Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length

View Author Information
SentechBiomed Corporation, 200 Innovation Boulevard, State College, Pennsylvania 16803, Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801, and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16801
Cite this: J. Phys. Chem. B 2006, 110, 33, 16179–16184
Publication Date (Web):July 28, 2006
https://doi.org/10.1021/jp064020k
Copyright © 2006 American Chemical Society
Article Views
8669
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (951 KB)

Abstract

Described is the fabrication of self-aligned highly ordered TiO2 nanotube arrays by potentiostatic anodization of Ti foil having lengths up to 134 μm, representing well over an order of magnitude increase in length thus far reported. We have achieved the very long nanotube arrays in fluoride ion containing baths in combination with a variety of nonaqueous organic polar electrolytes including dimethyl sulfoxide, formamide, ethylene glycol, and N-methylformamide. Depending on the anodization voltage, pore diameters of the resulting nanotube arrays range from 20 to 150 nm. Our longest nanotube arrays yield a roughness factor of 4750 and length-to-width (outer diameter) aspect ratio of ≈835. The as-prepared nanotubes are amorphous but crystallize with annealing at elevated temperatures. In initial measurements, 45 μm long nanotube-array samples, 550 °C annealed, under UV illumination show a remarkable water photoelectrolysis photoconversion efficiency of 16.25%.

 SentechBiomed Corporation.

 Department of Electrical Engineering, The Pennsylvania State University.

§

 Department of Materials Science and Engineering, The Pennsylvania State University.

 Materials Research Institute, The Pennsylvania State University.

*

 Corresponding author. E-mail:  [email protected]

Cited By


This article is cited by 736 publications.

  1. Sengeni Anantharaj, Hisashi Sugime, Shohei Yamaoka, Suguru Noda. Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH)2 Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer. ACS Applied Energy Materials 2021, 4 (1) , 899-912. https://doi.org/10.1021/acsaem.0c02822
  2. Sengeni Anantharaj, Hisashi Sugime, Suguru Noda. Ultrafast Growth of a Cu(OH)2–CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis. ACS Applied Materials & Interfaces 2020, 12 (24) , 27327-27338. https://doi.org/10.1021/acsami.0c08979
  3. Jonghun Lim, Yang Yang, Michael R. Hoffmann. Activation of Peroxymonosulfate by Oxygen Vacancies-Enriched Cobalt-Doped Black TiO2 Nanotubes for the Removal of Organic Pollutants. Environmental Science & Technology 2019, 53 (12) , 6972-6980. https://doi.org/10.1021/acs.est.9b01449
  4. Aravind Puthirath Balan, Sruthi Radhakrishnan, Ram Neupane, Sadegh Yazdi, Liangzi Deng, Carlos A. de los Reyes, Amey Apte, Anand B. Puthirath, B. Manmadha Rao, Maggie Paulose, Robert Vajtai, Ching-Wu Chu, Angel A. Martí, Oomman K Varghese, Chandra Sekhar Tiwary, M. R. Anantharaman, Pulickel M Ajayan. Magnetic Properties and Photocatalytic Applications of 2D Sheets of Nonlayered Manganese Telluride by Liquid Exfoliation. ACS Applied Nano Materials 2018, 1 (11) , 6427-6434. https://doi.org/10.1021/acsanm.8b01642
  5. Pawan Pathak, Mateusz Podzorski, Detlef Bahnemann, Vaidyanathan Ravi Subramanian. One-Pot Fabrication of High Coverage PbS Quantum Dot Nanocrystal-Sensitized Titania Nanotubes for Photoelectrochemical Processes. The Journal of Physical Chemistry C 2018, 122 (25) , 13659-13668. https://doi.org/10.1021/acs.jpcc.8b00120
  6. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  7. Srilatha Arra, K. R. Ramya, Rohit Babar, Mukul Kabir. Photocatalytic Activity of Phosphorene Derivatives: Coverage, Electronic, Optical, and Excitonic Properties. The Journal of Physical Chemistry C 2018, 122 (13) , 7194-7202. https://doi.org/10.1021/acs.jpcc.7b12649
  8. Wei-Chieh Chen, Min-Hsin Yeh, Lu-Yin Lin, R. Vittal, Kuo-Chuan Ho. Double-Wall TiO2 Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3907-3915. https://doi.org/10.1021/acssuschemeng.7b04250
  9. Yang Yang and Michael R. Hoffmann . Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology 2016, 50 (21) , 11888-11894. https://doi.org/10.1021/acs.est.6b03540
  10. Ha Nee Umh, Sungju Yu, Yong Hwa Kim, Su Young Lee, and Jongheop Yi . Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure. ACS Applied Materials & Interfaces 2016, 8 (24) , 15802-15808. https://doi.org/10.1021/acsami.6b03717
  11. Yulong Liao, Xiaoyi Wang, Yanbing Ma, Jie Li, Tianlong Wen, Lijun Jia, Zhiyong Zhong, Liping Wang, and Dainan Zhang . New Mechanistic Insight of Low Temperature Crystallization of Anodic TiO2 Nanotube Array in Water. Crystal Growth & Design 2016, 16 (4) , 1786-1791. https://doi.org/10.1021/acs.cgd.5b01234
  12. Aruna B. Wijeratne, Dharshana N. Wijesundera, Maggie Paulose, Ivy Belinda Ahiabu, Wei-Kan Chu, Oomman K. Varghese, and Kenneth D. Greis . Phosphopeptide Separation Using Radially Aligned Titania Nanotubes on Titanium Wire. ACS Applied Materials & Interfaces 2015, 7 (21) , 11155-11164. https://doi.org/10.1021/acsami.5b00799
  13. Muhammad Ibadurrohman and Klaus Hellgardt . Morphological Modification of TiO2 Thin Films as Highly Efficient Photoanodes for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces 2015, 7 (17) , 9088-9097. https://doi.org/10.1021/acsami.5b00853
  14. M. Madian, L. Giebeler, M. Klose, T. Jaumann, M. Uhlemann, A. Gebert, S. Oswald, N. Ismail, A. Eychmüller, and J. Eckert . Self-Organized TiO2/CoO Nanotubes as Potential Anode Materials for Lithium Ion Batteries. ACS Sustainable Chemistry & Engineering 2015, 3 (5) , 909-919. https://doi.org/10.1021/acssuschemeng.5b00026
  15. Johns Naduvath, Parag Bhargava, and Sudhanshu Mallick . Mechanism of Formation of Faceted Titania Nanoparticles from Anodized Titania Nanotubes. The Journal of Physical Chemistry C 2015, 119 (17) , 9574-9579. https://doi.org/10.1021/acs.jpcc.5b00650
  16. Stephen DeWitt Katsuyo Thornton . Anodic Oxide Nanostructures and Their Applications in Energy Generation and Storage. 2015,,, 19-39. https://doi.org/10.1021/bk-2015-1213.ch002
  17. Chenyan Hu, Kenneth Chu, Yihua Zhao, and Wey Yang Teoh . Efficient Photoelectrochemical Water Splitting over Anodized p-Type NiO Porous Films. ACS Applied Materials & Interfaces 2014, 6 (21) , 18558-18568. https://doi.org/10.1021/am507138b
  18. Lidong Sun, Xiaoyan Wang, Meilin Li, Sam Zhang, and Qing Wang . Anodic Titania Nanotubes Grown on Titanium Tubular Electrodes. Langmuir 2014, 30 (10) , 2835-2841. https://doi.org/10.1021/la500050q
  19. Junye Dong, Jie Han, Yangsi Liu, Akira Nakajima, Sachiko Matsushita, Shanghai Wei, and Wei Gao . Defective Black TiO2 Synthesized via Anodization for Visible-Light Photocatalysis. ACS Applied Materials & Interfaces 2014, 6 (3) , 1385-1388. https://doi.org/10.1021/am405549p
  20. B. Manmadha Rao and Somnath C. Roy . Solvothermal Processing of Amorphous TiO2 Nanotube Arrays: Achieving Crystallinity at a Lower Thermal Budget. The Journal of Physical Chemistry C 2014, 118 (2) , 1198-1205. https://doi.org/10.1021/jp406930y
  21. Karla R. Reyes-Gil and David B. Robinson . WO3-Enhanced TiO2 Nanotube Photoanodes for Solar Water Splitting with Simultaneous Wastewater Treatment. ACS Applied Materials & Interfaces 2013, 5 (23) , 12400-12410. https://doi.org/10.1021/am403369p
  22. Karla R. Reyes-Gil, Craig Wiggenhorn, Bruce S. Brunschwig, and Nathan S. Lewis . Comparison between the Quantum Yields of Compact and Porous WO3 Photoanodes. The Journal of Physical Chemistry C 2013, 117 (29) , 14947-14957. https://doi.org/10.1021/jp4025624
  23. Yuyu Bu, Zhuoyuan Chen, Weibing Li, and Jianqiang Yu . High-Efficiency Photoelectrochemical Properties by a Highly Crystalline CdS-Sensitized ZnO Nanorod Array. ACS Applied Materials & Interfaces 2013, 5 (11) , 5097-5104. https://doi.org/10.1021/am400964c
  24. Bo Chen, Junbo Hou, and Kathy Lu . Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors. Langmuir 2013, 29 (19) , 5911-5919. https://doi.org/10.1021/la400586r
  25. Lok-kun Tsui, Takayuki Homma, and Giovanni Zangari . Photocurrent Conversion in Anodized TiO2 Nanotube Arrays: Effect of the Water Content in Anodizing Solutions. The Journal of Physical Chemistry C 2013, 117 (14) , 6979-6989. https://doi.org/10.1021/jp400318n
  26. Junyu Cao, Juanjuan Xing, Yuanjian Zhang, Hua Tong, Yingpu Bi, Tetsuya Kako, Masaki Takeguchi, and Jinhua Ye . Photoelectrochemical Properties of Nanomultiple CaFe2O4/ZnFe2O4pn Junction Photoelectrodes. Langmuir 2013, 29 (9) , 3116-3124. https://doi.org/10.1021/la304377z
  27. Milena Jankulovska, Irene Barceló, Teresa Lana-Villarreal, and Roberto Gómez . Improving the Photoelectrochemical Response of TiO2 Nanotubes upon Decoration with Quantum-Sized Anatase Nanowires. The Journal of Physical Chemistry C 2013, 117 (8) , 4024-4031. https://doi.org/10.1021/jp311068m
  28. Jian Zhen Ou, Rozina A. Rani, Moon-Ho Ham, Matthew R. Field, Yuan Zhang, Haidong Zheng, Peter Reece, Serge Zhuiykov, Sharath Sriram, Madhu Bhaskaran, Richard B. Kaner, and Kourosh Kalantar-zadeh . Elevated Temperature Anodized Nb2O5: A Photoanode Material with Exceptionally Large Photoconversion Efficiencies. ACS Nano 2012, 6 (5) , 4045-4053. https://doi.org/10.1021/nn300408p
  29. Baoshun Liu, Kazuya Nakata, Shanhu Liu, Munetoshi Sakai, Tsuyoshi Ochiai, Taketoshi Murakami, Katsuhiko Takagi, and Akira Fujishima . Theoretical Kinetic Analysis of Heterogeneous Photocatalysis by TiO2 Nanotube Arrays: the Effects of Nanotube Geometry on Photocatalytic Activity. The Journal of Physical Chemistry C 2012, 116 (13) , 7471-7479. https://doi.org/10.1021/jp300481a
  30. Jae-Yup Kim, Kyung Jae Lee, Soon Hyung Kang, Junyoung Shin, and Yung-Eun Sung . Enhanced Photovoltaic Properties of a Cobalt Bipyridyl Redox Electrolyte in Dye-Sensitized Solar Cells Employing Vertically Aligned TiO2 Nanotube Electrodes. The Journal of Physical Chemistry C 2011, 115 (40) , 19979-19985. https://doi.org/10.1021/jp2025736
  31. Yan Sun, Kangping Yan, Guixin Wang, Wei Guo, and Tingli Ma . Effect of Annealing Temperature on the Hydrogen Production of TiO2 Nanotube Arrays in a Two-Compartment Photoelectrochemical Cell. The Journal of Physical Chemistry C 2011, 115 (26) , 12844-12849. https://doi.org/10.1021/jp1116118
  32. Vito Cristino, Stefano Caramori, Roberto Argazzi, Laura Meda, Gian Luigi Marra, and Carlo Alberto Bignozzi . Efficient Photoelectrochemical Water Splitting by Anodically Grown WO3 Electrodes. Langmuir 2011, 27 (11) , 7276-7284. https://doi.org/10.1021/la200595x
  33. Jung-Ho Yun, Yun Hau Ng, Changhui Ye, Attila J. Mozer, Gordon G. Wallace, and Rose Amal . Sodium Fluoride-Assisted Modulation of Anodized TiO2 Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & Interfaces 2011, 3 (5) , 1585-1593. https://doi.org/10.1021/am200147b
  34. Heberton Wender, Adriano F. Feil, Leonardo B. Diaz, Camila S. Ribeiro, Guilherme J. Machado, Pedro Migowski, Daniel E. Weibel, Jairton Dupont, and Sérgio R. Teixeira . Self-Organized TiO2 Nanotube Arrays: Synthesis by Anodization in an Ionic Liquid and Assessment of Photocatalytic Properties. ACS Applied Materials & Interfaces 2011, 3 (4) , 1359-1365. https://doi.org/10.1021/am200156d
  35. Jin Young Kim, Jun Hong Noh, Kai Zhu, Adam F. Halverson, Nathan R. Neale, Sangbaek Park, Kug Sun Hong, and Arthur J. Frank . General Strategy for Fabricating Transparent TiO2 Nanotube Arrays for Dye-Sensitized Photoelectrodes: Illumination Geometry and Transport Properties. ACS Nano 2011, 5 (4) , 2647-2656. https://doi.org/10.1021/nn200440u
  36. Gaopeng Dai, Jiaguo Yu, and Gang Liu . Synthesis and Enhanced Visible-Light Photoelectrocatalytic Activity of p−n Junction BiOI/TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2011, 115 (15) , 7339-7346. https://doi.org/10.1021/jp200788n
  37. Daoai Wang and Lifeng Liu. Continuous Fabrication of Free-Standing TiO2 Nanotube Array Membranes with Controllable Morphology for Depositing Interdigitated Heterojunctions. Chemistry of Materials 2010, 22 (24) , 6656-6664. https://doi.org/10.1021/cm102622x
  38. Lidong Sun, Sam Zhang, Xiao Wei Sun, Xiaoyan Wang, and Yanli Cai . Double-Sided Anodic Titania Nanotube Arrays: A Lopsided Growth Process. Langmuir 2010, 26 (23) , 18424-18429. https://doi.org/10.1021/la103390s
  39. Yajun Ji, Keng-Chu Lin, Hegen Zheng, Chung-Chiun Liu, Laurie Dudik, Junjie Zhu, and Clemens Burda . Solar-Light Photoamperometric and Photocatalytic Properties of Quasi-transparent TiO2 Nanoporous Thin Films. ACS Applied Materials & Interfaces 2010, 2 (11) , 3075-3082. https://doi.org/10.1021/am100579g
  40. Xiaobo Chen, Shaohua Shen, Liejin Guo, and Samuel S. Mao . Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110 (11) , 6503-6570. https://doi.org/10.1021/cr1001645
  41. Dongdong Li, Pai-Chun Chang, Chung-Jen Chien, and Jia G. Lu . Applications of Tunable TiO2 Nanotubes as Nanotemplate and Photovoltaic Device. Chemistry of Materials 2010, 22 (20) , 5707-5711. https://doi.org/10.1021/cm101724t
  42. Nageh K. Allam and Mostafa A. El-Sayed. Photoelectrochemical Water Oxidation Characteristics of Anodically Fabricated TiO2 Nanotube Arrays: Structural and Optical Properties. The Journal of Physical Chemistry C 2010, 114 (27) , 12024-12029. https://doi.org/10.1021/jp1037014
  43. Peter C. K. Vesborg, Su-il In, Jakob L. Olsen, Toke R. Henriksen, Billie L. Abrams, Yidong Hou, Alan Kleiman-Shwarsctein, Ole Hansen and Ib Chorkendorff. Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in μ-Reactors. The Journal of Physical Chemistry C 2010, 114 (25) , 11162-11168. https://doi.org/10.1021/jp100552x
  44. Jianping Zou, Qing Zhang, Kai Huang and Nicola Marzari . Ultraviolet Photodetectors Based on Anodic TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2010, 114 (24) , 10725-10729. https://doi.org/10.1021/jp1011236
  45. Pascal Hartmann, Doh-Kwon Lee, Bernd M. Smarsly and Juergen Janek . Mesoporous TiO2: Comparison of Classical Sol−Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction. ACS Nano 2010, 4 (6) , 3147-3154. https://doi.org/10.1021/nn1004765
  46. Zhaoyue Liu and Mano Misra . Dye-Sensitized Photovoltaic Wires Using Highly Ordered TiO2 Nanotube Arrays. ACS Nano 2010, 4 (4) , 2196-2200. https://doi.org/10.1021/nn9015696
  47. Yahya Alivov and Sabee Molloi . Self-Organization of Anatase TiO2 Nanoparticles to Regular Shape Clusters. Crystal Growth & Design 2010, 10 (4) , 1721-1724. https://doi.org/10.1021/cg901351s
  48. Lixia Yang, Shenglian Luo, Ronghua Liu, Qingyun Cai, Yan Xiao, Shaohuan Liu, Fang Su and Lingfei Wen . Fabrication of CdSe Nanoparticles Sensitized Long TiO2 Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light. The Journal of Physical Chemistry C 2010, 114 (11) , 4783-4789. https://doi.org/10.1021/jp910489h
  49. Somnath C. Roy, Oomman K. Varghese, Maggie Paulose and Craig A. Grimes. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. ACS Nano 2010, 4 (3) , 1259-1278. https://doi.org/10.1021/nn9015423
  50. Xinjian Feng, Thomas J. LaTempa, James I. Basham, Gopal K. Mor, Oomman K. Varghese and Craig A. Grimes . Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis. Nano Letters 2010, 10 (3) , 948-952. https://doi.org/10.1021/nl903886e
  51. Sriparna Chatterjee, Somnath Bhattacharyya, Deepa Khushalani and Pushan Ayyub. Hydrothermally Synthesized Aligned Arrays of Self-Assembled Multiwalled Hydrogen Titanate Nanotubes. Crystal Growth & Design 2010, 10 (3) , 1215-1220. https://doi.org/10.1021/cg901214a
  52. Sorachon Yoriya and Craig A. Grimes. Self-Assembled TiO2 Nanotube Arrays by Anodization of Titanium in Diethylene Glycol: Approach to Extended Pore Widening. Langmuir 2010, 26 (1) , 417-420. https://doi.org/10.1021/la9020146
  53. Yanzhu Lei, Guohua Zhao, Meichuan Liu, Zhongning Zhang, Xili Tong and Tongcheng Cao. Fabrication, Characterization, and Photoelectrocatalytic Application of ZnO Nanorods Grafted on Vertically Aligned TiO2 Nanotubes. The Journal of Physical Chemistry C 2009, 113 (44) , 19067-19076. https://doi.org/10.1021/jp9071179
  54. Thomas J. LaTempa, Xinjian Feng, Maggie Paulose and Craig A. Grimes. Temperature-Dependent Growth of Self-Assembled Hematite (α-Fe2O3) Nanotube Arrays: Rapid Electrochemical Synthesis and Photoelectrochemical Properties. The Journal of Physical Chemistry C 2009, 113 (36) , 16293-16298. https://doi.org/10.1021/jp904560n
  55. Zhaoyue Liu, Vaidyanathan (Ravi) Subramania and Mano Misra. Vertically Oriented TiO2 Nanotube Arrays Grown on Ti Meshes for Flexible Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (31) , 14028-14033. https://doi.org/10.1021/jp903342s
  56. Yahya Alivov and Z. Y. Fan. A Method for Fabrication of Pyramid-Shaped TiO2 Nanoparticles with a High {001} Facet Percentage. The Journal of Physical Chemistry C 2009, 113 (30) , 12954-12957. https://doi.org/10.1021/jp905174x
  57. Shiqi Li, Gengmin Zhang, Dengzhu Guo, Ligang Yu and Wei Zhang. Anodization Fabrication of Highly Ordered TiO2 Nanotubes. The Journal of Physical Chemistry C 2009, 113 (29) , 12759-12765. https://doi.org/10.1021/jp903037f
  58. Lixia Yang, Yan Xiao, Guangming Zeng, Shenglian Luo, Shuyun Kuang and Qingyun Cai. Fabrication and Characterization of Pt/C−TiO2 Nanotube Arrays as Anode Materials for Methanol Electrocatalytic Oxidation. Energy & Fuels 2009, 23 (6) , 3134-3138. https://doi.org/10.1021/ef900039w
  59. Nageh K. Allam and Craig A. Grimes . Effect of Rapid Infrared Annealing on the Photoelectrochemical Properties of Anodically Fabricated TiO2 Nanotube Arrays. The Journal of Physical Chemistry C 2009, 113 (19) , 7996-7999. https://doi.org/10.1021/jp902140d
  60. Karthik Shankar, James I. Basham, Nageh K. Allam, Oomman K. Varghese, Gopal K. Mor, Xinjian Feng, Maggie Paulose, Jason A. Seabold, Kyoung-Shin Choi and Craig A. Grimes . Recent Advances in the Use of TiO2 Nanotube and Nanowire Arrays for Oxidative Photoelectrochemistry. The Journal of Physical Chemistry C 2009, 113 (16) , 6327-6359. https://doi.org/10.1021/jp809385x
  61. Qingwei Chen and Dongsheng Xu. Large-Scale, Noncurling, and Free-Standing Crystallized TiO2 Nanotube Arrays for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2009, 113 (15) , 6310-6314. https://doi.org/10.1021/jp900336e
  62. Daoai Wang, Ying Liu, Bo Yu, Feng Zhou and Weimin Liu. TiO2 Nanotubes with Tunable Morphology, Diameter, and Length: Synthesis and Photo-Electrical/Catalytic Performance. Chemistry of Materials 2009, 21 (7) , 1198-1206. https://doi.org/10.1021/cm802384y
  63. Wei Zhu, Guanzhong Wang, Xun Hong and Xiaoshuang Shen. One-Step Fabrication of Ni/TiO2 Core/Shell Nanorod Arrays in Anodic Aluminum Oxide Membranes. The Journal of Physical Chemistry C 2009, 113 (14) , 5450-5454. https://doi.org/10.1021/jp810699n
  64. Hany A. El-Sayed and Viola I. Birss. Controlled Interconversion of Nanoarray of Ta Dimples and High Aspect Ratio Ta Oxide Nanotubes. Nano Letters 2009, 9 (4) , 1350-1355. https://doi.org/10.1021/nl803010v
  65. Jun Wang and Zhiqun Lin. Anodic Formation of Ordered TiO2 Nanotube Arrays: Effects of Electrolyte Temperature and Anodization Potential. The Journal of Physical Chemistry C 2009, 113 (10) , 4026-4030. https://doi.org/10.1021/jp811201x
  66. Tae-Sik Kang, Adam P. Smith, Barney E. Taylor and Michael F. Durstock . Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Letters 2009, 9 (2) , 601-606. https://doi.org/10.1021/nl802818d
  67. Oomman K. Varghese, Maggie Paulose, Thomas J. LaTempa and Craig A. Grimes. High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuels. Nano Letters 2009, 9 (2) , 731-737. https://doi.org/10.1021/nl803258p
  68. Yang Hou, Xinyong Li, Xuejun Zou, Xie Quan and Guohua Chen. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation. Environmental Science & Technology 2009, 43 (3) , 858-863. https://doi.org/10.1021/es802420u
  69. Abu Z. Sadek, Haidong Zheng, Kay Latham, Wojtek Wlodarski and Kourosh Kalantar-zadeh . Anodization of Ti Thin Film Deposited on ITO. Langmuir 2009, 25 (1) , 509-514. https://doi.org/10.1021/la802456r
  70. Shikai Liu, Wuyou Fu, Haibin Yang, Minghui Li, Peng Sun, Baomin Luo, Qingjiang Yu, Ronghui Wei, Mingxia Yuan, Yanyan Zhang, Dong Ma, Yixing Li and Guangtian Zou . Synthesis and Characterization of Self-Organized Oxide Nanotube Arrays via a Facile Electrochemical Anodization. The Journal of Physical Chemistry C 2008, 112 (50) , 19852-19859. https://doi.org/10.1021/jp803516d
  71. Karthik Shankar, Gopal K. Mor, Haripriya E. Prakasam, Oomman K. Varghese and Craig A. Grimes. Self-Assembled Hybrid Polymer−TiO2 Nanotube Array Heterojunction Solar Cells. Langmuir 2008, 24 (24) , 14321-14321. https://doi.org/10.1021/la803598v
  72. Chien-Chon Chen, Hsien-Wen Chung, Chin-Hsing Chen, Hsueh-Pei Lu, Chi-Ming Lan, Si-Fan Chen, Liyang Luo, Chen-Shiung Hung and Eric Wei-Guang Diau . Fabrication and Characterization of Anodic Titanium Oxide Nanotube Arrays of Controlled Length for Highly Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2008, 112 (48) , 19151-19157. https://doi.org/10.1021/jp806281r
  73. Zhaoyue Liu, Xintong Zhang, Shunsuke Nishimoto, Taketoshi Murakami and Akira Fujishima. Efficient Photocatalytic Degradation of Gaseous Acetaldehyde by Highly Ordered TiO2 Nanotube Arrays. Environmental Science & Technology 2008, 42 (22) , 8547-8551. https://doi.org/10.1021/es8016842
  74. Nageh K. Allam, Xinjian J. Feng and Craig A. Grimes . Self-Assembled Fabrication of Vertically Oriented Ta2O5 Nanotube Arrays, and Membranes Thereof, by One-Step Tantalum Anodization. Chemistry of Materials 2008, 20 (20) , 6477-6481. https://doi.org/10.1021/cm801472y
  75. Thomas Berger, Teresa Lana-Villarreal, Damián Monllor-Satoca and Roberto Gómez. Thin Films of Rutile Quantum-size Nanowires as Electrodes: Photoelectrochemical Studies. The Journal of Physical Chemistry C 2008, 112 (40) , 15920-15928. https://doi.org/10.1021/jp8049747
  76. James R. Jennings, Andrei Ghicov, Laurence M. Peter, Patrik Schmuki and Alison B. Walker . Dye-Sensitized Solar Cells Based on Oriented TiO2 Nanotube Arrays: Transport, Trapping, and Transfer of Electrons. Journal of the American Chemical Society 2008, 130 (40) , 13364-13372. https://doi.org/10.1021/ja804852z
  77. Guohua Zhao, Yanzhu Lei, Yonggang Zhang, Hongxu Li and Meichuan Liu. Growth and Favorable Bioelectrocatalysis of Multishaped Nanocrystal Au in Vertically Aligned TiO2 Nanotubes for Hemoprotein. The Journal of Physical Chemistry C 2008, 112 (38) , 14786-14795. https://doi.org/10.1021/jp712054c
  78. Jason A. Seabold, Karthik Shankar, Rudeger H. T. Wilke, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes and Kyoung-Shin Choi . Photoelectrochemical Properties of Heterojunction CdTe/TiO2 Electrodes Constructed Using Highly Ordered TiO2 Nanotube Arrays. Chemistry of Materials 2008, 20 (16) , 5266-5273. https://doi.org/10.1021/cm8010666
  79. Karthik Shankar, Jayasundera Bandara, Maggie Paulose, Helga Wietasch, Oomman K. Varghese, Gopal K. Mor, Thomas J. LaTempa, Mukundan Thelakkat and Craig A. Grimes . Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye. Nano Letters 2008, 8 (6) , 1654-1659. https://doi.org/10.1021/nl080421v
  80. Xinhu Tang and, Dongyang Li. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response. The Journal of Physical Chemistry C 2008, 112 (14) , 5405-5409. https://doi.org/10.1021/jp710468a
  81. Michael D. Dickey, Emily A. Weiss, Elizabeth J. Smythe, Ryan C. Chiechi, Federico Capasso and George M. Whitesides . Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation. ACS Nano 2008, 2 (4) , 800-808. https://doi.org/10.1021/nn800036r
  82. Anusorn Kongkanand,, Kevin Tvrdy,, Kensuke Takechi,, Masaru Kuno, and, Prashant V. Kamat. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO2 Architecture. Journal of the American Chemical Society 2008, 130 (12) , 4007-4015. https://doi.org/10.1021/ja0782706
  83. Jun Wang and Zhiqun Lin. Freestanding TiO2 Nanotube Arrays with Ultrahigh Aspect Ratio via Electrochemical Anodization. Chemistry of Materials 2008, 20 (4) , 1257-1261. https://doi.org/10.1021/cm7028917
  84. Wen-Tao Sun,, Yuan Yu,, Hua-Yong Pan,, Xian-Feng Gao,, Qing Chen, and, Lian-Mao Peng. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes. Journal of the American Chemical Society 2008, 130 (4) , 1124-1125. https://doi.org/10.1021/ja0777741
  85. Min Tian,, Guosheng Wu,, Brian Adams,, Jiali Wen, and, Aicheng Chen. Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO2 Electrodes. The Journal of Physical Chemistry C 2008, 112 (3) , 825-831. https://doi.org/10.1021/jp077191d
  86. Kai Zhu,, Todd B. Vinzant,, Nathan R. Neale, and, Arthur J. Frank. Removing Structural Disorder from Oriented TiO2 Nanotube Arrays:  Reducing the Dimensionality of Transport and Recombination in Dye-Sensitized Solar Cells. Nano Letters 2007, 7 (12) , 3739-3746. https://doi.org/10.1021/nl072145a
  87. Gopal K. Mor,, Haripriya E. Prakasam,, Oomman K. Varghese,, Karthik Shankar, and, Craig A. Grimes. Vertically Oriented Ti−Fe−O Nanotube Array Films:  Toward a Useful Material Architecture for Solar Spectrum Water Photoelectrolysis. Nano Letters 2007, 7 (8) , 2356-2364. https://doi.org/10.1021/nl0710046
  88. Xiaobo Chen and, Samuel S. Mao. Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews 2007, 107 (7) , 2891-2959. https://doi.org/10.1021/cr0500535
  89. Soon Hyung Kang,, Jae-Yup Kim,, Yukyeong Kim,, Hyun Sik Kim, and, Yung-Eun Sung. Surface Modification of Stretched TiO2 Nanotubes for Solid-State Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2007, 111 (26) , 9614-9623. https://doi.org/10.1021/jp071504n
  90. Lixia Yang,, Dongmei He, and, Qingyun Cai, , Craig A. Grimes. Fabrication and Catalytic Properties of Co−Ag−Pt Nanoparticle-Decorated Titania Nanotube Arrays. The Journal of Physical Chemistry C 2007, 111 (23) , 8214-8217. https://doi.org/10.1021/jp067207k
  91. Xinjian Feng,, Jan M. Macak, and, Patrik Schmuki. Robust Self-Organization of Oxide Nanotubes over a Wide pH Range. Chemistry of Materials 2007, 19 (7) , 1534-1536. https://doi.org/10.1021/cm063042g
  92. Anusorn Kongkanand,, Rebeca Martínez Domínguez, and, Prashant V. Kamat. Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons. Nano Letters 2007, 7 (3) , 676-680. https://doi.org/10.1021/nl0627238
  93. Kai Zhu,, Nathan R. Neale,, Alexander Miedaner, and, Arthur J. Frank. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays. Nano Letters 2007, 7 (1) , 69-74. https://doi.org/10.1021/nl062000o
  94. Maria Luisa Puga, Carla Schwengber ten Caten, Carlos Pérez Bergmann. Photoelectrochemical Performance of Doped and Undoped TiO2 Nanotubes for Light-Harvesting and Water Splitting Techniques: Systematic Review and Meta-Analysis. 2022,,, 171-183. https://doi.org/10.1007/978-3-030-86822-2_10
  95. C. Farrugia, F. Lia, E. Zammit, A. Rizzo, V. Privitera, G. Impellizzeri, A. Di Mauro, M.A. Buccheri, G. Rapazzo, M. Grech, P. Refalo, S. Abela. Aging of anodic titanium dioxide nanotubes in synthetic greywater: Assessment of stability and retention of photocatalytic activity. Materials Chemistry and Physics 2021, 272 , 124986. https://doi.org/10.1016/j.matchemphys.2021.124986
  96. Hanna Sopha, Jhonatan Rodriguez‐Pereira, Veronika Cicmancova, Jan M. Macak. Wireless Anodization of Ti in Closed Bipolar Cells. ChemElectroChem 2021, 8 (20) , 3827-3831. https://doi.org/10.1002/celc.202100799
  97. Xiangsheng Chen, Jinxia Huang, Zhiguang Guo. Stable and biocompatible slippery lubricant-infused anode-oxidated titanium nanotube surfaces via a grafted polydimethylsiloxane brush. New Journal of Chemistry 2021, 45 (37) , 17493-17502. https://doi.org/10.1039/D1NJ03465K
  98. Nhat Huy Luan, Chiung-Fen Chang. Investigation of the aging effect of electrolyte on the morphology and photocatalytic properties of TiO2NTs synthesized using the anodization route. Journal of Materials Science 2021, 27 https://doi.org/10.1007/s10853-021-06433-9
  99. T. Manovah David, Priya Ranjan Dev, P. Wilson, P. Sagayaraj, Tom Mathews. A critical review on the variations in anodization parameters toward microstructural formation of TiO 2 nanotubes. Electrochemical Science Advances 2021, 1 https://doi.org/10.1002/elsa.202100083
  100. Yangyuan Ji, Junfeng Niu, Dong Xu, Kaixuan Wang, Jacob Brejcha, Seunghyo Jeon, David M Warsinger. Efficient electrocatalysis for denitrification by using TiO2 nanotube arrays cathode and adding chloride ions. Chemosphere 2021, 274 , 129706. https://doi.org/10.1016/j.chemosphere.2021.129706
Load more citations