Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays

View Author Information
National Renewable Energy Laboratory, Golden, Colorado 80401-3393
Cite this: Nano Lett. 2007, 7, 1, 69–74
Publication Date (Web):December 2, 2006
https://doi.org/10.1021/nl062000o
Copyright © 2007 American Chemical Society
Article Views
15440
Altmetric
-
Citations
LEARN ABOUT THESE METRICS
Read OnlinePDF (2 MB)

Abstract

We report on the microstructure and dynamics of electron transport and recombination in dye-sensitized solar cells (DSSCs) incorporating oriented TiO2 nanotube (NT) arrays. The morphology of the NT arrays, which were prepared from electrochemically anodized Ti foils, were characterized by scanning and transmission electron microscopies. The arrays were found to consist of closely packed NTs, several micrometers in length, with typical wall thicknesses and intertube spacings of 8−10 nm and pore diameters of about 30 nm. The calcined material was fully crystalline with individual NTs consisting of about 30 nm sized crystallites. The transport and recombination properties of the NT and nanoparticle (NP) films used in DSSCs were studied by frequency-resolved modulated photocurrent/photovoltage spectroscopies. While both morphologies display comparable transport times, recombination was much slower in the NT films, indicating that the NT-based DSSCs have significantly higher charge-collection efficiencies than their NP-based counterparts. Dye molecules were shown to cover both the interior and exterior walls of the NTs. Analysis of photocurrent measurements indicates that the light-harvesting efficiencies of NT-based DSSCs were higher than those found for DSSCs incorporating NPs owing to stronger internal light-scattering effects.

*

 To whom correspondence should be address. E-mail:  [email protected]

Cited By


This article is cited by 1842 publications.

  1. X. S. Liu, Z. T. Shen, F. J. Wang, G. Q. Li, M. Y. Wang, X. K. Hao, W. F. Zhang. Band Gap Engineering in NaBiO3·2H2O/NaBiO3·xH2O Heterostructures for High Photoelectronic Response. The Journal of Physical Chemistry C 2020, 124 (30) , 16271-16277. https://doi.org/10.1021/acs.jpcc.0c03299
  2. Shuo Hou, Zhi-Quan Wei, Xiao-Cheng Dai, Ming-Hui Huang, Fang-Xing Xiao. General Layer-by-Layer Assembly of Multilayered Photoanodes: Triggering Tandem Charge Transport toward Photoelectrochemical Water Oxidation. Inorganic Chemistry 2020, 59 (10) , 7325-7334. https://doi.org/10.1021/acs.inorgchem.0c00780
  3. Seung-Hee Han, Won-Yeop Rho, Bong-Hyun Jun. Au-Nanoparticle-Embedded Open-Ended Freestanding TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells for Better Electron Generation and Electron Transport. ACS Omega 2019, 4 (23) , 20346-20352. https://doi.org/10.1021/acsomega.9b02903
  4. Jae Hyun Park, Qing Wang, Kai Zhu, Arthur J. Frank, Jin Young Kim. Electrochemical Deposition of Conformal Semiconductor Layers in Nanoporous Oxides for Sensitized Photoelectrodes. ACS Omega 2019, 4 (22) , 19772-19776. https://doi.org/10.1021/acsomega.9b02552
  5. Jiaming Liu, Liqun Zhu, Sisi Xiang, Hailiang Wang, Huicong Liu, Weiping Li, Haining Chen. Cs-Doped TiO2 Nanorod Array Enhances Electron Injection and Transport in Carbon-Based CsPbI3 Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2019, 7 (19) , 16927-16932. https://doi.org/10.1021/acssuschemeng.9b04772
  6. Shun Kashiwaya, Céline Olivier, Jérôme Majimel, Andreas Klein, Wolfram Jaegermann, Thierry Toupance. Nickel Oxide Selectively Deposited on the {101} Facet of Anatase TiO2 Nanocrystal Bipyramids for Enhanced Photocatalysis. ACS Applied Nano Materials 2019, 2 (8) , 4793-4803. https://doi.org/10.1021/acsanm.9b00729
  7. Markus Licklederer, Reza Mohammadi, Nhat Truong Nguyen, Hyoungwon Park, Seyedsina Hejazi, Marcus Halik, Nicolas Vogel, Marco Altomare, Patrik Schmuki. Dewetted Au Nanoparticles on TiO2 Surfaces: Evidence of a Size-Independent Plasmonic Photoelectrochemical Response. The Journal of Physical Chemistry C 2019, 123 (27) , 16934-16942. https://doi.org/10.1021/acs.jpcc.9b02769
  8. Daibing Luo, Baoshun Liu, Akira Fujishima, Kazuya Nakata. TiO2 Nanotube Arrays Formed on Ti Meshes with Periodically Arranged Holes for Flexible Dye-Sensitized Solar Cells. ACS Applied Nano Materials 2019, 2 (6) , 3943-3950. https://doi.org/10.1021/acsanm.9b00849
  9. Guozheng Shi, Anusit Kaewprajak, Xufeng Ling, Akinobu Hayakawa, Sijie Zhou, Bin Song, YangWon Kang, Takahiro Hayashi, Mutlu Ege Altun, Masahiro Nakaya, Zeke Liu, Haibin Wang, Takashi Sagawa, Wanli Ma. Finely Interpenetrating Bulk Heterojunction Structure for Lead Sulfide Colloidal Quantum Dot Solar Cells by Convective Assembly. ACS Energy Letters 2019, 4 (4) , 960-967. https://doi.org/10.1021/acsenergylett.9b00053
  10. Andrea Merenda, Akshita Rana, Albert Guirguis, De Ming Zhu, Lingxue Kong, Ludovic F. Dumée. Enhanced Visible Light Sensitization of N-Doped TiO2 Nanotubes Containing Ti-Oxynitride Species Fabricated via Electrochemical Anodization of Titanium Nitride. The Journal of Physical Chemistry C 2019, 123 (4) , 2189-2201. https://doi.org/10.1021/acs.jpcc.8b09762
  11. Shikai Cao, Wenqiang Huang, Lizhen Wu, Mengmeng Tian, Ye Song. On the Interfacial Adhesion between TiO2 Nanotube Array Layer and Ti Substrate. Langmuir 2018, 34 (46) , 13888-13896. https://doi.org/10.1021/acs.langmuir.8b03408
  12. Anna Pancielejko, Paweł Mazierski, Wojciech Lisowski, Adriana Zaleska-Medynska, Klaudia Kosek, Justyna Łuczak. Facile Formation of Self-Organized TiO2 Nanotubes in Electrolyte Containing Ionic Liquid-Ethylammonium Nitrate and Their Remarkable Photocatalytic Properties. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 14510-14522. https://doi.org/10.1021/acssuschemeng.8b03154
  13. Samuel M. Stavis, Jeffrey A. Fagan, Michael Stopa, J. Alexander Liddle. Nanoparticle Manufacturing – Heterogeneity through Processes to Products. ACS Applied Nano Materials 2018, 1 (9) , 4358-4385. https://doi.org/10.1021/acsanm.8b01239
  14. Pierre-Antoine Cormier, Jonathan Dervaux, Nadine Szuwarski, Yann Pellegrin, Fabrice Odobel, Eric Gautron, Mohammed Boujtita, Rony Snyders. Single Crystalline-like and Nanostructured TiO2 Photoanodes for Dye Sensitized Solar Cells Synthesized by Reactive Magnetron Sputtering at Glancing Angle. The Journal of Physical Chemistry C 2018, 122 (36) , 20661-20668. https://doi.org/10.1021/acs.jpcc.8b07192
  15. Mohammad H. Zarifi, Benjamin D. Wiltshire, Najia Mahdi, Karthik Shankar, Mojgan Daneshmand. Distinguishing between Deep Trapping Transients of Electrons and Holes in TiO2 Nanotube Arrays Using Planar Microwave Resonator Sensor. ACS Applied Materials & Interfaces 2018, 10 (35) , 29857-29865. https://doi.org/10.1021/acsami.8b03629
  16. Shun Zhang, Chen Chen, Yangen Zhou, Yumin Qian, Jing Ye, Shiyun Xiong, Yu Zhao, Xiaohong Zhang. TiO2-Photoanode-Assisted Direct-Solar-Energy Harvesting and Storage in a Solar-Powered Redox Cell Using Halides as Active Materials. ACS Applied Materials & Interfaces 2018, 10 (27) , 23048-23054. https://doi.org/10.1021/acsami.8b04314
  17. Haidong Bian, Nhat Truong Nguyen, JeongEun Yoo, Seyedsina Hejazi, Shiva Mohajernia, Julian Müller, Erdmann Spiecker, Hiroaki Tsuchiya, Ondrej Tomanec, Beatriz E. Sanabria-Arenas, Radek Zboril, Yang Yang Li, Patrik Schmuki. Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO2 Nanotubes Directly During Anodic Growth. ACS Applied Materials & Interfaces 2018, 10 (21) , 18220-18226. https://doi.org/10.1021/acsami.8b03713
  18. Yang Yang, Li Cheng Kao, Yuanyue Liu, Ke Sun, Hongtao Yu, Jinghua Guo, Sofia Ya Hsuan Liou, Michael R. Hoffmann. Cobalt-Doped Black TiO2 Nanotube Array as a Stable Anode for Oxygen Evolution and Electrochemical Wastewater Treatment. ACS Catalysis 2018, 8 (5) , 4278-4287. https://doi.org/10.1021/acscatal.7b04340
  19. Yoon Jun Son, Jin Soo Kang, Jungjin Yoon, Jin Kim, Juwon Jeong, Jiho Kang, Myeong Jae Lee, Hyun S. Park, Yung-Eun Sung. Influence of TiO2 Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte. The Journal of Physical Chemistry C 2018, 122 (13) , 7051-7060. https://doi.org/10.1021/acs.jpcc.7b12206
  20. Liang Chu, Jie Zhang, Wei Liu, Rui Zhang, Jian Yang, Ruiyuan Hu, Xing’ao Li, Wei Huang. A Facile and Green Approach to Synthesize Mesoporous Anatase TiO2 Nanomaterials for Efficient Dye-Sensitized and Hole-Conductor-Free Perovskite Solar Cells. ACS Sustainable Chemistry & Engineering 2018, 6 (4) , 5588-5597. https://doi.org/10.1021/acssuschemeng.8b00607
  21. Wei-Chieh Chen, Min-Hsin Yeh, Lu-Yin Lin, R. Vittal, Kuo-Chuan Ho. Double-Wall TiO2 Nanotubes for Dye-Sensitized Solar Cells: A Study of Growth Mechanism. ACS Sustainable Chemistry & Engineering 2018, 6 (3) , 3907-3915. https://doi.org/10.1021/acssuschemeng.7b04250
  22. Liping Chen, Jiabao Cui, Xia Sheng, Tengfeng Xie, Tao Xu, and Xinjian Feng . High-Performance Photoelectronic Sensor Using Mesostructured ZnO Nanowires. ACS Sensors 2017, 2 (11) , 1567-1572. https://doi.org/10.1021/acssensors.7b00477
  23. Jun-Hyeok Park, Dong Guk Nam, Byung-Man Kim, Ming Yu Jin, Deok-Ho Roh, Hyun Sil Jung, Do Hyun Ryu, and Tae-Hyuk Kwon . Planar D–D−π-A Organic Sensitizers for Thin-Film Photoanodes. ACS Energy Letters 2017, 2 (8) , 1810-1817. https://doi.org/10.1021/acsenergylett.7b00438
  24. Su-Jin Ha and Jun Hyuk Moon . Highly Improved Ion Diffusion through Mesoscopically Ordered Porous Photoelectrodes. The Journal of Physical Chemistry C 2017, 121 (22) , 12046-12052. https://doi.org/10.1021/acs.jpcc.7b02934
  25. Jun Li, Jian Liu, Qian Sun, Mohammad Norouzi Banis, Xueliang Sun, and Tsun-Kong Sham . Tracking the Effect of Sodium Insertion/Extraction in Amorphous and Anatase TiO2 Nanotubes. The Journal of Physical Chemistry C 2017, 121 (21) , 11773-11782. https://doi.org/10.1021/acs.jpcc.7b01106
  26. Liang Xu, Jian Wang, and Julia W. P. Hsu . Structural Order: The Dominant Factor for Nongeminate Recombination in Organic Photovoltaic Devices. The Journal of Physical Chemistry C 2017, 121 (17) , 9242-9248. https://doi.org/10.1021/acs.jpcc.7b03183
  27. Alena Folger, Petra Ebbinghaus, Andreas Erbe, and Christina Scheu . Role of Vacancy Condensation in the Formation of Voids in Rutile TiO2 Nanowires. ACS Applied Materials & Interfaces 2017, 9 (15) , 13471-13479. https://doi.org/10.1021/acsami.7b01160
  28. Joyjit Kundu, Santimoy Khilari, and Debabrata Pradhan . Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures. ACS Applied Materials & Interfaces 2017, 9 (11) , 9669-9680. https://doi.org/10.1021/acsami.6b16456
  29. Danjun Wang, Huidong Shen, Li Guo, Chan Wang, and Feng Fu . Porous BiOBr/Bi2MoO6 Heterostructures for Highly Selective Adsorption of Methylene Blue. ACS Omega 2016, 1 (4) , 566-577. https://doi.org/10.1021/acsomega.6b00160
  30. Raul Zazpe, Martin Knaut, Hanna Sopha, Ludek Hromadko, Matthias Albert, Jan Prikryl, V. Gärtnerová, Johann W. Bartha, and Jan M. Macak . Atomic Layer Deposition for Coating of High Aspect Ratio TiO2 Nanotube Layers. Langmuir 2016, 32 (41) , 10551-10558. https://doi.org/10.1021/acs.langmuir.6b03119
  31. Dong-Dong Qin, Xue-Huai Wang, Yang Li, Jing Gu, Xing-Ming Ning, Jing Chen, Xiao-Quan Lu, and Chun-Lan Tao . PH3-Treated TiO2 Nanorods with Dual-Doping Effect for Photoelectrochemical Oxidation of Water. The Journal of Physical Chemistry C 2016, 120 (39) , 22195-22201. https://doi.org/10.1021/acs.jpcc.6b06903
  32. Changsong Chen, Na Wang, Peng Zhou, Haisheng San, Kaiying Wang, and Xuyuan Chen . Electrochemically Reduced Graphene Oxide on Well-Aligned Titanium Dioxide Nanotube Arrays for Betavoltaic Enhancement. ACS Applied Materials & Interfaces 2016, 8 (37) , 24638-24644. https://doi.org/10.1021/acsami.6b08112
  33. Sangchul Lee, Joshua Feldman, and Stephanie S. Lee . Nanoconfined Crystallization of MAPbI3 to Probe Crystal Evolution and Stability. Crystal Growth & Design 2016, 16 (8) , 4744-4751. https://doi.org/10.1021/acs.cgd.6b00801
  34. Ha Nee Umh, Sungju Yu, Yong Hwa Kim, Su Young Lee, and Jongheop Yi . Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure. ACS Applied Materials & Interfaces 2016, 8 (24) , 15802-15808. https://doi.org/10.1021/acsami.6b03717
  35. Bharat Dhital, Vishal Govind Rao, and H. Peter Lu . Electronic Coupling–Decoupling-Dependent Single-Molecule Interfacial Electron Transfer Dynamics in Electrostatically Attached Porphyrin on TiO2 Nanoparticles. The Journal of Physical Chemistry C 2016, 120 (22) , 12313-12324. https://doi.org/10.1021/acs.jpcc.6b03784
  36. Julio Villanueva-Cab, Jose Luis Montaño-Priede, and Umapada Pal . Effects of Plasmonic Nanoparticle Incorporation on Electrodynamics and Photovoltaic Performance of Dye Sensitized Solar Cells. The Journal of Physical Chemistry C 2016, 120 (19) , 10129-10136. https://doi.org/10.1021/acs.jpcc.6b01053
  37. Jiazang Chen, Liping Zhang, Zhenhui Lam, Hua Bing Tao, Zhiping Zeng, Hong Bin Yang, Jianqiang Luo, Lin Ma, Bo Li, Jianfeng Zheng, Suping Jia, Zhijian Wang, Zhenping Zhu, and Bin Liu . Tunneling Interlayer for Efficient Transport of Charges in Metal Oxide Electrodes. Journal of the American Chemical Society 2016, 138 (9) , 3183-3189. https://doi.org/10.1021/jacs.5b13464
  38. Jie Dou, Yafeng Li, Fengyan Xie, Xiaokun Ding, and Mingdeng Wei . Metal–Organic Framework Derived Hierarchical Porous Anatase TiO2 as a Photoanode for Dye-Sensitized Solar Cell. Crystal Growth & Design 2016, 16 (1) , 121-125. https://doi.org/10.1021/acs.cgd.5b01003
  39. Li Cheng Kao, Sofia Ya Hsuan Liou, Chung Li Dong, Ping Hung Yeh, and Chi Liang Chen . Tandem Structure of QD Cosensitized TiO2 Nanorod Arrays for Solar Light Driven Hydrogen Generation. ACS Sustainable Chemistry & Engineering 2016, 4 (1) , 210-218. https://doi.org/10.1021/acssuschemeng.5b01010
  40. Dennis L. Ashford, Melissa K. Gish, Aaron K. Vannucci, M. Kyle Brennaman, Joseph L. Templeton, John M. Papanikolas, and Thomas J. Meyer . Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews 2015, 115 (23) , 13006-13049. https://doi.org/10.1021/acs.chemrev.5b00229
  41. Qiong Wang, Miaoqiang Lyu, Meng Zhang, Jung-Ho Yun, Hongjun Chen, and Lianzhou Wang . Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH3NH3PbI3 on TiO2 Substrates. The Journal of Physical Chemistry Letters 2015, 6 (21) , 4379-4384. https://doi.org/10.1021/acs.jpclett.5b01682
  42. In Sun Cho, Jongmin Choi, Kan Zhang, Sung June Kim, Myung Jin Jeong, Lili Cai, Taiho Park, Xiaolin Zheng, and Jong Hyeok Park . Highly Efficient Solar Water Splitting from Transferred TiO2 Nanotube Arrays. Nano Letters 2015, 15 (9) , 5709-5715. https://doi.org/10.1021/acs.nanolett.5b01406
  43. Sherdil Khan, Maximiliano J. M. Zapata, Daniel L. Baptista, Renato V. Gonçalves, Jesum A. Fernandes, Jairton Dupont, Marcos J. L. Santos, and Sérgio R. Teixeira . Effect of Oxygen Content on the Photoelectrochemical Activity of Crystallographically Preferred Oriented Porous Ta3N5 Nanotubes. The Journal of Physical Chemistry C 2015, 119 (34) , 19906-19914. https://doi.org/10.1021/acs.jpcc.5b05475
  44. Atharva Sahasrabudhe and Sayan Bhattacharyya . Dual Sensitization Strategy for High-Performance Core/Shell/Quasi-shell Quantum Dot Solar Cells. Chemistry of Materials 2015, 27 (13) , 4848-4859. https://doi.org/10.1021/acs.chemmater.5b01731
  45. Dong-Dong Qin, Ying-Pu Bi, Xin-Jian Feng, Wei Wang, Greg D. Barber, Ting Wang, Yu-Min Song, Xiao-Quan Lu, and Thomas E. Mallouk . Hydrothermal Growth and Photoelectrochemistry of Highly Oriented, Crystalline Anatase TiO2 Nanorods on Transparent Conducting Electrodes. Chemistry of Materials 2015, 27 (12) , 4180-4183. https://doi.org/10.1021/acs.chemmater.5b00782
  46. Zahra Seidalilir, Rasoul Malekfar, Hui-Ping Wu, Jia-Wei Shiu, and Eric Wei-Guang Diau . High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes. ACS Applied Materials & Interfaces 2015, 7 (23) , 12731-12739. https://doi.org/10.1021/acsami.5b01519
  47. In Young Song, Minjun Kim, and Taiho Park . Effect of Ion-Chelating Chain Lengths in Thiophene-Based Monomers on in Situ Photoelectrochemical Polymerization and Photovoltaic Performances. ACS Applied Materials & Interfaces 2015, 7 (21) , 11482-11489. https://doi.org/10.1021/acsami.5b02411
  48. Huiqiao Liu, Kangzhe Cao, Xiaohong Xu, Lifang Jiao, Yijing Wang, and Huatang Yuan . Ultrasmall TiO2 Nanoparticles in Situ Growth on Graphene Hybrid as Superior Anode Material for Sodium/Lithium Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (21) , 11239-11245. https://doi.org/10.1021/acsami.5b02724
  49. C. Wehrenfennig, C. M. Palumbiny, H. J. Snaith, M. B. Johnston, L. Schmidt-Mende, and L. M. Herz . Fast Charge-Carrier Trapping in TiO2 Nanotubes. The Journal of Physical Chemistry C 2015, 119 (17) , 9159-9168. https://doi.org/10.1021/acs.jpcc.5b01827
  50. Jongmin Choi, Gyeongho Kang, and Taiho Park . A Competitive Electron Transport Mechanism in Hierarchical Homogeneous Hybrid Structures Composed of TiO2 Nanoparticles and Nanotubes. Chemistry of Materials 2015, 27 (4) , 1359-1366. https://doi.org/10.1021/cm504516n
  51. Ting Su, Yulin Yang, Yong Na, Ruiqing Fan, Liang Li, Liguo Wei, Bin Yang, and Wenwu Cao . An Insight into the Role of Oxygen Vacancy in Hydrogenated TiO2 Nanocrystals in the Performance of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (6) , 3754-3763. https://doi.org/10.1021/am5085447
  52. Joel N. Schrauben, Yixin Zhao, Candy Mercado, Paul I. Dron, Joseph L. Ryerson, Josef Michl, Kai Zhu, and Justin C. Johnson . Photocurrent Enhanced by Singlet Fission in a Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2015, 7 (4) , 2286-2293. https://doi.org/10.1021/am506329v
  53. Juyoung Yun, Sun Hye Hwang, and Jyongsik Jang . Fabrication of [email protected] Core/Shell Nanoparticles Decorated TiO2 Hollow Structure for Efficient Light-Harvesting in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2015, 7 (3) , 2055-2063. https://doi.org/10.1021/am508065n
  54. Stephen DeWitt Katsuyo Thornton . Anodic Oxide Nanostructures and Their Applications in Energy Generation and Storage. 2015,,, 19-39. https://doi.org/10.1021/bk-2015-1213.ch002
  55. Tatsuya Kameyama, Yusuke Douke, Hiroko Shibakawa, Masahide Kawaraya, Hiroshi Segawa, Susumu Kuwabata, and Tsukasa Torimoto . Widely Controllable Electronic Energy Structure of ZnSe–AgInSe2 Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (51) , 29517-29524. https://doi.org/10.1021/jp508769f
  56. Wenjing Yuan, Juchuan Li, Likun Wang, Ping Chen, Anjian Xie, and Yuhua Shen . Nanocomposite of N-Doped TiO2 Nanorods and Graphene as an Effective Electrocatalyst for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2014, 6 (24) , 21978-21985. https://doi.org/10.1021/am507890h
  57. Yajie Wang, Jianjun Tian, Chengbin Fei, Lili Lv, Xiaoguang Liu, Zhenxuan Zhao, and Guozhong Cao . Microwave-Assisted Synthesis of SnO2 Nanosheets Photoanodes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (45) , 25931-25938. https://doi.org/10.1021/jp5089146
  58. Jiazang Chen, Hong Bin Yang, Jianwei Miao, Hsin-Yi Wang, and Bin Liu . Thermodynamically Driven One-Dimensional Evolution of Anatase TiO2 Nanorods: One-Step Hydrothermal Synthesis for Emerging Intrinsic Superiority of Dimensionality. Journal of the American Chemical Society 2014, 136 (43) , 15310-15318. https://doi.org/10.1021/ja5080568
  59. Xin Ba, Li-Li Yan, Sheng Huang, Jiaguo Yu, Xiang-Jun Xia, and Ying Yu . New Way for CO2 Reduction under Visible Light by a Combination of a Cu Electrode and Semiconductor Thin Film: Cu2O Conduction Type and Morphology Effect. The Journal of Physical Chemistry C 2014, 118 (42) , 24467-24478. https://doi.org/10.1021/jp5063397
  60. Yu Bai, Iván Mora-Seró, Filippo De Angelis, Juan Bisquert, and Peng Wang . Titanium Dioxide Nanomaterials for Photovoltaic Applications. Chemical Reviews 2014, 114 (19) , 10095-10130. https://doi.org/10.1021/cr400606n
  61. Lixia Sang, Yixin Zhao, and Clemens Burda . TiO2 Nanoparticles as Functional Building Blocks. Chemical Reviews 2014, 114 (19) , 9283-9318. https://doi.org/10.1021/cr400629p
  62. Kiyoung Lee, Anca Mazare, and Patrik Schmuki . One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chemical Reviews 2014, 114 (19) , 9385-9454. https://doi.org/10.1021/cr500061m
  63. Yongcai Qiu, Siu-Fung Leung, Zhanhua Wei, Qingfeng Lin, Xiaoli Zheng, Yuegang Zhang, Zhiyong Fan, and Shihe Yang . Enhanced Charge Collection for Splitting of Water Enabled by an Engineered Three-Dimensional Nanospike Array. The Journal of Physical Chemistry C 2014, 118 (39) , 22465-22472. https://doi.org/10.1021/jp507800t
  64. Xiaoxu Wang, Min Xi, Hao Fong, and Zhengtao Zhu . Flexible, Transferable, and Thermal-Durable Dye-Sensitized Solar Cell Photoanode Consisting of TiO2 Nanoparticles and Electrospun TiO2/SiO2 Nanofibers. ACS Applied Materials & Interfaces 2014, 6 (18) , 15925-15932. https://doi.org/10.1021/am503542g
  65. Jongmin Choi, Seulki Song, Gyeongho Kang, and Taiho Park . Dye-Sensitized Solar Cells Employing Doubly or Singly Open-Ended TiO2 Nanotube Arrays: Structural Geometry and Charge Transport. ACS Applied Materials & Interfaces 2014, 6 (17) , 15388-15394. https://doi.org/10.1021/am503934s
  66. Vishal Govind Rao, Bharat Dhital, Yufan He, and H. Peter Lu . Single-Molecule Interfacial Electron Transfer Dynamics of Porphyrin on TiO2 Nanoparticles: Dissecting the Complex Electronic Coupling Dependent Dynamics. The Journal of Physical Chemistry C 2014, 118 (35) , 20209-20221. https://doi.org/10.1021/jp506199w
  67. Lok-kun Tsui, Justine Huang, Michal Sabat, and Giovanni Zangari . Visible Light Sensitization of TiO2 Nanotubes by Bacteriochlorophyll-C Dyes for Photoelectrochemical Solar Cells. ACS Sustainable Chemistry & Engineering 2014, 2 (9) , 2097-2101. https://doi.org/10.1021/sc500386g
  68. Subha Sadhu and Pankaj Poddar . Template-Free Fabrication of Highly-Oriented Single-Crystalline 1D-Rutile TiO2-MWCNT Composite for Enhanced Photoelectrochemical Activity. The Journal of Physical Chemistry C 2014, 118 (33) , 19363-19373. https://doi.org/10.1021/jp5023983
  69. Alexander R. Pascoe, Dehong Chen, Fuzhi Huang, Noel W. Duffy, Rachel A. Caruso, and Yi-Bing Cheng . Charge Transport in Photoanodes Constructed with Mesoporous TiO2 Beads for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 16635-16642. https://doi.org/10.1021/jp4125606
  70. Xiaoqian Xu, Fangjian Qiao, Liyun Dang, Qingyi Lu, and Feng Gao . Porous Tin Oxide Nanosheets with Enhanced Conversion Efficiency as Dye-Sensitized Solar Cell Electrode. The Journal of Physical Chemistry C 2014, 118 (30) , 16856-16862. https://doi.org/10.1021/jp500364v
  71. Jan Poppe, Stephen G. Hickey, and Alexander Eychmüller . Photoelectrochemical Investigations of Semiconductor Nanoparticles and Their Application to Solar Cells. The Journal of Physical Chemistry C 2014, 118 (30) , 17123-17141. https://doi.org/10.1021/jp5016092
  72. In Young Song, Young Soo Kwon, Jongchul Lim, and Taiho Park . Well-Defined All-Conducting Block Copolymer Bilayer Hybrid Nanostructure: Selective Positioning of Lithium Ions and Efficient Charge Collection. ACS Nano 2014, 8 (7) , 6893-6901. https://doi.org/10.1021/nn5016083
  73. Zhongqiang Wang, Xiao-Feng Wang, Daisuke Yokoyama, Hisahiro Sasabe, Junji Kido, Zhaoyang Liu, Wenjing Tian, Osamu Kitao, Toshitaka Ikeuchi, and Shin-ichi Sasaki . Esterification of Indoline-Based Small-Molecule Donors for Efficient Co-evaporated Organic Photovoltaics. The Journal of Physical Chemistry C 2014, 118 (27) , 14785-14794. https://doi.org/10.1021/jp5030608
  74. Zhenyu Guo, Oleg V. Prezhdo, Tingjun Hou, Xue Chen, Shuit-Tong Lee, and Youyong Li . Fast Energy Relaxation by Trap States Decreases Electron Mobility in TiO2 Nanotubes: Time-Domain Ab Initio Analysis. The Journal of Physical Chemistry Letters 2014, 5 (10) , 1642-1647. https://doi.org/10.1021/jz500565v
  75. Julio Villanueva-Cab, Song-Rim Jang, Adam F. Halverson, Kai Zhu, and Arthur J. Frank . Trap-Free Transport in Ordered and Disordered TiO2 Nanostructures. Nano Letters 2014, 14 (5) , 2305-2309. https://doi.org/10.1021/nl4046087
  76. Musashi Fujishima, Kentaro Tanaka, Naoki Sakami, Masataka Wada, Katsuyuki Morii, Takanori Hattori, Yasutaka Sumida, and Hiroaki Tada . Photocatalytic Current Doubling-Induced Generation of Uniform Selenium and Cadmium Selenide Quantum Dots on Titanium(IV) Oxide. The Journal of Physical Chemistry C 2014, 118 (17) , 8917-8924. https://doi.org/10.1021/jp410794j
  77. Yiqing Sun, William D. Chemelewski, Sean P. Berglund, Chun Li, Huichao He, Gaoquan Shi, and C. Buddie Mullins . Antimony-Doped Tin Oxide Nanorods as a Transparent Conducting Electrode for Enhancing Photoelectrochemical Oxidation of Water by Hematite. ACS Applied Materials & Interfaces 2014, 6 (8) , 5494-5499. https://doi.org/10.1021/am405628r
  78. Siu-Fung Leung, Qianpeng Zhang, Fei Xiu, Dongliang Yu, Johnny C. Ho, Dongdong Li, and Zhiyong Fan . Light Management with Nanostructures for Optoelectronic Devices. The Journal of Physical Chemistry Letters 2014, 5 (8) , 1479-1495. https://doi.org/10.1021/jz500306f
  79. Juncao Bian, Chao Huang, Lingyun Wang, TakFu Hung, Walid A. Daoud, and Ruiqin Zhang . Carbon Dot Loading and TiO2 Nanorod Length Dependence of Photoelectrochemical Properties in Carbon Dot/TiO2 Nanorod Array Nanocomposites. ACS Applied Materials & Interfaces 2014, 6 (7) , 4883-4890. https://doi.org/10.1021/am4059183
  80. Lidong Sun, Xiaoyan Wang, Meilin Li, Sam Zhang, and Qing Wang . Anodic Titania Nanotubes Grown on Titanium Tubular Electrodes. Langmuir 2014, 30 (10) , 2835-2841. https://doi.org/10.1021/la500050q
  81. Wei Li, Yang Bai, Wei Zhuang, Kwong-Yu Chan, Chang Liu, Zhuhong Yang, Xin Feng, and Xiaohua Lu . Highly Crystalline Mesoporous TiO2(B) Nanofibers. The Journal of Physical Chemistry C 2014, 118 (6) , 3049-3055. https://doi.org/10.1021/jp408112z
  82. Xiaoyan Wang, Lidong Sun, Sam Zhang, and Xiu Wang . Ultralong, Small-Diameter TiO2 Nanotubes Achieved by an Optimized Two-Step Anodization for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (3) , 1361-1365. https://doi.org/10.1021/am404966e
  83. Nuri Yazdani, Deniz Bozyigit, Ivo Utke, Jakob Buchheim, Seul Ki Youn, Jörg Patscheider, Vanessa Wood, and Hyung Gyu Park . Enhanced Charge Transport Kinetics in Anisotropic, Stratified Photoanodes. ACS Applied Materials & Interfaces 2014, 6 (3) , 1389-1393. https://doi.org/10.1021/am405987t
  84. Ji Young Ahn, Kook Joo Moon, Ji Hoon Kim, Sang Hyun Lee, Jae Wook Kang, Hyung Woo Lee, and Soo Hyung Kim . Designed Synthesis and Stacking Architecture of Solid and Mesoporous TiO2 Nanoparticles for Enhancing the Light-Harvesting Efficiency of Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2014, 6 (2) , 903-909. https://doi.org/10.1021/am4041866
  85. Yang Bai, Zheng Xing, Hua Yu, Zhen Li, Rose Amal, and Lianzhou Wang . Porous Titania Nanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (22) , 12058-12065. https://doi.org/10.1021/am403897f
  86. Stella Itzhakov, Heping Shen, Sophia Buhbut, Hong Lin, and Dan Oron . Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. The Journal of Physical Chemistry C 2013, 117 (43) , 22203-22210. https://doi.org/10.1021/jp312190x
  87. Hsiu-Ping Jen, Meng-Hung Lin, Lu-Lin Li, Hui-Ping Wu, Wei-Kai Huang, Po-Jen Cheng, and Eric Wei-Guang Diau . High-Performance Large-Scale Flexible Dye-Sensitized Solar Cells Based on Anodic TiO2 Nanotube Arrays. ACS Applied Materials & Interfaces 2013, 5 (20) , 10098-10104. https://doi.org/10.1021/am402687j
  88. Gajendra Kumar Pradhan, Deepak Kumar Padhi, and K. M. Parida . Fabrication of α-Fe2O3 Nanorod/RGO Composite: A Novel Hybrid Photocatalyst for Phenol Degradation. ACS Applied Materials & Interfaces 2013, 5 (18) , 9101-9110. https://doi.org/10.1021/am402487h
  89. Hong-Yan Chen, Teng-Long Zhang, Jie Fan, Dai-Bin Kuang, and Cheng-Yong Su . Electrospun Hierarchical TiO2 Nanorods with High Porosity for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (18) , 9205-9211. https://doi.org/10.1021/am402853q
  90. Kai Pan, Youzhen Dong, Wei Zhou, Qingjiang Pan, Ying Xie, Tengfeng Xie, Guohui Tian, and Guofeng Wang . Facile Fabrication of Hierarchical TiO2 Nanobelt/ZnO Nanorod Heterogeneous Nanostructure: An Efficient Photoanode for Water Splitting. ACS Applied Materials & Interfaces 2013, 5 (17) , 8314-8320. https://doi.org/10.1021/am402154k
  91. Yixin Zhao and Kai Zhu . Charge Transport and Recombination in Perovskite (CH3NH3)PbI3 Sensitized TiO2 Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (17) , 2880-2884. https://doi.org/10.1021/jz401527q
  92. Do Hong Kim, Young-Seok Shim, Hi Gyu Moon, Hye Jung Chang, Dong Su, Soo Young Kim, Jin-Sang Kim, Byeong Kwon Ju, Seok-Jin Yoon, and Ho Won Jang . Highly Ordered TiO2 Nanotubes on Patterned Substrates: Synthesis-in-Place for Ultrasensitive Chemiresistors. The Journal of Physical Chemistry C 2013, 117 (34) , 17824-17831. https://doi.org/10.1021/jp405150b
  93. Jun Zhang, Jing Guo, Hongyan Xu, and Bingqiang Cao . Reactive-Template Fabrication of Porous SnO2 Nanotubes and Their Remarkable Gas-Sensing Performance. ACS Applied Materials & Interfaces 2013, 5 (16) , 7893-7898. https://doi.org/10.1021/am4019884
  94. Shaowu Pan, Zhibin Yang, Houpu Li, Longbin Qiu, Hao Sun, and Huisheng Peng . Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte. Journal of the American Chemical Society 2013, 135 (29) , 10622-10625. https://doi.org/10.1021/ja405012w
  95. Ke-Nan Li, Yu-Fen Wang, Yang-Fan Xu, Hong-Yan Chen, Cheng-Yong Su, and Dai-Bin Kuang . Macroporous SnO2 Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces 2013, 5 (11) , 5105-5111. https://doi.org/10.1021/am4009727
  96. Hui-Seon Kim, Jin-Wook Lee, Natalia Yantara, Pablo P. Boix, Sneha A. Kulkarni, Subodh Mhaisalkar, Michael Grätzel, and Nam-Gyu Park . High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer. Nano Letters 2013, 13 (6) , 2412-2417. https://doi.org/10.1021/nl400286w
  97. Pablo Docampo, Stefan Guldin, Ullrich Steiner, and Henry J. Snaith . Charge Transport Limitations in Self-Assembled TiO2 Photoanodes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (5) , 698-703. https://doi.org/10.1021/jz400084n
  98. Seong Sik Shin, Ju Seong Kim, Jae Ho Suk, Kee Doo Lee, Dong Wook Kim, Jong Hoon Park, In Sun Cho, Kug Sun Hong, and Jin Young Kim . Improved Quantum Efficiency of Highly Efficient Perovskite BaSnO3-Based Dye-Sensitized Solar Cells. ACS Nano 2013, 7 (2) , 1027-1035. https://doi.org/10.1021/nn305341x
  99. Xuemei Sun, Tao Chen, Zhibin Yang, and Huisheng Peng . The Alignment of Carbon Nanotubes: An Effective Route To Extend Their Excellent Properties to Macroscopic Scale. Accounts of Chemical Research 2013, 46 (2) , 539-549. https://doi.org/10.1021/ar300221r
  100. Xiaoxu Wang, Guangfei He, Hao Fong, and Zhengtao Zhu . Electron Transport and Recombination in Photoanode of Electrospun TiO2 Nanotubes for Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (4) , 1641-1646. https://doi.org/10.1021/jp311725g
Load more citations