. Phosphazene-Based Covalent Organic Polymer Decorated with NiCo2O4 Nanocuboids as a Trifunctional Electrocatalyst: A Unique Replacement for the Conventional Electrocatalysts. ACS Applied Energy Materials 2021, 4 (9) , 9341-9352. https://doi.org/10.1021/acsaem.1c01550
  12. Huan Wang, Yuanyuan Li, Dongmei Deng, Mengjie Li, Chengyu Zhang, Liqiang Luo. NiO-Coated CuCo2O4 Nanoneedle Arrays on Carbon Cloth for Non-enzymatic Glucose Sensing. ACS Applied Nano Materials 2021, 4 (9) , 9821-9830. https://doi.org/10.1021/acsanm.1c02228
  13. Zichen Liu, Gong Zhang, Huachun Lan, Huijuan Liu, Jiuhui Qu. Optimization of a Hierarchical Porous-Structured Reactor to Mitigate Mass Transport Limitations for Efficient Electrocatalytic Ammonia Oxidation through a Three-Electron-Transfer Pathway. Environmental Science & Technology 2021, 55 (18) , 12596-12606. https://doi.org/10.1021/acs.est.1c02825
  14. Muqing Ren, Jincheng Lei, Jibo Zhang, Boris I. Yakobson, James M. Tour. Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Catalysts. ACS Applied Materials & Interfaces 2021, 13 (36) , 42715-42723. https://doi.org/10.1021/acsami.1c10441
  15. Flavio M. Shimizu, Anielli M. Pasqualeti, Caroline Y. N. Nicoliche, Angelo L. Gobbi, Murilo Santhiago, Renato S. Lima. Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sensors 2021, 6 (8) , 3125-3132. https://doi.org/10.1021/acssensors.1c01302
  16. Anurupa Maiti, Suneel Kumar Srivastava. Ru-Doped CuO/MoS2 Nanostructures as Bifunctional Water-Splitting Electrocatalysts in Alkaline Media. ACS Applied Nano Materials 2021, 4 (8) , 7675-7685. https://doi.org/10.1021/acsanm.1c00791
  17. Manashi Nath, Umanga De Silva, Harish Singh, Matthew Perkins, Wipula P. R. Liyanage, Siddesh Umapathi, Shatadru Chakravarty, Jahangir Masud. Cobalt Telluride: A Highly Efficient Trifunctional Electrocatalyst for Water Splitting and Oxygen Reduction. ACS Applied Energy Materials 2021, 4 (8) , 8158-8174. https://doi.org/10.1021/acsaem.1c01438
  18. Yi Zhang, Yang Yang, Shasha Yang, Estefanny Quispe-Cardenas, Michael R. Hoffmann. Application of Heterojunction Ni–Sb–SnO2 Anodes for Electrochemical Water Treatment. ACS ES&T Engineering 2021, 1 (8) , 1236-1245. https://doi.org/10.1021/acsestengg.1c00122
  19. Hai-Jing Yin, Kun Yuan, Ya-Li Zheng, Xiao-Chen Sun, Ya-Wen Zhang. In Situ Synthesis of NiO/CuO Nanosheet Heterostructures Rich in Defects for Efficient Electrocatalytic Oxygen Evolution Reaction. The Journal of Physical Chemistry C 2021, 125 (30) , 16516-16523. https://doi.org/10.1021/acs.jpcc.1c03824
  20. Marcos Gil-Sepulcre, Joachim O. Lindner, Dorothee Schindler, Lucía Velasco, Dooshaye Moonshiram, Olaf Rüdiger, Serena DeBeer, Vladimir Stepanenko, Eduardo Solano, Frank Würthner, Antoni Llobet. Surface-Promoted Evolution of Ru-bda Coordination Oligomers Boosts the Efficiency of Water Oxidation Molecular Anodes. Journal of the American Chemical Society 2021, 143 (30) , 11651-11661. https://doi.org/10.1021/jacs.1c04738
  21. Jin Kim, Anand P. Tiwari, Caiyan Qin, Travis G. Novak, Jinho Lee, Jungmo Kim, Minsu Park, Jang-Kyo Kim, Seokwoo Jeon. Enhanced Oxygen Evolution Reaction by Efficient Bubble Dynamics of Aligned Nonoxidized Graphene Aerogels. ACS Sustainable Chemistry & Engineering 2021, 9 (30) , 10326-10334. https://doi.org/10.1021/acssuschemeng.1c03285
  22. Ladan Shahcheraghi, Chunyang Zhang, Hye-Jin Lee, Melissa Cusack-Striepe, Fatma Ismail, Ahmed Abdellah, Drew C. Higgins. Identifying Activity and Selectivity Trends for the Electrosynthesis of Hydrogen Peroxide via Oxygen Reduction on Nickel–Nitrogen–Carbon Catalysts. The Journal of Physical Chemistry C 2021, 125 (29) , 15830-15840. https://doi.org/10.1021/acs.jpcc.1c03775
  23. Ya-Nan Zhou, Meng-Xuan Li, Shu-Yue Dou, Hui-Ying Wang, Bin Dong, Hai-Jun Liu, Hui-Ying Zhao, Fu-Li Wang, Jian-Feng Yu, Yong-Ming Chai. Promoting Oxygen Evolution by Deep Reconstruction via Dynamic Migration of Fluorine Anions. ACS Applied Materials & Interfaces 2021, 13 (29) , 34438-34446. https://doi.org/10.1021/acsami.1c09308
  24. Feng Li, Gao-Feng Han, Jong-Pil Jeon, Tae Joo Shin, Zhengping Fu, Yalin Lu, Jong-Beom Baek. Surface Electronic Modulation with Hetero-Single Atoms to Enhance Oxygen Evolution Catalysis. ACS Nano 2021, 15 (7) , 11891-11897. https://doi.org/10.1021/acsnano.1c02989
  25. Masahiro Nishimoto, Sho Kitano, Damian Kowalski, Yoshitaka Aoki, Hiroki Habazaki. Highly Active and Durable FeNiCo Oxyhydroxide Oxygen Evolution Reaction Electrocatalysts Derived from Fluoride Precursors. ACS Sustainable Chemistry & Engineering 2021, 9 (28) , 9465-9473. https://doi.org/10.1021/acssuschemeng.1c03116
  26. Ryland C. Forsythe, Connor P. Cox, Madeleine K. Wilsey, Astrid M. Müller. Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews 2021, 121 (13) , 7568-7637. https://doi.org/10.1021/acs.chemrev.0c01069
  27. Yinlong Zhu, Hassan A. Tahini, Jing Zhou, Yu Chen, Qian Lin, Zhiwei Hu, Rong Fan, Sixuan She, Hong-Ji Lin, Chien-Te Chen, Sean C. Smith, Zongping Shao, Huanting Wang. Tailored Brownmillerite Oxide Catalyst with Multiple Electronic Functionalities Enables Ultrafast Water Oxidation. Chemistry of Materials 2021, 33 (13) , 5233-5241. https://doi.org/10.1021/acs.chemmater.1c01292
  28. Yiming Sui, Xiulei Ji. Anticatalytic Strategies to Suppress Water Electrolysis in Aqueous Batteries. Chemical Reviews 2021, 121 (11) , 6654-6695. https://doi.org/10.1021/acs.chemrev.1c00191
  29. Qing Zhang, Wei Chen, Guangliang Chen, Jun Huang, Bo Ouyang, Dongliang Chen, Erjun Kan, Tianlong Lan, Chaorong Li, Ho-Suk Choi, Kostya Ken Ostrikov. Trimetallic Octahedral Ni–Co–W Phosphoxide Sprouted from Plasma-Defect-Engineered Ni–Co Support for Ultrahigh-Performance Electrocatalytic Hydrogen Evolution. ACS Sustainable Chemistry & Engineering 2021, 9 (22) , 7454-7465. https://doi.org/10.1021/acssuschemeng.1c00730
  30. Cheng-Zong Yuan, Kwan San Hui, Hong Yin, Siqi Zhu, Jintao Zhang, Xi-Lin Wu, Xiaoting Hong, Wei Zhou, Xi Fan, Feng Bin, Fuming Chen, Kwun Nam Hui. Regulating Intrinsic Electronic Structures of Transition-Metal-Based Catalysts and the Potential Applications for Electrocatalytic Water Splitting. ACS Materials Letters 2021, 3 (6) , 752-780. https://doi.org/10.1021/acsmaterialslett.0c00549
  31. Suyeon Choi, Youngtae Park, Jungwoo Choi, Changsoo Lee, Hyun-Seok Cho, Chang-Hee Kim, Jahyun Koo, Hyuck Mo Lee. Structural Effectiveness of AgCl-decorated Ag Nanowires Enhancing Oxygen Reduction. ACS Sustainable Chemistry & Engineering 2021, 9 (22) , 7519-7528. https://doi.org/10.1021/acssuschemeng.1c01156
  32. Arnab Samanta, Subhra Jana. Ni-, Co-, and Mn-Doped Fe2O3 Nano-Parallelepipeds for Oxygen Evolution. ACS Applied Nano Materials 2021, 4 (5) , 5131-5140. https://doi.org/10.1021/acsanm.1c00581
  33. Shiyuan Gao, Ali Zavabeti, Bin Wang, Rui Ren, Chunhui Yang, Zhongqing Liu, Yichao Wang. Nickel Phosphides Electrodeposited on TiO2 Nanotube Arrays as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials 2021, 4 (5) , 4542-4551. https://doi.org/10.1021/acsanm.1c00134
  34. Jinlong Liu, Juanxiu Xiao, Zhenyu Wang, Huimin Yuan, Zhouguang Lu, Bingcheng Luo, Enke Tian, Geoffrey I. N. Waterhouse. Structural and Electronic Engineering of Ir-Doped Ni-(Oxy)hydroxide Nanosheets for Enhanced Oxygen Evolution Activity. ACS Catalysis 2021, 11 (9) , 5386-5395. https://doi.org/10.1021/acscatal.1c00110
  35. Danick Reynard, Bhawna Nagar, Hubert Girault. Photonic Flash Synthesis of Mo2C/Graphene Electrocatalyst for the Hydrogen Evolution Reaction. ACS Catalysis 2021, 11 (9) , 5865-5872. https://doi.org/10.1021/acscatal.1c00770
  36. Debabrata Chakraborty, Avik Chowdhury, Moumita Chandra, Rajkumar Jana, Sanjib Shyamal, Manas K. Bhunia, Debraj Chandra, Michikazu Hara, Debabrata Pradhan, Ayan Datta, Asim Bhaumik. Novel Tetradentate Phosphonate Ligand Based Bioinspired Co-Metal–Organic Frameworks: Robust Electrocatalyst for the Hydrogen Evolution Reaction in Different Mediums. Crystal Growth & Design 2021, 21 (5) , 2614-2623. https://doi.org/10.1021/acs.cgd.0c01275
  37. Yongsheng Wei, Peichao Zou, Yuanchao Yue, Maosen Wang, Wenying Fu, Si Si, Lu Wei, Xinsheng Zhao, Guangzhou Hu, Huolin L. Xin. One-Pot Synthesis of B/P-Codoped Co-Mo Dual-Nanowafer Electrocatalysts for Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (17) , 20024-20033. https://doi.org/10.1021/acsami.1c01341
  38. Ian Sullivan, Huanlei Zhang, Cheng Zhu, Marissa Wood, Art J. Nelson, Sarah E. Baker, Christopher M. Spadaccini, Tony Van Buuren, Meng Lin, Eric B. Duoss, Siwei Liang, Chengxiang Xiang. 3D Printed Nickel–Molybdenum-Based Electrocatalysts for Hydrogen Evolution at Low Overpotentials in a Flow-Through Configuration. ACS Applied Materials & Interfaces 2021, 13 (17) , 20260-20268. https://doi.org/10.1021/acsami.1c05648
  39. Yueguang Chen, Xintian Liu, Renjie Wu, Jiabin Cui, Gaofei Hu, Leyu Wang. Dual Active Center-Assembled Cu31S16–Co9-xNixS8 Heterodimers: Coherent Interface Engineering Induces Multihole Accumulation for Light-Enhanced Electrocatalytic Oxygen Evolution. ACS Applied Materials & Interfaces 2021, 13 (17) , 20094-20104. https://doi.org/10.1021/acsami.1c02353
  40. Zhiyuan Xu, Xuejiang Zhang, Xingdong Wang, Jinjie Fang, Yufeng Zhang, Xuerui Liu, Wei Zhu, Yushan Yan, Zhongbin Zhuang. Synthesis of Ag–Ni–Fe–P Multielemental Nanoparticles as Bifunctional Oxygen Reduction/Evolution Reaction Electrocatalysts. ACS Nano 2021, 15 (4) , 7131-7138. https://doi.org/10.1021/acsnano.1c00305
  41. Shin-Ae Park, Kyu-Su Kim, Hyun Dong Jung, Sang-Mun Jung, Young Hoon Moon, Seoin Back, Yong-Tae Kim. Three-Dimensionally Interconnected Nanoporous IrRe Thin Films Prepared by Selective Etching of Re for Oxygen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (4) , 4173-4180. https://doi.org/10.1021/acsaem.1c00488
  42. Ting Zhu, Ying Xiao, Yuanfu Ren, Wei Zeng, Anqiang Pan, Yuying Zheng, Quanbing Liu. Unusual Formation of CoS0.61Se0.25 Anion Solid Solution with Sulfur Defects to Promote Electrocatalytic Water Reduction. ACS Applied Energy Materials 2021, 4 (4) , 2976-2982. https://doi.org/10.1021/acsaem.1c00212
  43. Kyuho Lee, Raul A. Flores, Yunzhi Liu, Bai Yang Wang, Yasuyuki Hikita, Robert Sinclair, Michal Bajdich, Harold Y. Hwang. Epitaxial Stabilization and Oxygen Evolution Reaction Activity of Metastable Columbite Iridium Oxide. ACS Applied Energy Materials 2021, 4 (4) , 3074-3082. https://doi.org/10.1021/acsaem.0c02788
  44. Yunan Yi, Qianbao Wu, Junshan Li, Weitang Yao, Chunhua Cui. Phase-Segregated SrCo0.8Fe0.5–xO3−δ/FexOy Heterostructured Catalyst Promotes Alkaline Oxygen Evolution Reaction. ACS Applied Materials & Interfaces 2021, 13 (15) , 17439-17449. https://doi.org/10.1021/acsami.0c22355
  45. Meng Sun, Xiaoxiong Wang, Lea R. Winter, Yumeng Zhao, Wen Ma, Tayler Hedtke, Jae-Hong Kim, Menachem Elimelech. Electrified Membranes for Water Treatment Applications. ACS ES&T Engineering 2021, 1 (4) , 725-752. https://doi.org/10.1021/acsestengg.1c00015
  46. Camila Daiane Ferreira da Silva, Fabien Claudel, Vincent Martin, Raphaël Chattot, Sofyane Abbou, Kavita Kumar, Ignacio Jiménez-Morales, Sara Cavaliere, Deborah Jones, Jacques Rozière, Lluís Solà-Hernandez, Christian Beauger, Marco Faustini, Jennifer Peron, Bruno Gilles, Thierry Encinas, Laurent Piccolo, Fabio Henrique Barros de Lima, Laetitia Dubau, Frédéric Maillard. Oxygen Evolution Reaction Activity and Stability Benchmarks for Supported and Unsupported IrOx Electrocatalysts. ACS Catalysis 2021, 11 (7) , 4107-4116. https://doi.org/10.1021/acscatal.0c04613
  47. Shanmughasundaram Duraisamy, Abhijit Ganguly, Preetam Kumar Sharma, John Benson, James Davis, Pagona Papakonstantinou. One-Step Hydrothermal Synthesis of Phase-Engineered MoS2/MoO3 Electrocatalysts for Hydrogen Evolution Reaction. ACS Applied Nano Materials 2021, 4 (3) , 2642-2656. https://doi.org/10.1021/acsanm.0c03274
  48. Sukhyun Kang, Young Kyu Jeong, Sungwook Mhin, Jeong Ho Ryu, Ghulam Ali, Kangpyo Lee, Muhammad Akbar, Kyung Yoon Chung, HyukSu Han, Kang Min Kim. Pulsed Laser Confinement of Single Atomic Catalysts on Carbon Nanotube Matrix for Enhanced Oxygen Evolution Reaction. ACS Nano 2021, 15 (3) , 4416-4428. https://doi.org/10.1021/acsnano.0c08135
  49. Johanna Schröder, Vladislav A. Mints, Aline Bornet, Etienne Berner, Mohammad Fathi Tovini, Jonathan Quinson, Gustav K. H. Wiberg, Francesco Bizzotto, Hany A. El-Sayed, Matthias Arenz. The Gas Diffusion Electrode Setup as Straightforward Testing Device for Proton Exchange Membrane Water Electrolyzer Catalysts. JACS Au 2021, 1 (3) , 247-251. https://doi.org/10.1021/jacsau.1c00015
  50. Junyuan Xu, Junjie Li, Zan Lian, Ana Araujo, Yue Li, Bin Wei, Zhipeng Yu, Oleksandr Bondarchuk, Isilda Amorim, Vasiliki Tileli, Bo Li, Lifeng Liu. Atomic-Step Enriched Ruthenium–Iridium Nanocrystals Anchored Homogeneously on MOF-Derived Support for Efficient and Stable Oxygen Evolution in Acidic and Neutral Media. ACS Catalysis 2021, 11 (6) , 3402-3413. https://doi.org/10.1021/acscatal.0c04117
  51. Luisa Barrera, Rohini Bala Chandran. Harnessing Photoelectrochemistry for Wastewater Nitrate Treatment Coupled with Resource Recovery. ACS Sustainable Chemistry & Engineering 2021, 9 (10) , 3688-3701. https://doi.org/10.1021/acssuschemeng.0c07935
  52. Qianhong Zhu, Marlena Hinkle, David J. Kim, Jae-Hong Kim. Modular Hydrogen Peroxide Electrosynthesis Cell with Anthraquinone-Modified Polyaniline Electrocatalyst. ACS ES&T Engineering 2021, 1 (3) , 446-455. https://doi.org/10.1021/acsestengg.0c00173
  53. Zeyu Jin, Juan Lyu, Yi-Lu Zhao, Huanglong Li, Zuhuang Chen, Xi Lin, Guoqiang Xie, Xingjun Liu, Ji-Jung Kai, Hua-Jun Qiu. Top–Down Synthesis of Noble Metal Particles on High-Entropy Oxide Supports for Electrocatalysis. Chemistry of Materials 2021, 33 (5) , 1771-1780. https://doi.org/10.1021/acs.chemmater.0c04695
  54. Ruoyu Zhang, Gerben van Straaten, Valerio di Palma, Georgios Zafeiropoulos, Mauritius C.M. van de Sanden, Wilhelmus M.M. Kessels, Mihalis N. Tsampas, Mariadriana Creatore. Electrochemical Activation of Atomic Layer-Deposited Cobalt Phosphate Electrocatalysts for Water Oxidation. ACS Catalysis 2021, 11 (5) , 2774-2785. https://doi.org/10.1021/acscatal.0c04933
  55. Kalishankar Bhattacharyya, Corentin Poidevin, Alexander A. Auer. Structure and Reactivity of IrOx Nanoparticles for the Oxygen Evolution Reaction in Electrocatalysis: An Electronic Structure Theory Study. The Journal of Physical Chemistry C 2021, 125 (8) , 4379-4390. https://doi.org/10.1021/acs.jpcc.0c10092
  56. Zejun Zhao, Zhixiao Zhu, Xiaobing Bao, Fang Wang, Sijia Li, Shujuan Liu, Yong Yang. Facile Construction of Metal Phosphides (MP, M = Co, Ni, Fe, and Cu) Wrapped in Three-Dimensional N,P-Codoped Carbon Skeleton toward Highly Efficient Hydrogen Evolution Catalysis and Lithium-Ion Storage. ACS Applied Materials & Interfaces 2021, 13 (8) , 9820-9829. https://doi.org/10.1021/acsami.0c19914
  57. Kankona Singha Roy, Chandramouli Subramaniam, Leela S. Panchakarla. Non-Stoichiometry Induced Exsolution of Metal Oxide Nanoparticles via Formation of Wavy Surfaces and their Enhanced Electrocatalytic Activity: Case of Misfit Calcium Cobalt Oxide. ACS Applied Materials & Interfaces 2021, 13 (8) , 9897-9907. https://doi.org/10.1021/acsami.0c20891
  58. Jyah Strachan, Anthony F. Masters, Thomas Maschmeyer. Chevrel Phase Nanoparticles as Electrocatalysts for Hydrogen Evolution. ACS Applied Nano Materials 2021, 4 (2) , 2030-2036. https://doi.org/10.1021/acsanm.0c03355
  59. Yoon Jun Son, Kenta Kawashima, Bryan R. Wygant, Chon Hei Lam, James N. Burrow, Hugo Celio, Andrei Dolocan, John G. Ekerdt, C. Buddie Mullins. Anodized Nickel Foam for Oxygen Evolution Reaction in Fe-Free and Unpurified Alkaline Electrolytes at High Current Densities. ACS Nano 2021, 15 (2) , 3468-3480. https://doi.org/10.1021/acsnano.0c10788
  60. Zaki N. Zahran, Eman A. Mohamed, Yuta Tsubonouchi, Manabu Ishizaki, Takanari Togashi, Masato Kurihara, Kenji Saito, Tatsuto Yui, Masayuki Yagi. Concisely Synthesized FeNiWOx Film as a Highly Efficient and Robust Catalyst for Electrochemical Water Oxidation. ACS Applied Energy Materials 2021, 4 (2) , 1410-1420. https://doi.org/10.1021/acsaem.0c02628
  61. Cuiping Chang, Silu Zhu, Xingyu Liu, Yongmei Chen, Yanzhi Sun, Yang Tang, Pingyu Wan, Junqing Pan. One-Step Electrodeposition Synthesis of Bimetal Fe- and Co-Doped NiPi/P for Highly Efficient Overall Water Splitting. Industrial & Engineering Chemistry Research 2021, 60 (5) , 2070-2078. https://doi.org/10.1021/acs.iecr.0c05365
  62. Yi Peng, Qiming Liu, Bingzhang Lu, Ting He, Forrest Nichols, Xiao Hu, Tiffanie Huang, Grace Huang, Lizette Guzman, Yuan Ping, Shaowei Chen. Organically Capped Iridium Nanoparticles as High-Performance Bifunctional Electrocatalysts for Full Water Splitting in Both Acidic and Alkaline Media: Impacts of Metal–Ligand Interfacial Interactions. ACS Catalysis 2021, 11 (3) , 1179-1188. https://doi.org/10.1021/acscatal.0c03747
  63. Yannick T. Guntern, Valery Okatenko, James Pankhurst, Seyedeh Behnaz Varandili, Pranit Iyengar, Cedric Koolen, Dragos Stoian, Jan Vavra, Raffaella Buonsanti. Colloidal Nanocrystals as Electrocatalysts with Tunable Activity and Selectivity. ACS Catalysis 2021, 11 (3) , 1248-1295. https://doi.org/10.1021/acscatal.0c04403
  64. Sooraj Sreenath, Ravishankar Suman, K.V. Sayana, P.S. Nayanthara, Nitin G. Borle, Vivek Verma, Rajaram K Nagarale. Low-Voltage Nongassing Electroosmotic Pump and Infusion Device with Polyoxometalate-Encapsulated Carbon Nanotubes. Langmuir 2021, 37 (4) , 1563-1570. https://doi.org/10.1021/acs.langmuir.0c03196
  65. Ali Hussain Motagamwala, James A. Dumesic. Microkinetic Modeling: A Tool for Rational Catalyst Design. Chemical Reviews 2021, 121 (2) , 1049-1076. https://doi.org/10.1021/acs.chemrev.0c00394
  66. Yongxia Zhang, Yunfeng Qiu, Yanping Wang, Bing Li, Yuanyuan Zhang, Zhuo Ma, Shaoqin Liu. Coaxial Ni–[email protected] Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H2 Production via Urea Electrolysis. ACS Applied Materials & Interfaces 2021, 13 (3) , 3937-3948. https://doi.org/10.1021/acsami.0c19117
  67. Jaerim Kim, Hyeonjung Jung, Sang-Mun Jung, Jinwoo Hwang, Dong Yeong Kim, Noho Lee, Kyu-Su Kim, Hyunah Kwon, Yong-Tae Kim, Jeong Woo Han, Jong Kyu Kim. Tailoring Binding Abilities by Incorporating Oxophilic Transition Metals on 3D Nanostructured Ni Arrays for Accelerated Alkaline Hydrogen Evolution Reaction. Journal of the American Chemical Society 2021, 143 (3) , 1399-1408. https://doi.org/10.1021/jacs.0c10661
  68. Zhou Yang, Runmiao Yang, Guanxiu Dong, Meng Xiang, Jia Hui, Junfei Ou, Hengfei Qin. Biochar Nanocomposite Derived from Watermelon Peels for Electrocatalytic Hydrogen Production. ACS Omega 2021, 6 (3) , 2066-2073. https://doi.org/10.1021/acsomega.0c05018
  69. Leonard Moriau, Marjan Bele, Živa Marinko, Francisco Ruiz-Zepeda, Gorazd Koderman Podboršek, Martin Šala, Angelja Kjara Šurca, Janez Kovač, Iztok Arčon, Primož Jovanovič, Nejc Hodnik, Luka Suhadolnik. Effect of the Morphology of the High-Surface-Area Support on the Performance of the Oxygen-Evolution Reaction for Iridium Nanoparticles. ACS Catalysis 2021, 11 (2) , 670-681. https://doi.org/10.1021/acscatal.0c04741
  70. Koteswara Rao Gorantla, Bhabani S. Mallik. Mechanism and Dynamics of Formation of Bisoxo Intermediates and O–O Bond in the Catalytic Water Oxidation Process. The Journal of Physical Chemistry A 2021, 125 (1) , 279-290. https://doi.org/10.1021/acs.jpca.0c09943
  71. Yufei Zhao, Jinqiang Zhang, Yuhan Xie, Bing Sun, Junjie Jiang, Wen-Jie Jiang, Shibo Xi, Hui Ying Yang, Kang Yan, Shijian Wang, Xin Guo, Peng Li, Zhaojun Han, Xunyu Lu, Hao Liu, Guoxiu Wang. Constructing Atomic Heterometallic Sites in Ultrathin Nickel-Incorporated Cobalt Phosphide Nanosheets via a Boron-Assisted Strategy for Highly Efficient Water Splitting. Nano Letters 2021, 21 (1) , 823-832. https://doi.org/10.1021/acs.nanolett.0c04569
  72. Malte Klingenhof, Philipp Hauke, Sven Brückner, Sören Dresp, Elisabeth Wolf, Hong Nhan Nong, Camillo Spöri, Thomas Merzdorf, Denis Bernsmeier, Detre Teschner, Robert Schlögl, Peter Strasser. Modular Design of Highly Active Unitized Reversible Fuel Cell Electrocatalysts. ACS Energy Letters 2021, 6 (1) , 177-183. https://doi.org/10.1021/acsenergylett.0c02203
  73. Inmaculada Márquez, José Luis Olloqui-Sariego, Miguel Molero, Rafael Andreu, Emilio Roldán, Juan José Calvente. Active Role of the Buffer in the Proton-Coupled Electron Transfer of Immobilized Iron Porphyrins. Inorganic Chemistry 2021, 60 (1) , 42-54. https://doi.org/10.1021/acs.inorgchem.0c01091
  74. Daniel Adjei Agyeman, Yongping Zheng, Tae-Hyeong Lee, Mihui Park, Wilson Tamakloe, Gi-Hyeok Lee, Ho Won Jang, Kyeongjae Cho, Yong-Mook Kang. Synergistic Catalysis of the Lattice Oxygen and Transition Metal Facilitating ORR and OER in Perovskite Catalysts for Li–O2 Batteries. ACS Catalysis 2021, 11 (1) , 424-434. https://doi.org/10.1021/acscatal.0c02608
  75. Cheng-Hsun Chuang, Li-Yin Hsiao, Min-Hsin Yeh, Yen-Chun Wang, Sung-Chun Chang, Li-Duan Tsai, Kuo-Chuan Ho. Prussian Blue Analogue-Derived Metal Oxides as Electrocatalysts for Oxygen Evolution Reaction: Tailoring the Molar Ratio of Cobalt to Iron. ACS Applied Energy Materials 2020, 3 (12) , 11752-11762. https://doi.org/10.1021/acsaem.0c01903
  76. Naohito Yamada, Sho Kitano, Yuya Yato, Damian Kowalski, Yoshitaka Aoki, Hiroki Habazaki. In Situ Activation of Anodized Ni–Fe Alloys for the Oxygen Evolution Reaction in Alkaline Media. ACS Applied Energy Materials 2020, 3 (12) , 12316-12326. https://doi.org/10.1021/acsaem.0c02362
  77. Duong Nguyen Nguyen, Girish Sambhaji Gund, Min Gyu Jung, Seung Hun Roh, Jongwook Park, Jung Kyu Kim, Ho Seok Park. Core–Shell Structured [email protected] Nanodots as Bifunctional Catalysts for Solar-Assisted Water Splitting. ACS Nano 2020, 14 (12) , 17615-17625. https://doi.org/10.1021/acsnano.0c08436
  78. Hui Yang, Fengyang Zhao, Xiaoyan Cao, Qingyun Liu, Xianxi Zhang, Xiao Zhang. Porphyrin-Modified Cobalt Sulfide as a Developed Noble Metal-free Photoelectrocatalyst toward Methanol Oxidation under Visible Light. The Journal of Physical Chemistry C 2020, 124 (49) , 26678-26687. https://doi.org/10.1021/acs.jpcc.0c08663
  79. Yannick Hermans, Céline Olivier, Henrik Junge, Andreas Klein, Wolfram Jaegermann, Thierry Toupance. Sunlight Selective Photodeposition of CoOx(OH)y and NiOx(OH)y on Truncated Bipyramidal BiVO4 for Highly Efficient Photocatalysis. ACS Applied Materials & Interfaces 2020, 12 (48) , 53910-53920. https://doi.org/10.1021/acsami.0c14624
  80. Hongmei Wang, Jie Xiong, Xing Cheng, Mathias Fritz, Adriana Ispas, Andreas Bund, Ge Chen, Dong Wang, Peter Schaaf. Ni3N-Coated Ni Nanorod Arrays for Hydrogen and Oxygen Evolution in Electrochemical Water Splitting. ACS Applied Nano Materials 2020, 3 (11) , 10986-10995. https://doi.org/10.1021/acsanm.0c02222
  81. Christopher N. Chervin, Brandon J. Hopkins, Ashley N. Hoffmaster, Nathaniel L. Skeele, Jesse S. Ko, Joseph F. Parker, Bethany M. Hudak, Jeffrey W. Long, Debra R. Rolison. Sustainable Electrocatalytic Architectures Enable Rechargeable Zinc–Air Batteries with Low Voltage Hysteresis. ACS Applied Energy Materials 2020, 3 (11) , 10485-10494. https://doi.org/10.1021/acsaem.0c01521
  82. Kshirodra Kumar Patra, Sojung Park, Hakhyeon Song, Beomil Kim, Wooyul Kim, Jihun Oh. Operando Spectroscopic Investigation of a Boron-Doped CuO Catalyst and Its Role in Selective Electrochemical C–C Coupling. ACS Applied Energy Materials 2020, 3 (11) , 11343-11349. https://doi.org/10.1021/acsaem.0c02284
  83. Marjan Bele, Primož Jovanovič, Živa Marinko, Sandra Drev, Vid Simon Šelih, Janez Kovač, Miran Gaberšček, Gorazd Koderman Podboršek, Goran Dražić, Nejc Hodnik, Anton Kokalj, Luka Suhadolnik. Increasing the Oxygen-Evolution Reaction Performance of Nanotubular Titanium Oxynitride-Supported Ir Nanoparticles by a Strong Metal–Support Interaction. ACS Catalysis 2020, 10 (22) , 13688-13700. https://doi.org/10.1021/acscatal.0c03688
  84. Qixin Xu, Weiwei Qin, Jin-Feng Chu. Novel Co3(1–x)Fe3xV2O8 Nanoparticles as Highly Active and Noble-Metal-Free Electrocatalysts for Oxygen Evolution Reaction. Energy & Fuels 2020, 34 (11) , 15019-15025. https://doi.org/10.1021/acs.energyfuels.0c02325
  85. Kannimuthu Karthick, Sugumar Subhashini, Rishabh Kumar, Sridhar Sethuram Markandaraj, Muthukumar Muthu Teepikha, Subrata Kundu. Cubic Nanostructures of Nickel–Cobalt Carbonate Hydroxide Hydrate as a High-Performance Oxygen Evolution Reaction Electrocatalyst in Alkaline and Near-Neutral Media. Inorganic Chemistry 2020, 59 (22) , 16690-16702. https://doi.org/10.1021/acs.inorgchem.0c02680
  86. Brennan M. Coffey, Himamshu C. Nallan, James R. Engstrom, John G. Ekerdt. A Vacuum Ultraviolet-Enhanced Oxidation Mechanism for Pd: Near-Surface Oxidation for Atomic Layer Etching. ACS Applied Materials & Interfaces 2020, 12 (45) , 50985-50995. https://doi.org/10.1021/acsami.0c13898
  87. Silvia Gutiérrez-Tarriño, José Luis Olloqui-Sariego, Juan José Calvente, Guillermo Mínguez Espallargas, Fernando Rey, Avelino Corma, Pascual Oña-Burgos. Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. Journal of the American Chemical Society 2020, 142 (45) , 19198-19208. https://doi.org/10.1021/jacs.0c08882
  88. Shengxiang Yang, Dennis G. H. Hetterscheid. Redefinition of the Active Species and the Mechanism of the Oxygen Evolution Reaction on Gold Oxide. ACS Catalysis 2020, 10 (21) , 12582-12589. https://doi.org/10.1021/acscatal.0c03548
  89. Jingyan Zhang, Jinmei Qian, Jiaqi Ran, Pinxian Xi, Lijun Yang, Daqiang Gao. Engineering Lower Coordination Atoms onto NiO/Co3O4 Heterointerfaces for Boosting Oxygen Evolution Reactions. ACS Catalysis 2020, 10 (21) , 12376-12384. https://doi.org/10.1021/acscatal.0c03756
  90. Kai S. Exner. A Universal Descriptor for the Screening of Electrode Materials for Multiple-Electron Processes: Beyond the Thermodynamic Overpotential. ACS Catalysis 2020, 10 (21) , 12607-12617. https://doi.org/10.1021/acscatal.0c03865
  91. Jannis Thien, Jascha Bahlmann, Andreas Alexander, Martin Hoppe, Tobias Pohlmann, Kevin Ruwisch, Carola Meyer, Florian Bertram, Karsten Küpper, Joachim Wollschläger. Effects of Post-deposition Annealing on Epitaxial CoO/Fe3O4 Bilayers on SrTiO3(001) and Formation of Thin High-Quality Cobalt Ferrite-like Films. The Journal of Physical Chemistry C 2020, 124 (43) , 23895-23904. https://doi.org/10.1021/acs.jpcc.0c05503
  92. Junjun Lv, Panpan Liu, Fei Yang, Liwen Xing, Danni Wang, Xiao Chen, Hongyi Gao, Xiubing Huang, Yunfeng Lu, Ge Wang. 3D Hydrangea Macrophylla-like Nickel–Vanadium Metal–Organic Frameworks Formed by Self-Assembly of Ultrathin 2D Nanosheets for Overall Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (43) , 48495-48510. https://doi.org/10.1021/acsami.0c11722
  93. Wen Guo, Kyubin Shim, Sang-Mun Jung, Hye Su Kang, Yong-Tae Kim. Enhancing Electrochemical CO2 Reduction Activity via Charge Transfer and sp-Band Filling in a Au Thin Layer on Ag. ACS Applied Energy Materials 2020, 3 (10) , 9792-9798. https://doi.org/10.1021/acsaem.0c01407
  94. Hyunki Kim, Junhyeong Kim, Wenwu Guo, Gyeong Ho Han, Seokjin Hong, Soo Young Kim, Sang Hyun Ahn. Performance Correlation of Self-Supported Electrodes in Half-Cell and Single-Cell Tests for Water Electrolysis. ACS Sustainable Chemistry & Engineering 2020, 8 (42) , 15815-15821. https://doi.org/10.1021/acssuschemeng.0c06781
  95. Lorenzo Bigiani, Chiara Maccato, Teresa Andreu, Alberto Gasparotto, Cinzia Sada, Evgeny Modin, Oleg I. Lebedev, Joan Ramon Morante, Davide Barreca. Quasi-1D Mn2O3 Nanostructures Functionalized with First-Row Transition-Metal Oxides as Oxygen Evolution Catalysts. ACS Applied Nano Materials 2020, 3 (10) , 9889-9898. https://doi.org/10.1021/acsanm.0c01951
  96. Supriya Ghosh, Brian P. Bloom, Yiyang Lu, Daniel Lamont, David H. Waldeck. Increasing the Efficiency of Water Splitting through Spin Polarization Using Cobalt Oxide Thin Film Catalysts. The Journal of Physical Chemistry C 2020, 124 (41) , 22610-22618. https://doi.org/10.1021/acs.jpcc.0c07372
  97. Weiran Zheng, Mengjie Liu, Lawrence Yoon Suk Lee. Best Practices in Using Foam-Type Electrodes for Electrocatalytic Performance Benchmark. ACS Energy Letters 2020, 5 (10) , 3260-3264. https://doi.org/10.1021/acsenergylett.0c01958
  98. Anna S. Schenk, Miriam Goll, Lukas Reith, Manuel Roussel, Björn Blaschkowski, Sabine Rosenfeldt, Xiaofei Yin, Wolfgang W. Schmahl, Sabine Ludwigs. Hierarchically Structured Spherulitic Cobalt Hydroxide Carbonate as a Precursor to Ordered Nanostructures of Electrocatalytically Active Co3O4. Crystal Growth & Design 2020, 20 (10) , 6407-6420. https://doi.org/10.1021/acs.cgd.0c00576
  99. Somayeh Tajik, Hadi Beitollahi, Fariba Garkani Nejad, Kent O. Kirlikovali, Quyet Van Le, Ho Won Jang, Rajender S. Varma, Omar K. Farha, Mohammadreza Shokouhimehr. Recent Electrochemical Applications of Metal–Organic Framework-Based Materials. Crystal Growth & Design 2020, 20 (10) , 7034-7064. https://doi.org/10.1021/acs.cgd.0c00601
  100. Jun Xu, Bansui Yu, Han Zhao, Shoufu Cao, Lingling Song, Kun Xing, Ru Zhou, Xiaoqing Lu. Oxygen-Doped VS4 Microspheres with Abundant Sulfur Vacancies as a Superior Electrocatalyst for the Hydrogen Evolution Reaction. ACS Sustainable Chemistry & Engineering 2020, 8 (39) , 15055-15064. https://doi.org/10.1021/acssuschemeng.0c06337
Load more citations