Electrochemical Production of Hydroxyl Radical at Polycrystalline Nb-Doped TiO2 Electrodes and Estimation of the Partitioning between Hydroxyl Radical and Direct Hole Oxidation Pathways

View Author Information
W. M. Keck Laboratories, California Institute of Technology, Pasadena, California 91125
Cite this: J. Phys. Chem. B 1997, 101, 14, 2637–2643
Publication Date (Web):April 3, 1997
https://doi.org/10.1021/jp962669r
Copyright © 1997 American Chemical Society
Article Views
2196
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (238 KB)

Abstract

The use of TiO2 as a photocatalyst for the destruction of organic chemical pollutants in aqueous systems has been extensively studied. One obstacle to the effective utilization of these systems is the relatively inefficient use of the solar spectrum by the photocatalyst. In addition, light delivery to the photocatalyst can be impeded by UV-absorbing components in mixed effluent streams. We present a novel use of TiO2 as a catalyst for the oxidative degradation of organic compounds in water that uses a potential source instead of light to generate reactive oxidants. Application of an anodic bias of >+2 V vs NHE to titanium electrodes coated with niobium-doped, polycrystalline TiO2 particles electrochemically generates hydroxyl radicals at the TiO2 surface. This process has been demonstrated to efficiently degrade a variety of environmentally important pollutants. In addition, these electrodes offer a unique opportunity to probe mechanistic questions in TiO2 catalysis. By comparing substrate degradation rates with increases in current density upon substrate addition, the extent of degradation due to direct oxidation and OH oxidation can be quantified. The branching ratio for these two pathways depends on the nature of the organic substrate. Formate is shown to degrade primarily via a hydroxyl radical mechanism at these electrodes, whereas the current increase data for compounds such as 4-chlorocatechol indicate that a higher percentage of their degradation may occur through direct oxidation. In addition, the direct oxidation pathway is shown to be more important for 4-chlorocatechol, a strongly adsorbing substrate, than for 4-chlorophenol, which does not adsorb strongly to TiO2.

*

 To whom correspondence should be addressed.

 Abstract published in Advance ACS Abstracts, March 1, 1997.

Cited By


This article is cited by 157 publications.

  1. Byeong-ju Kim, Guangxia Piao, Seonghun Kim, So Young Yang, Yiseul Park, Dong Suk Han, Ho Kyong Shon, Michael R. Hoffmann, Hyunwoong Park. High-Efficiency Solar Desalination Accompanying Electrocatalytic Conversions of Desalted Chloride and Captured Carbon Dioxide. ACS Sustainable Chemistry & Engineering 2019, 7 (18) , 15320-15328. https://doi.org/10.1021/acssuschemeng.9b02640
  2. Yang Su, Ling Zhang, Wenzhong Wang, Dengkui Shao. Internal Electric Field Assisted Photocatalytic Generation of Hydrogen Peroxide over BiOCl with HCOOH. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8704-8710. https://doi.org/10.1021/acssuschemeng.8b01023
  3. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  4. Jiale Xie, Pingping Yang, Chunxian Guo, Canyu Zhong, Xiaodeng Wang, Chang Ming Li. Hydrothermally Treating High-Ti Cinder for a Near Full-Sunlight-Driven Photocatalyst toward Highly Efficient H2 Evolution. ACS Sustainable Chemistry & Engineering 2018, 6 (4) , 5076-5084. https://doi.org/10.1021/acssuschemeng.7b04756
  5. Dan-Ni Pei, Ai-Yong Zhang, Xiao-Qiang Pan, Yang Si, Han-Qing Yu. Electrochemical Sensing of Bisphenol A on Facet-Tailored TiO2 Single Crystals Engineered by Inorganic-Framework Molecular Imprinting Sites. Analytical Chemistry 2018, 90 (5) , 3165-3173. https://doi.org/10.1021/acs.analchem.7b04466
  6. Yin Jing and Brian P. Chaplin . Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes. Environmental Science & Technology 2017, 51 (4) , 2355-2365. https://doi.org/10.1021/acs.est.6b05513
  7. Yang Yang and Michael R. Hoffmann . Synthesis and Stabilization of Blue-Black TiO2 Nanotube Arrays for Electrochemical Oxidant Generation and Wastewater Treatment. Environmental Science & Technology 2016, 50 (21) , 11888-11894. https://doi.org/10.1021/acs.est.6b03540
  8. Jeramy R. Jasmann, Thomas Borch, Tom C. Sale, and Jens Blotevogel . Advanced Electrochemical Oxidation of 1,4-Dioxane via Dark Catalysis by Novel Titanium Dioxide (TiO2) Pellets. Environmental Science & Technology 2016, 50 (16) , 8817-8826. https://doi.org/10.1021/acs.est.6b02183
  9. Atiđa Selmani, Mario Špadina, Milivoj Plodinec, Ida Delač Marion, Marc Georg Willinger, Johannes Lützenkirchen, Harry D. Gafney, and Engelbert Redel . An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials. The Journal of Physical Chemistry C 2015, 119 (34) , 19729-19742. https://doi.org/10.1021/acs.jpcc.5b02027
  10. Choonsoo Kim, Seonghwan Kim, Jaehan Lee, Jiye Kim, and Jeyong Yoon . Capacitive and Oxidant Generating Properties of Black-Colored TiO2 Nanotube Array Fabricated by Electrochemical Self-Doping. ACS Applied Materials & Interfaces 2015, 7 (14) , 7486-7491. https://doi.org/10.1021/acsami.5b00123
  11. Kangwoo Cho and Michael R. Hoffmann . BixTi1–xOz Functionalized Heterojunction Anode with an Enhanced Reactive Chlorine Generation Efficiency in Dilute Aqueous Solutions. Chemistry of Materials 2015, 27 (6) , 2224-2233. https://doi.org/10.1021/acs.chemmater.5b00376
  12. So Young Yang, Wonyong Choi, and Hyunwoong Park . TiO2 Nanotube Array Photoelectrocatalyst and Ni–Sb–SnO2 Electrocatalyst Bifacial Electrodes: A New Type of Bifunctional Hybrid Platform for Water Treatment. ACS Applied Materials & Interfaces 2015, 7 (3) , 1907-1914. https://doi.org/10.1021/am5076748
  13. Lu-Lu Long, Ai-Yong Zhang, Jun Yang, Xing Zhang, and Han-Qing Yu . A Green Approach for Preparing Doped TiO2 Single Crystals. ACS Applied Materials & Interfaces 2014, 6 (19) , 16712-16720. https://doi.org/10.1021/am503661w
  14. Akihito Imanishi and Ken-ichi Fukui . Atomic-Scale Surface Local Structure of TiO2 and Its Influence on the Water Photooxidation Process. The Journal of Physical Chemistry Letters 2014, 5 (12) , 2108-2117. https://doi.org/10.1021/jz5004704
  15. Amr M. Zaky and Brian P. Chaplin . Mechanism of p-Substituted Phenol Oxidation at a Ti4O7 Reactive Electrochemical Membrane. Environmental Science & Technology 2014, 48 (10) , 5857-5867. https://doi.org/10.1021/es5010472
  16. Yukihiro Nakabayashi and Yoshio Nosaka . OH Radical Formation at Distinct Faces of Rutile TiO2 Crystal in the Procedure of Photoelectrochemical Water Oxidation. The Journal of Physical Chemistry C 2013, 117 (45) , 23832-23839. https://doi.org/10.1021/jp408244h
  17. Ilya A. Shkrob, Nada M. Dimitrijevic, Timothy W. Marin, Haiying He, and Peter Zapol . Heteroatom-Transfer Coupled Photoreduction and Carbon Dioxide Fixation on Metal Oxides. The Journal of Physical Chemistry C 2012, 116 (17) , 9461-9471. https://doi.org/10.1021/jp300123z
  18. Dan Zhao Sridhar Budhi Ranjit T. Koodali . Mesoporous Titanium Dioxide. 2010,,, 97-123. https://doi.org/10.1021/bk-2010-1045.ch006
  19. Hyunwoong Park, Chad D. Vecitis and Michael R. Hoffmann. Electrochemical Water Splitting Coupled with Organic Compound Oxidation: The Role of Active Chlorine Species. The Journal of Physical Chemistry C 2009, 113 (18) , 7935-7945. https://doi.org/10.1021/jp810331w
  20. Hyunwoong Park, Chad D. Vecitis and Michael R. Hoffmann. Solar-Powered Electrochemical Oxidation of Organic Compounds Coupled with the Cathodic Production of Molecular Hydrogen. The Journal of Physical Chemistry A 2008, 112 (33) , 7616-7626. https://doi.org/10.1021/jp802807e
  21. Dan Zhao,, Chuncheng Chen,, Yifeng Wang,, Hongwei Ji,, Wanhong Ma,, Ling Zang, and, Jincai Zhao. Surface Modification of TiO2 by Phosphate:  Effect on Photocatalytic Activity and Mechanism Implication. The Journal of Physical Chemistry C 2008, 112 (15) , 5993-6001. https://doi.org/10.1021/jp712049c
  22. Haimei Liu,, Akihito Imanishi, and, Yoshihiro Nakato. Mechanisms for Photooxidation Reactions of Water and Organic Compounds on Carbon-Doped Titanium Dioxide, as Studied by Photocurrent Measurements. The Journal of Physical Chemistry C 2007, 111 (24) , 8603-8610. https://doi.org/10.1021/jp070771q
  23. Young Hwan Kim,, Don Keun Lee,, Hyun Gil Cha,, Chang Woo Kim,, Yong Cheol Kang, and, Young Soo Kang. Preparation and Characterization of the Antibacterial Cu Nanoparticle Formed on the Surface of SiO2 Nanoparticles. The Journal of Physical Chemistry B 2006, 110 (49) , 24923-24928. https://doi.org/10.1021/jp0656779
  24. Igor Dolamic and, Thomas Bürgi. Photoassisted Decomposition of Malonic Acid on TiO2 Studied by in Situ Attenuated Total Reflection Infrared Spectroscopy. The Journal of Physical Chemistry B 2006, 110 (30) , 14898-14904. https://doi.org/10.1021/jp0616967
  25. B. R. Locke, , M. Sato, , P. Sunka, , M. R. Hoffmann, , J.-S. Chang. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Industrial & Engineering Chemistry Research 2006, 45 (3) , 882-905. https://doi.org/10.1021/ie050981u
  26. Teresa Lana Villarreal,, Roberto Gómez,, M. González, and, P. Salvador. A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer in the Heterogeneous Photooxidation of Dissolved Organics on TiO2 Nanoparticle Suspensions. The Journal of Physical Chemistry B 2004, 108 (52) , 20278-20290. https://doi.org/10.1021/jp046539r
  27. T. Lana Villarreal,, R. Gómez,, M. Neumann-Spallart,, N. Alonso-Vante, and, P. Salvador. Semiconductor Photooxidation of Pollutants Dissolved in Water:  A Kinetic Model for Distinguishing between Direct and Indirect Interfacial Hole Transfer. I. Photoelectrochemical Experiments with Polycrystalline Anatase Electrodes under Current Doubling and Absence of Recombination. The Journal of Physical Chemistry B 2004, 108 (39) , 15172-15181. https://doi.org/10.1021/jp049447a
  28. Andrew J. Feitz and, T. David Waite. Kinetic Modeling of TiO2-Catalyzed Photodegradation of Trace Levels of Microcystin-LR. Environmental Science & Technology 2003, 37 (3) , 561-568. https://doi.org/10.1021/es0256010
  29. Li-Fen Liao,, Wen-Chun Wu,, Chia-Yuan Chen, and, Jong-Liang Lin. Photooxidation of Formic Acid vs Formate and Ethanol vs Ethoxy on TiO2 and Effect of Adsorbed Water on the Rates of Formate and Formic Acid Photooxidation. The Journal of Physical Chemistry B 2001, 105 (32) , 7678-7685. https://doi.org/10.1021/jp003541j
  30. Steve K. Johnson,, Linda L. Houk,, Jianren Feng,, R. S. Houk, and, Dennis C. Johnson. Electrochemical Incineration of 4-Chlorophenol and the Identification of Products and Intermediates by Mass Spectrometry. Environmental Science & Technology 1999, 33 (15) , 2638-2644. https://doi.org/10.1021/es981045r
  31. Pablo A. Mandelbaum,, Alberto E. Regazzoni,, Miguel A. Blesa, and, Sara A. Bilmes. Photo-Electro-Oxidation of Alcohols on Titanium Dioxide Thin Film Electrodes. The Journal of Physical Chemistry B 1999, 103 (26) , 5505-5511. https://doi.org/10.1021/jp984812h
  32. Parisa Ebrahimbabaie, Kimiya Yousefi, John Pichtel. Photocatalytic and biological technologies for elimination of microplastics in water: Current status. Science of The Total Environment 2022, 806 , 150603. https://doi.org/10.1016/j.scitotenv.2021.150603
  33. Jesse S. Ko, Nam Q. Le, Danielle R. Schlesinger, Dajie Zhang, James K. Johnson, Zhiyong Xia. Novel niobium-doped titanium oxide towards electrochemical destruction of forever chemicals. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-97596-7
  34. Seok Kim, Jin Soo Kang, Seoni Kim, Seongmin Kang, Yung-Eun Sung, Kangwoo Cho, Jeyong Yoon. Electrochemical Regeneration of Free Chlorine Treated Nickel Oxide Catalysts for Oxidation of Aqueous Pollutants. Catalysis Today 2021, 375 , 514-521. https://doi.org/10.1016/j.cattod.2020.03.045
  35. Thurga Devi Munusamy, Sim Yee Chin, Mostafa Tarek, Md.Maksudur Rahman Khan. Sustainable hydrogen production by CdO/exfoliated g-C3N4 via photoreforming of formaldehyde containing wastewater. International Journal of Hydrogen Energy 2021, 46 (60) , 30988-30999. https://doi.org/10.1016/j.ijhydene.2021.01.176
  36. Miao Wang, Byeong-ju Kim, Dong Suk Han, Hyunwoong Park. Electrocatalytic activity of nanoparticulate TiO2 coated onto Ta-doped IrO2/Ti substrates: Effects of the TiO2 overlayer thickness. Chemical Engineering Journal 2021, 109 , 131435. https://doi.org/10.1016/j.cej.2021.131435
  37. Cheoulwoo Oh, Jiwon Kim, Yun Jeong Hwang, Ming Ma, Jong Hyeok Park. Electrocatalytic methane oxidation on Co3O4- incorporated ZrO2 nanotube powder. Applied Catalysis B: Environmental 2021, 283 , 119653. https://doi.org/10.1016/j.apcatb.2020.119653
  38. Wonjung Choi, Jun Hyeok Choi, Hyunwoong Park. Electrocatalytic activity of metal-doped SnO2 for the decomposition of aqueous contaminants: Ta-SnO vs. Sb-SnO. Chemical Engineering Journal 2021, 409 , 128175. https://doi.org/10.1016/j.cej.2020.128175
  39. Lling-Lling Tan, Voon Loong Wong, Sue Jiun Phang. Recent advances on TiO2 photocatalysis for wastewater degradation: fundamentals, commercial TiO2 materials, and photocatalytic reactors. 2021,,, 25-65. https://doi.org/10.1016/B978-0-12-821506-7.00002-8
  40. So Young Yang, Jiyeon Park, Hye Won Jeong, Hyunwoong Park. Electrocatalytic activities of electrochemically reduced tubular titania arrays loaded with cobalt ions in flow-through processes. Chemical Engineering Journal 2021, 404 , 126410. https://doi.org/10.1016/j.cej.2020.126410
  41. Liangchen Dong, Zhuo Xiong, Yuming Zhou, Jiangting Zhao, Youzi Li, Junyi Wang, Xiaoxiang Chen, Yongchun Zhao, Junying Zhang. Photocatalytic CO2 reduction over postcalcinated atomically thin TiO2 nanosheets: Residual carbon removal and structure transformation. Journal of CO2 Utilization 2020, 41 , 101262. https://doi.org/10.1016/j.jcou.2020.101262
  42. Yang Yang. Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control. Frontiers of Environmental Science & Engineering 2020, 14 (5) https://doi.org/10.1007/s11783-020-1264-7
  43. Sukhwa Hong, Tai-kyu Lee, Michael R. Hoffmann, Kangwoo Cho. Enhanced chlorine evolution from dimensionally stable anode by heterojunction with Ti and Bi based mixed metal oxide layers prepared from nanoparticle slurry. Journal of Catalysis 2020, 389 , 1-8. https://doi.org/10.1016/j.jcat.2020.04.009
  44. Jianxiong Xu, Hugo Olvera-Vargas, Bryan Jian Hua Loh, Olivier Lefebvre. FTO-TiO2 photoelectrocatalytic degradation of triphenyltin chloride coupled to photoelectro-Fenton: A mechanistic study. Applied Catalysis B: Environmental 2020, 271 , 118923. https://doi.org/10.1016/j.apcatb.2020.118923
  45. Iqra Nabi, Aziz-Ur-Rahim Bacha, Kejian Li, Hanyun Cheng, Tao Wang, Yangyang Liu, Saira Ajmal, Yang Yang, Yiqing Feng, Liwu Zhang. Complete Photocatalytic Mineralization of Microplastic on TiO2 Nanoparticle Film. iScience 2020, 23 (7) , 101326. https://doi.org/10.1016/j.isci.2020.101326
  46. Masoud Moradi, Yasser Vasseghian, Alireza Khataee, Mehmet Kobya, Hossein Arabzade, Elena-Niculina Dragoi. Service life and stability of electrodes applied in electrochemical advanced oxidation processes: A comprehensive review. Journal of Industrial and Engineering Chemistry 2020, 87 , 18-39. https://doi.org/10.1016/j.jiec.2020.03.038
  47. Wonjung Choi, Minju Kim, Byeong-ju Kim, Yiseul Park, Dong Suk Han, Michael R. Hoffmann, Hyunwoong Park. Electrocatalytic arsenite oxidation in bicarbonate solutions combined with CO2 reduction to formate. Applied Catalysis B: Environmental 2020, 265 , 118607. https://doi.org/10.1016/j.apcatb.2020.118607
  48. Farbod Sharif, Edward P.L. Roberts. Anodic electrochemical regeneration of a graphene/titanium dioxide composite adsorbent loaded with an organic dye. Chemosphere 2020, 241 , 125020. https://doi.org/10.1016/j.chemosphere.2019.125020
  49. Zohre Moravvej, Ebrahim Soroush, Mohammad Reza Rahimpour. Achievements in hybrid processes for wastewater and water treatment. 2020,,, 239-262. https://doi.org/10.1016/B978-0-12-817378-7.00009-4
  50. Chang Liu, Yuan Min, Ai-Yong Zhang, Yang Si, Jie-Jie Chen, Han-Qing Yu. Electrochemical treatment of phenol-containing wastewater by facet-tailored TiO2: Efficiency, characteristics and mechanisms. Water Research 2019, 165 , 114980. https://doi.org/10.1016/j.watres.2019.114980
  51. Lin Zhao, Yanzhao Xie, Qiuyu Lin, Rongze Zheng, Yong Diao. Preparation of C, N and P co-doped TiO 2 and its photocatalytic activity under visible light. Functional Materials Letters 2019, 12 (04) , 1950045. https://doi.org/10.1142/S1793604719500450
  52. Chenghao Mo, Huixian Wei, Tongjun Wang. Fabrication of a self‐doped TiO 2 nanotube array electrode for electrochemical degradation of methyl orange. Journal of the Chinese Chemical Society 2019, 66 (7) , 740-747. https://doi.org/10.1002/jccs.201800456
  53. Ana Rita Ferreira Alves Teixeira, Alex de Meireles Neris, Elson Longo, José Rodrigues de Carvalho Filho, Amer Hakki, Donald Macphee, Ieda Maria Garcia dos Santos. SrSnO3 perovskite obtained by the modified Pechini method—Insights about its photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry 2019, 369 , 181-188. https://doi.org/10.1016/j.jphotochem.2018.10.028
  54. Chong Min Chung, Woonghee Lee, Seok Won Hong, Kangwoo Cho. Effects of Anode Materials and Chloride Ions on Current Efficiency of Electrochemical Oxidation of Carbohydrate Compounds. Journal of The Electrochemical Society 2019, 166 (13) , H628-H634. https://doi.org/10.1149/2.0801913jes
  55. Daye Chun, Cheong-Rae Lim, Ho-Sug Lee, Woo-Sug Yoon, Tai-Kyu Lee, Duk Kyung Kim. Electrochemical treatment of urine by using Ti/IrO2/TiO2 electrode. Journal of Water Process Engineering 2018, 26 , 1-9. https://doi.org/10.1016/j.jwpe.2018.06.004
  56. Clément A. Cid, Yan Qu, Michael R. Hoffmann. Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world. Environmental Science: Water Research & Technology 2018, 4 (10) , 1439-1450. https://doi.org/10.1039/C8EW00209F
  57. Chong Min Chung, Seok Won Hong, Kangwoo Cho, Michael R. Hoffmann. Degradation of organic compounds in wastewater matrix by electrochemically generated reactive chlorine species: Kinetics and selectivity. Catalysis Today 2018, 313 , 189-195. https://doi.org/10.1016/j.cattod.2017.10.027
  58. David B. Miklos, Christian Remy, Martin Jekel, Karl G. Linden, Jörg E. Drewes, Uwe Hübner. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research 2018, 139 , 118-131. https://doi.org/10.1016/j.watres.2018.03.042
  59. Brian P. Chaplin. Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. 2018,,, 451-494. https://doi.org/10.1016/B978-0-12-813160-2.00017-1
  60. Ming Ma, Bing Jun Jin, Ping Li, Myung Sun Jung, Jin Il Kim, Yoonjun Cho, Sungsoon Kim, Jun Hyuk Moon, Jong Hyeok Park. Ultrahigh Electrocatalytic Conversion of Methane at Room Temperature. Advanced Science 2017, 4 (12) , 1700379. https://doi.org/10.1002/advs.201700379
  61. Mohammad A. Alim, Tadeusz Bak, Armand J. Atanacio, Mihail Ionescu, Brendan Kennedy, William S. Price, Johan Du Plessis, Maryam Pourmahdavi, Meifang Zhou, Allan Torres, Janusz Nowotny. Photocatalytic properties of Ta-doped TiO2. Ionics 2017, 23 (12) , 3517-3531. https://doi.org/10.1007/s11581-017-2162-2
  62. G. Chitra, T. Chithambara Thanu. A Novel Nano CuO-Poly(o-toluidine) Hybrid Material: Preparation, Characterization and Photocatalytic Studies. Journal of Inorganic and Organometallic Polymers and Materials 2017, 27 (5) , 1491-1500. https://doi.org/10.1007/s10904-017-0608-7
  63. Qian Deng, Shi Gao, Tao Lei, Yansong Ling, Shunping Zhang, Changsheng Xie. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sensors and Actuators B: Chemical 2017, 247 , 903-915. https://doi.org/10.1016/j.snb.2017.03.107
  64. Zhuang Chen, Yimei Zhang, Lincheng Zhou, Hao Zhu, Fei Wan, Yue Wang, Dandan Zhang. Performance of nitrogen-doped graphene aerogel particle electrodes for electro-catalytic oxidation of simulated Bisphenol A wastewaters. Journal of Hazardous Materials 2017, 332 , 70-78. https://doi.org/10.1016/j.jhazmat.2017.02.048
  65. Yong Yoon Ahn, So Young Yang, Chimyung Choi, Wonyong Choi, Soonhyun Kim, Hyunwoong Park. Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: Effects of electrocatalyst composition and electrolyte. Catalysis Today 2017, 282 , 57-64. https://doi.org/10.1016/j.cattod.2016.03.011
  66. Nathan I. Hammer, Sarah Sutton, Jared Delcamp, Jacob D. Graham. Photocatalytic Water Splitting and Carbon Dioxide Reduction. 2017,,, 2709-2756. https://doi.org/10.1007/978-3-319-14409-2_46
  67. A. Beltram, M. Melchionna, T. Montini, L. Nasi, P. Fornasiero, M. Prato. Making H 2 from light and biomass-derived alcohols: the outstanding activity of newly designed hierarchical MWCNT/[email protected] 2 hybrid catalysts. Green Chemistry 2017, 19 (10) , 2379-2389. https://doi.org/10.1039/C6GC01979J
  68. Kai E. Sanwald, Tobias F. Berto, Wolfgang Eisenreich, Oliver Y. Gutiérrez, Johannes A. Lercher. Catalytic routes and oxidation mechanisms in photoreforming of polyols. Journal of Catalysis 2016, 344 , 806-816. https://doi.org/10.1016/j.jcat.2016.08.009
  69. Yasmina Bennani, Paula Perez-Rodriguez, Mathew J. Alani, Wilson A. Smith, Luuk C. Rietveld, Miro Zeman, Arno H.M. Smets. Photoelectrocatalytic oxidation of phenol for water treatment using a BiVO 4 thin-film photoanode. Journal of Materials Research 2016, 31 (17) , 2627-2639. https://doi.org/10.1557/jmr.2016.290
  70. B. Ntsendwana, S. Sampath, B. B. Mamba, O. S. Oluwafemi, O. A. Arotiba. Photoelectrochemical degradation of eosin yellowish dye on exfoliated graphite–ZnO nanocomposite electrode. Journal of Materials Science: Materials in Electronics 2016, 27 (1) , 592-598. https://doi.org/10.1007/s10854-015-3793-6
  71. Xuezhong Gong, Wey Yang Teoh. Modulating charge transport in semiconductor photocatalysts by spatial deposition of reduced graphene oxide and platinum. Journal of Catalysis 2015, 332 , 101-111. https://doi.org/10.1016/j.jcat.2015.08.028
  72. Zhuo Xiong, Haibing Wang, Nuoyan Xu, Hailong Li, Baizeng Fang, Yongchun Zhao, Junying Zhang, Chuguang Zheng. Photocatalytic reduction of CO2 on Pt2+–Pt0/TiO2 nanoparticles under UV/Vis light irradiation: A combination of Pt2+ doping and Pt nanoparticles deposition. International Journal of Hydrogen Energy 2015, 40 (32) , 10049-10062. https://doi.org/10.1016/j.ijhydene.2015.06.075
  73. Nathan I. Hammer, Sarah Sutton, Jared Delcamp, Jacob D. Graham. Photocatalytic Water Splitting and Carbon Dioxide Reduction. 2015,,, 1-39. https://doi.org/10.1007/978-1-4614-6431-0_46-2
  74. Yukihiro Nakabayashi, Yoshio Nosaka. The pH dependence of OH radical formation in photo-electrochemical water oxidation with rutile TiO 2 single crystals. Physical Chemistry Chemical Physics 2015, 17 (45) , 30570-30576. https://doi.org/10.1039/C5CP04531B
  75. Ai-Yong Zhang, Lu-Lu Long, Chang Liu, Wen-Wei Li, Han-Qing Yu. Electrochemical degradation of refractory pollutants using TiO 2 single crystals exposed by high-energy {001} facets. Water Research 2014, 66 , 273-282. https://doi.org/10.1016/j.watres.2014.08.030
  76. Choonsoo Kim, Seonghwan Kim, Jusol Choi, Jaehan Lee, Jin Soo Kang, Yung-Eun Sung, Jihwa Lee, Wonyong Choi, Jeyong Yoon. Blue TiO2 Nanotube Array as an Oxidant Generating Novel Anode Material Fabricated by Simple Cathodic Polarization. Electrochimica Acta 2014, 141 , 113-119. https://doi.org/10.1016/j.electacta.2014.07.062
  77. Wei Zhang, Ying Huang, Panbo Liu, Yang Zhao, Haiwei Wu, Mengmeng Guan, Hailong Zhang. TiO2 supported on bamboo charcoal for H2O2-assisted pollutant degradation under solar light. Materials Science in Semiconductor Processing 2014, 17 , 124-128. https://doi.org/10.1016/j.mssp.2013.08.014
  78. Brian P. Chaplin. Critical review of electrochemical advanced oxidation processes for water treatment applications. Environ. Sci.: Processes Impacts 2014, 16 (6) , 1182-1203. https://doi.org/10.1039/C3EM00679D
  79. Kangwoo Cho, Daejung Kwon, Michael R. Hoffmann. Electrochemical treatment of human waste coupled with molecular hydrogen production. RSC Adv. 2014, 4 (9) , 4596-4608. https://doi.org/10.1039/C3RA46699J
  80. Valeriano Lanese, Danilo Spasiano, Raffaele Marotta, Ilaria Di Somma, Luciana Lisi, Stefano Cimino, Roberto Andreozzi. Hydrogen production by photoreforming of formic acid in aqueous copper/TiO2 suspensions under UV-simulated solar radiation at room temperature. International Journal of Hydrogen Energy 2013, 38 (23) , 9644-9654. https://doi.org/10.1016/j.ijhydene.2013.05.101
  81. Sagi Pasternak, Yaron Paz. On the Similarity and Dissimilarity between Photocatalytic Water Splitting and Photocatalytic Degradation of Pollutants. ChemPhysChem 2013, 14 (10) , 2059-2070. https://doi.org/10.1002/cphc.201300247
  82. V.K. Gupta, I. Ali. Water Treatment by Electrical Technologies. 2013,,, 155-178. https://doi.org/10.1016/B978-0-444-59399-3.00006-4
  83. Jungwon Kim, Won Joon K. Choi, Jina Choi, Michael R. Hoffmann, Hyunwoong Park. Electrolysis of urea and urine for solar hydrogen. Catalysis Today 2013, 199 , 2-7. https://doi.org/10.1016/j.cattod.2012.02.009
  84. Xi Ming Luo, Fen Fen Li, Hong Tao Gao. Photocatalytic Activity of Sm, Zr Co-Doped TiO2 Synthesized by Ultrasonic Assisted Sol-Gel Method. Advanced Materials Research 2013, 631-632 , 399-403. https://doi.org/10.4028/www.scientific.net/AMR.631-632.399
  85. Hiroaki Tada, Qiliang Jin, Hisayoshi Kobayashi. Prediction of the Main Route in the TiO 2 -Photocatalyzed Degradation of Organic Compounds in Water by Density Functional Calculations. ChemPhysChem 2012, 13 (15) , 3457-3461. https://doi.org/10.1002/cphc.201200382
  86. Hyunwoong Park, Ayoung Bak, Yong Yoon Ahn, Jina Choi, Michael R. Hoffmannn. Photoelectrochemical performance of multi-layered BiOx–TiO2/Ti electrodes for degradation of phenol and production of molecular hydrogen in water. Journal of Hazardous Materials 2012, 211-212 , 47-54. https://doi.org/10.1016/j.jhazmat.2011.05.009
  87. Jacob D. Graham, Nathan I. Hammer. Photocatalytic Water Splitting and Carbon Dioxide Reduction. 2012,,, 1755-1780. https://doi.org/10.1007/978-1-4419-7991-9_46
  88. So Young Yang, Yeon Sik Choo, Soonhyun Kim, Sang Kyoo Lim, Jaesang Lee, Hyunwoong Park. Boosting the electrocatalytic activities of SnO2 electrodes for remediation of aqueous pollutants by doping with various metals. Applied Catalysis B: Environmental 2012, 111-112 , 317-325. https://doi.org/10.1016/j.apcatb.2011.10.014
  89. Brian Seger, Gao Qing (Max) Lu, Lianzhou Wang. Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. Journal of Materials Chemistry 2012, 22 (21) , 10709. https://doi.org/10.1039/c2jm16635f
  90. Yangen Zhou, Huaxiang Lin, Quan Gu, Jinlin Long, Xuxu Wang. Visible light-induced highly efficient organic pollutant degradation and concomitant CO2 fixation using red lead. RSC Advances 2012, 2 (33) , 12624. https://doi.org/10.1039/c2ra21660d
  91. Ke Pan, Min Tian, Zi-Hua Jiang, Bruce Kjartanson, Aicheng Chen. Electrochemical oxidation of lignin at lead dioxide nanoparticles photoelectrodeposited on TiO2 nanotube arrays. Electrochimica Acta 2012, 60 , 147-153. https://doi.org/10.1016/j.electacta.2011.11.025
  92. Soumen Das, Dae-Young Kim, Han-Seok Choi, Yoon-Bong Hahn. Studying trivalent/bivalent metal ion doped TiO2 as p-TiO2 in bipolar heterojunction devices. Materials Chemistry and Physics 2011, 129 (3) , 887-891. https://doi.org/10.1016/j.matchemphys.2011.05.039
  93. Guangxin Gu, Jiaxi Xu, Yanfei Wu, Min Chen, Limin Wu. Synthesis and antibacterial property of hollow SiO2/Ag nanocomposite spheres. Journal of Colloid and Interface Science 2011, 359 (2) , 327-333. https://doi.org/10.1016/j.jcis.2011.04.002
  94. Gian Luca Chiarello, Davide Ferri, Elena Selli. Effect of the CH3OH/H2O ratio on the mechanism of the gas-phase photocatalytic reforming of methanol on noble metal-modified TiO2. Journal of Catalysis 2011, 280 (2) , 168-177. https://doi.org/10.1016/j.jcat.2011.03.013
  95. Adrien L. Vincent, Jing-Li Luo, Karl T. Chuang, Alan R. Sanger. Promotion of activation of CH4 by H2S in oxidation of sour gas over sulfur tolerant SOFC anode catalysts. Applied Catalysis B: Environmental 2011, https://doi.org/10.1016/j.apcatb.2011.05.014
  96. F.J. Recio, P. Herrasti, I. Sirés, A.N. Kulak, D.V. Bavykin, C. Ponce-de-León, F.C. Walsh. The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochimica Acta 2011, 56 (14) , 5158-5165. https://doi.org/10.1016/j.electacta.2011.03.054
  97. Soumen Das, Jin-Hwan Kim, Han Seok Choi, Yong-Kyu Park, Yoon-Bong Hahn. Interfacial and electrical properties of solution processed p-TiO2 in heterojunction devices. Electrochemistry Communications 2011, 13 (4) , 350-354. https://doi.org/10.1016/j.elecom.2011.01.022
  98. Peidong Yao. Effects of Sb doping level on the properties of Ti/SnO2-Sb electrodes prepared using ultrasonic spray pyrolysis. Desalination 2011, 267 (2-3) , 170-174. https://doi.org/10.1016/j.desal.2010.09.021
  99. Elzbieta Kusmierek, Ewa Chrzescijanska, Magdalena Szadkowska-Nicze, Joanna Kaluzna-Czaplinska. Electrochemical discolouration and degradation of reactive dichlorotriazine dyes: reaction pathways. Journal of Applied Electrochemistry 2011, 41 (1) , 51-62. https://doi.org/10.1007/s10800-010-0206-7
  100. Yan-Hong Gao, Nian-Chun Zhang, Yu-Wen Zhong, Huai-Hong Cai, Ying-liang Liu. Preparation and characterization of antibacterial Au/C core–shell composite. Applied Surface Science 2010, 256 (22) , 6580-6585. https://doi.org/10.1016/j.apsusc.2010.04.051
Load all citations